1
|
|
|
# |
2
|
|
|
# Copyright 2015 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
import bcolz |
17
|
|
|
from logbook import Logger |
18
|
|
|
|
19
|
|
|
import numpy as np |
20
|
|
|
import pandas as pd |
21
|
|
|
from pandas.tslib import normalize_date |
22
|
|
|
|
23
|
|
|
from zipline.assets import Future, Equity |
24
|
|
|
from zipline.data.us_equity_pricing import NoDataOnDate |
25
|
|
|
|
26
|
|
|
from zipline.utils import tradingcalendar |
27
|
|
|
from zipline.errors import ( |
28
|
|
|
NoTradeDataAvailableTooEarly, |
29
|
|
|
NoTradeDataAvailableTooLate |
30
|
|
|
) |
31
|
|
|
|
32
|
|
|
log = Logger('DataPortal') |
33
|
|
|
|
34
|
|
|
BASE_FIELDS = { |
35
|
|
|
'open': 'open', |
36
|
|
|
'open_price': 'open', |
37
|
|
|
'high': 'high', |
38
|
|
|
'low': 'low', |
39
|
|
|
'close': 'close', |
40
|
|
|
'close_price': 'close', |
41
|
|
|
'volume': 'volume', |
42
|
|
|
'price': 'close' |
43
|
|
|
} |
44
|
|
|
|
45
|
|
|
|
46
|
|
|
class DataPortal(object): |
47
|
|
|
def __init__(self, |
48
|
|
|
env, |
49
|
|
|
sim_params=None, |
50
|
|
|
equity_daily_reader=None, |
51
|
|
|
equity_minute_reader=None, |
52
|
|
|
future_daily_reader=None, |
53
|
|
|
future_minute_reader=None, |
54
|
|
|
adjustment_reader=None): |
55
|
|
|
self.env = env |
56
|
|
|
|
57
|
|
|
# Internal pointers to the current dt (can be minute) and current day. |
58
|
|
|
# In daily mode, they point to the same thing. In minute mode, it's |
59
|
|
|
# useful to have separate pointers to the current day and to the |
60
|
|
|
# current minute. These pointers are updated by the |
61
|
|
|
# AlgorithmSimulator's transform loop. |
62
|
|
|
self.current_dt = None |
63
|
|
|
self.current_day = None |
64
|
|
|
|
65
|
|
|
self.views = {} |
66
|
|
|
|
67
|
|
|
self._asset_finder = env.asset_finder |
68
|
|
|
|
69
|
|
|
self._carrays = { |
70
|
|
|
'open': {}, |
71
|
|
|
'high': {}, |
72
|
|
|
'low': {}, |
73
|
|
|
'close': {}, |
74
|
|
|
'volume': {}, |
75
|
|
|
'sid': {}, |
76
|
|
|
'dt': {}, |
77
|
|
|
} |
78
|
|
|
|
79
|
|
|
self._adjustment_reader = adjustment_reader |
80
|
|
|
|
81
|
|
|
# caches of sid -> adjustment list |
82
|
|
|
self._splits_dict = {} |
83
|
|
|
self._mergers_dict = {} |
84
|
|
|
self._dividends_dict = {} |
85
|
|
|
|
86
|
|
|
# Cache of sid -> the first trading day of an asset, even if that day |
87
|
|
|
# is before 1/2/2002. |
88
|
|
|
self._asset_start_dates = {} |
89
|
|
|
self._asset_end_dates = {} |
90
|
|
|
|
91
|
|
|
# Handle extra sources, like Fetcher. |
92
|
|
|
self._augmented_sources_map = {} |
93
|
|
|
self._extra_source_df = None |
94
|
|
|
|
95
|
|
|
self._sim_params = sim_params |
96
|
|
|
if self._sim_params is not None: |
97
|
|
|
self._data_frequency = self._sim_params.data_frequency |
98
|
|
|
else: |
99
|
|
|
self._data_frequency = "minute" |
100
|
|
|
|
101
|
|
|
self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001 |
102
|
|
|
|
103
|
|
|
self._equity_daily_reader = equity_daily_reader |
104
|
|
|
self._equity_minute_reader = equity_minute_reader |
105
|
|
|
self._future_daily_reader = future_daily_reader |
106
|
|
|
self._future_minute_reader = future_minute_reader |
107
|
|
|
|
108
|
|
|
def _open_minute_file(self, field, asset): |
109
|
|
|
sid_str = str(int(asset)) |
110
|
|
|
|
111
|
|
|
try: |
112
|
|
|
carray = self._carrays[field][sid_str] |
113
|
|
|
except KeyError: |
114
|
|
|
carray = self._carrays[field][sid_str] = \ |
115
|
|
|
self._get_ctable(asset)[field] |
116
|
|
|
|
117
|
|
|
return carray |
118
|
|
|
|
119
|
|
|
def _get_ctable(self, asset): |
120
|
|
|
sid = int(asset) |
121
|
|
|
|
122
|
|
|
if isinstance(asset, Future): |
123
|
|
|
if self._future_minute_reader.sid_path_func is not None: |
124
|
|
|
path = self._future_minute_reader.sid_path_func( |
125
|
|
|
self._future_minute_reader.rootdir, sid |
126
|
|
|
) |
127
|
|
|
else: |
128
|
|
|
path = "{0}/{1}.bcolz".format( |
129
|
|
|
self._future_minute_reader.rootdir, sid) |
130
|
|
|
elif isinstance(asset, Equity): |
131
|
|
|
if self._equity_minute_reader.sid_path_func is not None: |
132
|
|
|
path = self._equity_minute_reader.sid_path_func( |
133
|
|
|
self._equity_minute_reader.rootdir, sid |
134
|
|
|
) |
135
|
|
|
else: |
136
|
|
|
path = "{0}/{1}.bcolz".format( |
137
|
|
|
self._equity_minute_reader.rootdir, sid) |
138
|
|
|
|
139
|
|
|
return bcolz.open(path, mode='r') |
140
|
|
|
|
141
|
|
|
def get_spot_value(self, asset, field, dt=None): |
142
|
|
|
""" |
143
|
|
|
Public API method that returns a scalar value representing the value |
144
|
|
|
of the desired asset's field at either the given dt, or this data |
145
|
|
|
portal's current_dt. |
146
|
|
|
|
147
|
|
|
Parameters |
148
|
|
|
--------- |
149
|
|
|
asset : Asset |
150
|
|
|
The asset whose data is desired.gith |
151
|
|
|
|
152
|
|
|
field: string |
153
|
|
|
The desired field of the asset. Valid values are "open", |
154
|
|
|
"open_price", "high", "low", "close", "close_price", "volume", and |
155
|
|
|
"price". |
156
|
|
|
|
157
|
|
|
dt: pd.Timestamp |
158
|
|
|
(Optional) The timestamp for the desired value. |
159
|
|
|
|
160
|
|
|
Returns |
161
|
|
|
------- |
162
|
|
|
The value of the desired field at the desired time. |
163
|
|
|
""" |
164
|
|
|
if field not in BASE_FIELDS: |
165
|
|
|
raise KeyError("Invalid column: " + str(field)) |
166
|
|
|
|
167
|
|
|
column_to_use = BASE_FIELDS[field] |
168
|
|
|
|
169
|
|
|
if isinstance(asset, int): |
170
|
|
|
asset = self._asset_finder.retrieve_asset(asset) |
171
|
|
|
|
172
|
|
|
self._check_is_currently_alive(asset, dt) |
173
|
|
|
|
174
|
|
|
if self._data_frequency == "daily": |
175
|
|
|
day_to_use = dt or self.current_day |
176
|
|
|
day_to_use = normalize_date(day_to_use) |
177
|
|
|
return self._get_daily_data(asset, column_to_use, day_to_use) |
178
|
|
|
else: |
179
|
|
|
dt_to_use = dt or self.current_dt |
180
|
|
|
|
181
|
|
|
if isinstance(asset, Future): |
182
|
|
|
return self._get_minute_spot_value_future( |
183
|
|
|
asset, column_to_use, dt_to_use) |
184
|
|
|
else: |
185
|
|
|
return self._get_minute_spot_value( |
186
|
|
|
asset, column_to_use, dt_to_use) |
187
|
|
|
|
188
|
|
|
def _get_minute_spot_value_future(self, asset, column, dt): |
189
|
|
|
# Futures bcolz files have 1440 bars per day (24 hours), 7 days a week. |
190
|
|
|
# The file attributes contain the "start_dt" and "last_dt" fields, |
191
|
|
|
# which represent the time period for this bcolz file. |
192
|
|
|
|
193
|
|
|
# The start_dt is midnight of the first day that this future started |
194
|
|
|
# trading. |
195
|
|
|
|
196
|
|
|
# figure out the # of minutes between dt and this asset's start_dt |
197
|
|
|
start_date = self._get_asset_start_date(asset) |
198
|
|
|
minute_offset = int((dt - start_date).total_seconds() / 60) |
199
|
|
|
|
200
|
|
|
if minute_offset < 0: |
201
|
|
|
# asking for a date that is before the asset's start date, no dice |
202
|
|
|
return 0.0 |
203
|
|
|
|
204
|
|
|
# then just index into the bcolz carray at that offset |
205
|
|
|
carray = self._open_minute_file(column, asset) |
206
|
|
|
result = carray[minute_offset] |
207
|
|
|
|
208
|
|
|
# if there's missing data, go backwards until we run out of file |
209
|
|
|
while result == 0 and minute_offset > 0: |
210
|
|
|
minute_offset -= 1 |
211
|
|
|
result = carray[minute_offset] |
212
|
|
|
|
213
|
|
|
if column != 'volume': |
214
|
|
|
return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
215
|
|
|
else: |
216
|
|
|
return result |
217
|
|
|
|
218
|
|
|
def _get_minute_spot_value(self, asset, column, dt): |
219
|
|
|
# if dt is before the first market minute, minute_index |
220
|
|
|
# will be 0. if it's after the last market minute, it'll |
221
|
|
|
# be len(minutes_for_day) |
222
|
|
|
given_day = pd.Timestamp(dt.date(), tz='utc') |
223
|
|
|
day_index = self._equity_minute_reader.trading_days.searchsorted( |
224
|
|
|
given_day) |
225
|
|
|
|
226
|
|
|
# if dt is before the first market minute, minute_index |
227
|
|
|
# will be 0. if it's after the last market minute, it'll |
228
|
|
|
# be len(minutes_for_day) |
229
|
|
|
minute_index = self.env.market_minutes_for_day(given_day).\ |
230
|
|
|
searchsorted(dt) |
231
|
|
|
|
232
|
|
|
minute_offset_to_use = (day_index * 390) + minute_index |
233
|
|
|
|
234
|
|
|
carray = self._equity_minute_reader._open_minute_file(column, asset) |
235
|
|
|
result = carray[minute_offset_to_use] |
236
|
|
|
|
237
|
|
|
if result == 0: |
238
|
|
|
# if the given minute doesn't have data, we need to seek |
239
|
|
|
# backwards until we find data. This makes the data |
240
|
|
|
# forward-filled. |
241
|
|
|
|
242
|
|
|
# get this asset's start date, so that we don't look before it. |
243
|
|
|
start_date = self._get_asset_start_date(asset) |
244
|
|
|
start_date_idx = self._equity_minute_reader.trading_days.\ |
245
|
|
|
searchsorted(start_date) |
246
|
|
|
start_day_offset = start_date_idx * 390 |
247
|
|
|
|
248
|
|
|
original_start = minute_offset_to_use |
249
|
|
|
|
250
|
|
|
while result == 0 and minute_offset_to_use > start_day_offset: |
251
|
|
|
minute_offset_to_use -= 1 |
252
|
|
|
result = carray[minute_offset_to_use] |
253
|
|
|
|
254
|
|
|
# once we've found data, we need to check whether it needs |
255
|
|
|
# to be adjusted. |
256
|
|
|
if result != 0: |
257
|
|
|
minutes = self.env.market_minute_window( |
258
|
|
|
start=(dt or self.current_dt), |
259
|
|
|
count=(original_start - minute_offset_to_use + 1), |
260
|
|
|
step=-1 |
261
|
|
|
).order() |
262
|
|
|
|
263
|
|
|
# only need to check for adjustments if we've gone back |
264
|
|
|
# far enough to cross the day boundary. |
265
|
|
|
if minutes[0].date() != minutes[-1].date(): |
266
|
|
|
# create a np array of size minutes, fill it all with |
267
|
|
|
# the same value. and adjust the array. |
268
|
|
|
arr = np.array([result] * len(minutes), |
269
|
|
|
dtype=np.float64) |
270
|
|
|
self._apply_all_adjustments( |
271
|
|
|
data=arr, |
272
|
|
|
asset=asset, |
273
|
|
|
dts=minutes, |
274
|
|
|
field=column |
275
|
|
|
) |
276
|
|
|
|
277
|
|
|
# The first value of the adjusted array is the value |
278
|
|
|
# we want. |
279
|
|
|
result = arr[0] |
280
|
|
|
|
281
|
|
|
if column != 'volume': |
282
|
|
|
return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
283
|
|
|
else: |
284
|
|
|
return result |
285
|
|
|
|
286
|
|
|
def _get_daily_data(self, asset, column, dt): |
287
|
|
|
while True: |
288
|
|
|
try: |
289
|
|
|
value = self._equity_daily_reader.spot_price( |
290
|
|
|
asset, dt, column) |
291
|
|
|
if value != -1: |
292
|
|
|
return value |
293
|
|
|
else: |
294
|
|
|
dt -= tradingcalendar.trading_day |
295
|
|
|
except NoDataOnDate: |
296
|
|
|
return 0 |
297
|
|
|
|
298
|
|
|
def _apply_all_adjustments(self, data, asset, dts, field, |
299
|
|
|
price_adj_factor=1.0): |
300
|
|
|
""" |
301
|
|
|
Internal method that applies all the necessary adjustments on the |
302
|
|
|
given data array. |
303
|
|
|
|
304
|
|
|
The adjustments are: |
305
|
|
|
- splits |
306
|
|
|
- if field != "volume": |
307
|
|
|
- mergers |
308
|
|
|
- dividends |
309
|
|
|
- * 0.001 |
310
|
|
|
- any zero fields replaced with NaN |
311
|
|
|
- all values rounded to 3 digits after the decimal point. |
312
|
|
|
|
313
|
|
|
Parameters |
314
|
|
|
---------- |
315
|
|
|
data : np.array |
316
|
|
|
The data to be adjusted. |
317
|
|
|
|
318
|
|
|
asset: Asset |
319
|
|
|
The asset whose data is being adjusted. |
320
|
|
|
|
321
|
|
|
dts: pd.DateTimeIndex |
322
|
|
|
The list of minutes or days representing the desired window. |
323
|
|
|
|
324
|
|
|
field: string |
325
|
|
|
The field whose values are in the data array. |
326
|
|
|
|
327
|
|
|
price_adj_factor: float |
328
|
|
|
Factor with which to adjust OHLC values. |
329
|
|
|
Returns |
330
|
|
|
------- |
331
|
|
|
None. The data array is modified in place. |
332
|
|
|
""" |
333
|
|
|
self._apply_adjustments_to_window( |
334
|
|
|
self._get_adjustment_list( |
335
|
|
|
asset, self._splits_dict, "SPLITS" |
336
|
|
|
), |
337
|
|
|
data, |
338
|
|
|
dts, |
339
|
|
|
field != 'volume' |
340
|
|
|
) |
341
|
|
|
|
342
|
|
|
if field != 'volume': |
343
|
|
|
self._apply_adjustments_to_window( |
344
|
|
|
self._get_adjustment_list( |
345
|
|
|
asset, self._mergers_dict, "MERGERS" |
346
|
|
|
), |
347
|
|
|
data, |
348
|
|
|
dts, |
349
|
|
|
True |
350
|
|
|
) |
351
|
|
|
|
352
|
|
|
self._apply_adjustments_to_window( |
353
|
|
|
self._get_adjustment_list( |
354
|
|
|
asset, self._dividends_dict, "DIVIDENDS" |
355
|
|
|
), |
356
|
|
|
data, |
357
|
|
|
dts, |
358
|
|
|
True |
359
|
|
|
) |
360
|
|
|
|
361
|
|
|
data *= price_adj_factor |
362
|
|
|
|
363
|
|
|
# if anything is zero, it's a missing bar, so replace it with NaN. |
364
|
|
|
# we only want to do this for non-volume fields, because a missing |
365
|
|
|
# volume should be 0. |
366
|
|
|
data[data == 0] = np.NaN |
367
|
|
|
|
368
|
|
|
np.around(data, 3, out=data) |
369
|
|
|
|
370
|
|
|
@staticmethod |
371
|
|
|
def _apply_adjustments_to_window(adjustments_list, window_data, |
372
|
|
|
dts_in_window, multiply): |
373
|
|
|
if len(adjustments_list) == 0: |
374
|
|
|
return |
375
|
|
|
|
376
|
|
|
# advance idx to the correct spot in the adjustments list, based on |
377
|
|
|
# when the window starts |
378
|
|
|
idx = 0 |
379
|
|
|
|
380
|
|
|
while idx < len(adjustments_list) and dts_in_window[0] >\ |
381
|
|
|
adjustments_list[idx][0]: |
382
|
|
|
idx += 1 |
383
|
|
|
|
384
|
|
|
# if we've advanced through all the adjustments, then there's nothing |
385
|
|
|
# to do. |
386
|
|
|
if idx == len(adjustments_list): |
387
|
|
|
return |
388
|
|
|
|
389
|
|
|
while idx < len(adjustments_list): |
390
|
|
|
adjustment_to_apply = adjustments_list[idx] |
391
|
|
|
|
392
|
|
|
if adjustment_to_apply[0] > dts_in_window[-1]: |
393
|
|
|
break |
394
|
|
|
|
395
|
|
|
range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) |
396
|
|
|
if multiply: |
397
|
|
|
window_data[0:range_end] *= adjustment_to_apply[1] |
398
|
|
|
else: |
399
|
|
|
window_data[0:range_end] /= adjustment_to_apply[1] |
400
|
|
|
|
401
|
|
|
idx += 1 |
402
|
|
|
|
403
|
|
|
def _get_adjustment_list(self, asset, adjustments_dict, table_name): |
404
|
|
|
""" |
405
|
|
|
Internal method that returns a list of adjustments for the given sid. |
406
|
|
|
|
407
|
|
|
Parameters |
408
|
|
|
---------- |
409
|
|
|
asset : Asset |
410
|
|
|
The asset for which to return adjustments. |
411
|
|
|
|
412
|
|
|
adjustments_dict: dict |
413
|
|
|
A dictionary of sid -> list that is used as a cache. |
414
|
|
|
|
415
|
|
|
table_name: string |
416
|
|
|
The table that contains this data in the adjustments db. |
417
|
|
|
|
418
|
|
|
Returns |
419
|
|
|
------- |
420
|
|
|
adjustments: list |
421
|
|
|
A list of [multiplier, pd.Timestamp], earliest first |
422
|
|
|
|
423
|
|
|
""" |
424
|
|
|
if self._adjustment_reader is None: |
425
|
|
|
return [] |
426
|
|
|
|
427
|
|
|
sid = int(asset) |
428
|
|
|
|
429
|
|
|
try: |
430
|
|
|
adjustments = adjustments_dict[sid] |
431
|
|
|
except KeyError: |
432
|
|
|
adjustments = adjustments_dict[sid] = self._adjustment_reader.\ |
433
|
|
|
get_adjustments_for_sid(table_name, sid) |
434
|
|
|
|
435
|
|
|
return adjustments |
436
|
|
|
|
437
|
|
|
def _check_is_currently_alive(self, asset, dt): |
438
|
|
|
if dt is None: |
439
|
|
|
dt = self.current_day |
440
|
|
|
|
441
|
|
|
sid = int(asset) |
442
|
|
|
|
443
|
|
|
if sid not in self._asset_start_dates: |
444
|
|
|
self._get_asset_start_date(asset) |
445
|
|
|
|
446
|
|
|
start_date = self._asset_start_dates[sid] |
447
|
|
|
if self._asset_start_dates[sid] > dt: |
448
|
|
|
raise NoTradeDataAvailableTooEarly( |
449
|
|
|
sid=sid, |
450
|
|
|
dt=dt, |
451
|
|
|
start_dt=start_date |
452
|
|
|
) |
453
|
|
|
|
454
|
|
|
end_date = self._asset_end_dates[sid] |
455
|
|
|
if self._asset_end_dates[sid] < dt: |
456
|
|
|
raise NoTradeDataAvailableTooLate( |
457
|
|
|
sid=sid, |
458
|
|
|
dt=dt, |
459
|
|
|
end_dt=end_date |
460
|
|
|
) |
461
|
|
|
|
462
|
|
|
def _get_asset_start_date(self, asset): |
463
|
|
|
self._ensure_asset_dates(asset) |
464
|
|
|
return self._asset_start_dates[asset] |
465
|
|
|
|
466
|
|
|
def _get_asset_end_date(self, asset): |
467
|
|
|
self._ensure_asset_dates(asset) |
468
|
|
|
return self._asset_end_dates[asset] |
469
|
|
|
|
470
|
|
|
def _ensure_asset_dates(self, asset): |
471
|
|
|
sid = int(asset) |
472
|
|
|
|
473
|
|
|
if sid not in self._asset_start_dates: |
474
|
|
|
self._asset_start_dates[sid] = asset.start_date |
475
|
|
|
self._asset_end_dates[sid] = asset.end_date |
476
|
|
|
|