1
|
|
|
import datetime |
2
|
|
|
|
3
|
|
|
import pandas as pd |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
def normalize_data_query_time(dt, time, tz): |
7
|
|
|
"""Apply the correct time and timezone to a date. |
8
|
|
|
|
9
|
|
|
Parameters |
10
|
|
|
---------- |
11
|
|
|
dt : pd.Timestamp |
12
|
|
|
The original datetime that represents the date. |
13
|
|
|
time : datetime.time |
14
|
|
|
The time to query before. |
15
|
|
|
tz : tzinfo |
16
|
|
|
The timezone the time applies to. |
17
|
|
|
|
18
|
|
|
Returns |
19
|
|
|
------- |
20
|
|
|
query_dt : pd.Timestamp |
21
|
|
|
The timestamp with the correct time and date in utc. |
22
|
|
|
""" |
23
|
|
|
# get the date after converting the timezone |
24
|
|
|
|
25
|
|
|
# merge the correct date with the time in the given timezone then convert |
26
|
|
|
# back to utc |
27
|
|
|
return pd.Timestamp( |
28
|
|
|
datetime.datetime.combine(dt.date(), time), |
29
|
|
|
tz=tz, |
30
|
|
|
).tz_convert('utc') |
31
|
|
|
|
32
|
|
|
|
33
|
|
|
def normalize_timestamp_to_query_time(df, |
34
|
|
|
time, |
35
|
|
|
tz, |
36
|
|
|
inplace=False, |
37
|
|
|
ts_field='timestamp'): |
38
|
|
|
"""Update the timestamp field of a dataframe to normalize dates around |
39
|
|
|
some data query time/timezone. |
40
|
|
|
|
41
|
|
|
Parameters |
42
|
|
|
---------- |
43
|
|
|
df : pd.DataFrame |
44
|
|
|
The dataframe to update. This needs a column named ``ts_field``. |
45
|
|
|
time : datetime.time |
46
|
|
|
The time to query before. |
47
|
|
|
tz : tzinfo |
48
|
|
|
The timezone the time applies to. |
49
|
|
|
inplace : bool, optional |
50
|
|
|
Update the dataframe in place. |
51
|
|
|
ts_field : str, optional |
52
|
|
|
The name of the timestamp field in ``df``. |
53
|
|
|
|
54
|
|
|
Returns |
55
|
|
|
------- |
56
|
|
|
df : pd.DataFrame |
57
|
|
|
The dataframe with the timestamp field normalized. If ``inplace`` is |
58
|
|
|
true, then this will be the same object as ``df`` otherwise this will |
59
|
|
|
be a copy. |
60
|
|
|
""" |
61
|
|
|
if not inplace: |
62
|
|
|
# don't mutate the dataframe in place |
63
|
|
|
df = df.copy() |
64
|
|
|
|
65
|
|
|
dtidx = pd.DatetimeIndex(df.loc[:, ts_field], tz='utc') |
66
|
|
|
dtidx_local_time = dtidx.tz_convert(tz) |
67
|
|
|
to_roll_forward = dtidx_local_time.time > time |
68
|
|
|
# for all of the times that are greater than our query time add 1 |
69
|
|
|
# day and truncate to the date |
70
|
|
|
df.loc[to_roll_forward, ts_field] = ( |
71
|
|
|
dtidx_local_time[to_roll_forward] + datetime.timedelta(days=1) |
72
|
|
|
).normalize().tz_localize(None).tz_localize('utc') # cast back to utc |
73
|
|
|
df.loc[~to_roll_forward, ts_field] = dtidx[~to_roll_forward].normalize() |
74
|
|
|
return df |
75
|
|
|
|