1
|
|
|
import datetime |
2
|
|
|
|
3
|
|
|
import blaze as bz |
4
|
|
|
from datashape import istabular |
5
|
|
|
from odo import odo |
6
|
|
|
import pandas as pd |
7
|
|
|
from six import iteritems |
8
|
|
|
from toolz import valmap |
9
|
|
|
|
10
|
|
|
from .core import TS_FIELD_NAME, SID_FIELD_NAME, overwrite_novel_deltas |
11
|
|
|
from zipline.pipeline.data import EarningsCalendar |
12
|
|
|
from zipline.pipeline.loaders.base import PipelineLoader |
13
|
|
|
from zipline.pipeline.loaders.earnings import EarningsCalendarLoader |
14
|
|
|
from zipline.pipeline.loaders.utils import ( |
15
|
|
|
normalize_data_query_time, |
16
|
|
|
normalize_timestamp_to_query_time, |
17
|
|
|
) |
18
|
|
|
from zipline.utils.input_validation import ensure_timezone |
19
|
|
|
from zipline.utils.preprocess import preprocess |
20
|
|
|
|
21
|
|
|
|
22
|
|
|
ANNOUNCEMENT_FIELD_NAME = 'announcement_date' |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def bind_expression_to_resources(expr, resources): |
26
|
|
|
""" |
27
|
|
|
Bind a Blaze expression to resources. |
28
|
|
|
|
29
|
|
|
Parameters |
30
|
|
|
---------- |
31
|
|
|
expr : bz.Expr |
32
|
|
|
The expression to which we want to bind resources. |
33
|
|
|
resources : dict[bz.Symbol -> any] |
34
|
|
|
Mapping from the atomic terms of ``expr`` to actual data resources. |
35
|
|
|
|
36
|
|
|
Returns |
37
|
|
|
------- |
38
|
|
|
bound_expr : bz.Expr |
39
|
|
|
``expr`` with bound resources. |
40
|
|
|
""" |
41
|
|
|
# bind the resources into the expression |
42
|
|
|
if resources is None: |
43
|
|
|
resources = {} |
44
|
|
|
|
45
|
|
|
# _subs stands for substitute. It's not actually private, blaze just |
46
|
|
|
# prefixes symbol-manipulation methods with underscores to prevent |
47
|
|
|
# collisions with data column names. |
48
|
|
|
return expr._subs({ |
49
|
|
|
k: bz.Data(v, dshape=k.dshape) for k, v in iteritems(resources) |
50
|
|
|
}) |
51
|
|
|
|
52
|
|
|
|
53
|
|
|
class BlazeEarningsCalendarLoader(PipelineLoader): |
54
|
|
|
"""A pipeline loader for the ``EarningsCalendar`` dataset that loads |
55
|
|
|
data from a blaze expression. |
56
|
|
|
|
57
|
|
|
Parameters |
58
|
|
|
---------- |
59
|
|
|
expr : Expr |
60
|
|
|
The expression representing the data to load. |
61
|
|
|
resources : dict, optional |
62
|
|
|
Mapping from the atomic terms of ``expr`` to actual data resources. |
63
|
|
|
odo_kwargs : dict, optional |
64
|
|
|
Extra keyword arguments to pass to odo when executing the expression. |
65
|
|
|
data_query_time : time, optional |
66
|
|
|
The time to use for the data query cutoff. |
67
|
|
|
data_query_tz : tzinfo or str |
68
|
|
|
The timezeone to use for the data query cutoff. |
69
|
|
|
|
70
|
|
|
Notes |
71
|
|
|
----- |
72
|
|
|
The expression should have a tabular dshape of:: |
73
|
|
|
|
74
|
|
|
Dim * {{ |
75
|
|
|
{SID_FIELD_NAME}: int64, |
76
|
|
|
{TS_FIELD_NAME}: datetime64, |
77
|
|
|
{ANNOUNCEMENT_FIELD_NAME}: datetime64, |
78
|
|
|
}} |
79
|
|
|
|
80
|
|
|
Where each row of the table is a record including the sid to identify the |
81
|
|
|
company, the timestamp where we learned about the announcement, and the |
82
|
|
|
date when the earnings will be announced. |
83
|
|
|
|
84
|
|
|
If the '{TS_FIELD_NAME}' field is not included it is assumed that we |
85
|
|
|
start the backtest with knowledge of all announcements. |
86
|
|
|
""" |
87
|
|
|
__doc__ = __doc__.format( |
88
|
|
|
TS_FIELD_NAME=TS_FIELD_NAME, |
89
|
|
|
SID_FIELD_NAME=SID_FIELD_NAME, |
90
|
|
|
ANNOUNCEMENT_FIELD_NAME=ANNOUNCEMENT_FIELD_NAME, |
91
|
|
|
) |
92
|
|
|
|
93
|
|
|
_expected_fields = frozenset({ |
94
|
|
|
TS_FIELD_NAME, |
95
|
|
|
SID_FIELD_NAME, |
96
|
|
|
ANNOUNCEMENT_FIELD_NAME, |
97
|
|
|
}) |
98
|
|
|
|
99
|
|
|
@preprocess(data_query_tz=ensure_timezone) |
100
|
|
|
def __init__(self, |
101
|
|
|
expr, |
102
|
|
|
resources=None, |
103
|
|
|
compute_kwargs=None, |
104
|
|
|
odo_kwargs=None, |
105
|
|
|
data_query_time=datetime.time(0), |
106
|
|
|
data_query_tz='utc', |
107
|
|
|
dataset=EarningsCalendar): |
108
|
|
|
dshape = expr.dshape |
109
|
|
|
|
110
|
|
|
if not istabular(dshape): |
111
|
|
|
raise ValueError( |
112
|
|
|
'expression dshape must be tabular, got: %s' % dshape, |
113
|
|
|
) |
114
|
|
|
|
115
|
|
|
expected_fields = self._expected_fields |
116
|
|
|
self._expr = bind_expression_to_resources( |
117
|
|
|
expr[list(expected_fields)], |
118
|
|
|
resources, |
119
|
|
|
) |
120
|
|
|
self._odo_kwargs = odo_kwargs if odo_kwargs is not None else {} |
121
|
|
|
self._dataset = dataset |
122
|
|
|
self._data_query_time = data_query_time |
123
|
|
|
self._data_query_tz = data_query_tz |
124
|
|
|
|
125
|
|
|
def load_adjusted_array(self, columns, dates, assets, mask): |
126
|
|
|
data_query_time = self._data_query_time |
127
|
|
|
data_query_tz = self._data_query_tz |
128
|
|
|
expr = self._expr |
129
|
|
|
|
130
|
|
|
filtered = expr[ |
131
|
|
|
expr[TS_FIELD_NAME] <= |
132
|
|
|
normalize_data_query_time( |
133
|
|
|
dates[0], |
134
|
|
|
data_query_time, |
135
|
|
|
data_query_tz, |
136
|
|
|
) |
137
|
|
|
] |
138
|
|
|
lower = odo( |
139
|
|
|
bz.by( |
140
|
|
|
filtered[SID_FIELD_NAME], |
141
|
|
|
timestamp=filtered[TS_FIELD_NAME].max(), |
142
|
|
|
).timestamp.min(), |
143
|
|
|
pd.Timestamp, |
144
|
|
|
**self._odo_kwargs |
145
|
|
|
) |
146
|
|
|
if pd.isnull(lower): |
147
|
|
|
# If there is no lower date, just query for data in the date |
148
|
|
|
# range. It must all be null anyways. |
149
|
|
|
lower = dates[0] |
150
|
|
|
|
151
|
|
|
upper = normalize_data_query_time( |
152
|
|
|
dates[-1], |
153
|
|
|
data_query_time, |
154
|
|
|
data_query_tz, |
155
|
|
|
) |
156
|
|
|
raw = odo( |
157
|
|
|
expr[ |
158
|
|
|
(expr[TS_FIELD_NAME] >= lower) & |
159
|
|
|
(expr[TS_FIELD_NAME] <= upper) |
160
|
|
|
], |
161
|
|
|
pd.DataFrame, |
162
|
|
|
**self._odo_kwargs |
163
|
|
|
) |
164
|
|
|
raw[TS_FIELD_NAME] = raw[TS_FIELD_NAME].astype('datetime64[ns]') |
165
|
|
|
sids = raw.loc[:, SID_FIELD_NAME] |
166
|
|
|
raw.drop( |
167
|
|
|
sids[~(sids.isin(assets) | sids.notnull())].index, |
168
|
|
|
inplace=True |
169
|
|
|
) |
170
|
|
|
normalize_timestamp_to_query_time( |
171
|
|
|
raw, |
172
|
|
|
data_query_time, |
173
|
|
|
data_query_tz, |
174
|
|
|
inplace=True, |
175
|
|
|
ts_field=TS_FIELD_NAME, |
176
|
|
|
) |
177
|
|
|
|
178
|
|
|
gb = raw.groupby(SID_FIELD_NAME) |
179
|
|
|
|
180
|
|
|
def mkseries(idx, raw_loc=raw.loc): |
181
|
|
|
vs = raw_loc[ |
182
|
|
|
idx, [TS_FIELD_NAME, ANNOUNCEMENT_FIELD_NAME] |
183
|
|
|
].values |
184
|
|
|
return pd.Series( |
185
|
|
|
index=pd.DatetimeIndex(vs[:, 0]), |
186
|
|
|
data=vs[:, 1], |
187
|
|
|
) |
188
|
|
|
|
189
|
|
|
return EarningsCalendarLoader( |
190
|
|
|
dates, |
191
|
|
|
valmap(mkseries, gb.groups), |
192
|
|
|
dataset=self._dataset, |
193
|
|
|
).load_adjusted_array(columns, dates, assets, mask) |
194
|
|
|
|