|
1
|
|
|
""" |
|
2
|
|
|
factor.py |
|
3
|
|
|
""" |
|
4
|
|
|
from operator import attrgetter |
|
5
|
|
|
from numbers import Number |
|
6
|
|
|
|
|
7
|
|
|
from numpy import float64, inf |
|
8
|
|
|
from toolz import curry |
|
9
|
|
|
|
|
10
|
|
|
from zipline.errors import ( |
|
11
|
|
|
UnknownRankMethod, |
|
12
|
|
|
UnsupportedDataType, |
|
13
|
|
|
) |
|
14
|
|
|
from zipline.lib.rank import masked_rankdata_2d |
|
15
|
|
|
from zipline.pipeline.mixins import ( |
|
16
|
|
|
CustomTermMixin, |
|
17
|
|
|
PositiveWindowLengthMixin, |
|
18
|
|
|
SingleInputMixin, |
|
19
|
|
|
) |
|
20
|
|
|
from zipline.pipeline.term import CompositeTerm, NotSpecified |
|
21
|
|
|
from zipline.pipeline.expression import ( |
|
22
|
|
|
BadBinaryOperator, |
|
23
|
|
|
COMPARISONS, |
|
24
|
|
|
is_comparison, |
|
25
|
|
|
MATH_BINOPS, |
|
26
|
|
|
method_name_for_op, |
|
27
|
|
|
NumericalExpression, |
|
28
|
|
|
NUMEXPR_MATH_FUNCS, |
|
29
|
|
|
UNARY_OPS, |
|
30
|
|
|
unary_op_name, |
|
31
|
|
|
) |
|
32
|
|
|
from zipline.pipeline.filters import ( |
|
33
|
|
|
NumExprFilter, |
|
34
|
|
|
PercentileFilter, |
|
35
|
|
|
) |
|
36
|
|
|
from zipline.utils.control_flow import nullctx |
|
37
|
|
|
from zipline.utils.numpy_utils import ( |
|
38
|
|
|
bool_dtype, |
|
39
|
|
|
datetime64ns_dtype, |
|
40
|
|
|
float64_dtype, |
|
41
|
|
|
) |
|
42
|
|
|
from zipline.utils.preprocess import preprocess |
|
43
|
|
|
|
|
44
|
|
|
|
|
45
|
|
|
_RANK_METHODS = frozenset(['average', 'min', 'max', 'dense', 'ordinal']) |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
def numbers_to_float64(func, argname, argvalue): |
|
49
|
|
|
""" |
|
50
|
|
|
Preprocessor for converting numerical inputs into floats. |
|
51
|
|
|
|
|
52
|
|
|
This is used in the binary operator constructors for Factor so that |
|
53
|
|
|
`2 + Factor()` has the same behavior as `2.0 + Factor()`. |
|
54
|
|
|
""" |
|
55
|
|
|
if isinstance(argvalue, Number): |
|
56
|
|
|
return float64(argvalue) |
|
57
|
|
|
return argvalue |
|
58
|
|
|
|
|
59
|
|
|
|
|
60
|
|
|
@curry |
|
61
|
|
|
def set_attribute(name, value): |
|
62
|
|
|
""" |
|
63
|
|
|
Decorator factory for setting attributes on a function. |
|
64
|
|
|
|
|
65
|
|
|
Doesn't change the behavior of the wrapped function. |
|
66
|
|
|
|
|
67
|
|
|
Usage |
|
68
|
|
|
----- |
|
69
|
|
|
>>> @set_attribute('__name__', 'foo') |
|
70
|
|
|
... def bar(): |
|
71
|
|
|
... return 3 |
|
72
|
|
|
... |
|
73
|
|
|
>>> bar() |
|
74
|
|
|
3 |
|
75
|
|
|
>>> bar.__name__ |
|
76
|
|
|
'foo' |
|
77
|
|
|
""" |
|
78
|
|
|
def decorator(f): |
|
79
|
|
|
setattr(f, name, value) |
|
80
|
|
|
return f |
|
81
|
|
|
return decorator |
|
82
|
|
|
|
|
83
|
|
|
|
|
84
|
|
|
# Decorators for setting the __name__ and __doc__ properties of a decorated |
|
85
|
|
|
# function. |
|
86
|
|
|
# Example: |
|
87
|
|
|
with_name = set_attribute('__name__') |
|
88
|
|
|
with_doc = set_attribute('__doc__') |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
def binop_return_type(op): |
|
92
|
|
|
if is_comparison(op): |
|
93
|
|
|
return NumExprFilter |
|
94
|
|
|
else: |
|
95
|
|
|
return NumExprFactor |
|
96
|
|
|
|
|
97
|
|
|
|
|
98
|
|
|
def binop_return_dtype(op, left, right): |
|
99
|
|
|
""" |
|
100
|
|
|
Compute the expected return dtype for the given binary operator. |
|
101
|
|
|
|
|
102
|
|
|
Parameters |
|
103
|
|
|
---------- |
|
104
|
|
|
op : str |
|
105
|
|
|
Operator symbol, (e.g. '+', '-', ...). |
|
106
|
|
|
left : numpy.dtype |
|
107
|
|
|
Dtype of left hand side. |
|
108
|
|
|
right : numpy.dtype |
|
109
|
|
|
Dtype of right hand side. |
|
110
|
|
|
|
|
111
|
|
|
Returns |
|
112
|
|
|
------- |
|
113
|
|
|
outdtype : numpy.dtype |
|
114
|
|
|
The dtype of the result of `left <op> right`. |
|
115
|
|
|
""" |
|
116
|
|
|
if is_comparison(op): |
|
117
|
|
|
if left != right: |
|
118
|
|
|
raise TypeError( |
|
119
|
|
|
"Don't know how to compute {left} {op} {right}.\n" |
|
120
|
|
|
"Comparisons are only supported between Factors of equal " |
|
121
|
|
|
"dtypes.".format(left=left, op=op, right=right) |
|
122
|
|
|
) |
|
123
|
|
|
return bool_dtype |
|
124
|
|
|
|
|
125
|
|
|
elif left != float64_dtype or right != float64_dtype: |
|
126
|
|
|
raise TypeError( |
|
127
|
|
|
"Don't know how to compute {left} {op} {right}.\n" |
|
128
|
|
|
"Arithmetic operators are only supported on Factors of " |
|
129
|
|
|
"dtype 'float64'.".format( |
|
130
|
|
|
left=left.name, |
|
131
|
|
|
op=op, |
|
132
|
|
|
right=right.name, |
|
133
|
|
|
) |
|
134
|
|
|
) |
|
135
|
|
|
return float64_dtype |
|
136
|
|
|
|
|
137
|
|
|
|
|
138
|
|
|
def binary_operator(op): |
|
139
|
|
|
""" |
|
140
|
|
|
Factory function for making binary operator methods on a Factor subclass. |
|
141
|
|
|
|
|
142
|
|
|
Returns a function, "binary_operator" suitable for implementing functions |
|
143
|
|
|
like __add__. |
|
144
|
|
|
""" |
|
145
|
|
|
# When combining a Factor with a NumericalExpression, we use this |
|
146
|
|
|
# attrgetter instance to defer to the commuted implementation of the |
|
147
|
|
|
# NumericalExpression operator. |
|
148
|
|
|
commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) |
|
149
|
|
|
|
|
150
|
|
|
@preprocess(other=numbers_to_float64) |
|
151
|
|
|
@with_doc("Binary Operator: '%s'" % op) |
|
152
|
|
|
@with_name(method_name_for_op(op)) |
|
153
|
|
|
def binary_operator(self, other): |
|
154
|
|
|
# This can't be hoisted up a scope because the types returned by |
|
155
|
|
|
# binop_return_type aren't defined when the top-level function is |
|
156
|
|
|
# invoked in the class body of Factor. |
|
157
|
|
|
return_type = binop_return_type(op) |
|
158
|
|
|
if isinstance(self, NumExprFactor): |
|
159
|
|
|
self_expr, other_expr, new_inputs = self.build_binary_op( |
|
160
|
|
|
op, other, |
|
161
|
|
|
) |
|
162
|
|
|
return return_type( |
|
163
|
|
|
"({left}) {op} ({right})".format( |
|
164
|
|
|
left=self_expr, |
|
165
|
|
|
op=op, |
|
166
|
|
|
right=other_expr, |
|
167
|
|
|
), |
|
168
|
|
|
new_inputs, |
|
169
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype), |
|
170
|
|
|
) |
|
171
|
|
|
elif isinstance(other, NumExprFactor): |
|
172
|
|
|
# NumericalExpression overrides ops to correctly handle merging of |
|
173
|
|
|
# inputs. Look up and call the appropriate reflected operator with |
|
174
|
|
|
# ourself as the input. |
|
175
|
|
|
return commuted_method_getter(other)(self) |
|
176
|
|
|
elif isinstance(other, Factor): |
|
177
|
|
|
if self is other: |
|
178
|
|
|
return return_type( |
|
179
|
|
|
"x_0 {op} x_0".format(op=op), |
|
180
|
|
|
(self,), |
|
181
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype), |
|
182
|
|
|
) |
|
183
|
|
|
return return_type( |
|
184
|
|
|
"x_0 {op} x_1".format(op=op), |
|
185
|
|
|
(self, other), |
|
186
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype), |
|
187
|
|
|
) |
|
188
|
|
|
elif isinstance(other, Number): |
|
189
|
|
|
return return_type( |
|
190
|
|
|
"x_0 {op} ({constant})".format(op=op, constant=other), |
|
191
|
|
|
binds=(self,), |
|
192
|
|
|
# Interpret numeric literals as floats. |
|
193
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype) |
|
194
|
|
|
) |
|
195
|
|
|
raise BadBinaryOperator(op, self, other) |
|
196
|
|
|
|
|
197
|
|
|
return binary_operator |
|
198
|
|
|
|
|
199
|
|
|
|
|
200
|
|
|
def reflected_binary_operator(op): |
|
201
|
|
|
""" |
|
202
|
|
|
Factory function for making binary operator methods on a Factor. |
|
203
|
|
|
|
|
204
|
|
|
Returns a function, "reflected_binary_operator" suitable for implementing |
|
205
|
|
|
functions like __radd__. |
|
206
|
|
|
""" |
|
207
|
|
|
assert not is_comparison(op) |
|
208
|
|
|
|
|
209
|
|
|
@preprocess(other=numbers_to_float64) |
|
210
|
|
|
@with_name(method_name_for_op(op, commute=True)) |
|
211
|
|
|
def reflected_binary_operator(self, other): |
|
212
|
|
|
|
|
213
|
|
|
if isinstance(self, NumericalExpression): |
|
214
|
|
|
self_expr, other_expr, new_inputs = self.build_binary_op( |
|
215
|
|
|
op, other |
|
216
|
|
|
) |
|
217
|
|
|
return NumExprFactor( |
|
218
|
|
|
"({left}) {op} ({right})".format( |
|
219
|
|
|
left=other_expr, |
|
220
|
|
|
right=self_expr, |
|
221
|
|
|
op=op, |
|
222
|
|
|
), |
|
223
|
|
|
new_inputs, |
|
224
|
|
|
dtype=binop_return_dtype(op, other.dtype, self.dtype) |
|
225
|
|
|
) |
|
226
|
|
|
|
|
227
|
|
|
# Only have to handle the numeric case because in all other valid cases |
|
228
|
|
|
# the corresponding left-binding method will be called. |
|
229
|
|
|
elif isinstance(other, Number): |
|
230
|
|
|
return NumExprFactor( |
|
231
|
|
|
"{constant} {op} x_0".format(op=op, constant=other), |
|
232
|
|
|
binds=(self,), |
|
233
|
|
|
dtype=binop_return_dtype(op, other.dtype, self.dtype), |
|
234
|
|
|
) |
|
235
|
|
|
raise BadBinaryOperator(op, other, self) |
|
236
|
|
|
return reflected_binary_operator |
|
237
|
|
|
|
|
238
|
|
|
|
|
239
|
|
|
def unary_operator(op): |
|
240
|
|
|
""" |
|
241
|
|
|
Factory function for making unary operator methods for Factors. |
|
242
|
|
|
""" |
|
243
|
|
|
# Only negate is currently supported. |
|
244
|
|
|
valid_ops = {'-'} |
|
245
|
|
|
if op not in valid_ops: |
|
246
|
|
|
raise ValueError("Invalid unary operator %s." % op) |
|
247
|
|
|
|
|
248
|
|
|
@with_doc("Unary Operator: '%s'" % op) |
|
249
|
|
|
@with_name(unary_op_name(op)) |
|
250
|
|
|
def unary_operator(self): |
|
251
|
|
|
if self.dtype != float64_dtype: |
|
252
|
|
|
raise TypeError( |
|
253
|
|
|
"Can't apply unary operator {op!r} to instance of " |
|
254
|
|
|
"{typename!r} with dtype {dtypename!r}.\n" |
|
255
|
|
|
"{op!r} is only supported for Factors of dtype " |
|
256
|
|
|
"'float64'.".format( |
|
257
|
|
|
op=op, |
|
258
|
|
|
typename=type(self).__name__, |
|
259
|
|
|
dtypename=self.dtype.name, |
|
260
|
|
|
) |
|
261
|
|
|
) |
|
262
|
|
|
|
|
263
|
|
|
# This can't be hoisted up a scope because the types returned by |
|
264
|
|
|
# unary_op_return_type aren't defined when the top-level function is |
|
265
|
|
|
# invoked. |
|
266
|
|
|
if isinstance(self, NumericalExpression): |
|
267
|
|
|
return NumExprFactor( |
|
268
|
|
|
"{op}({expr})".format(op=op, expr=self._expr), |
|
269
|
|
|
self.inputs, |
|
270
|
|
|
dtype=float64_dtype, |
|
271
|
|
|
) |
|
272
|
|
|
else: |
|
273
|
|
|
return NumExprFactor( |
|
274
|
|
|
"{op}x_0".format(op=op), |
|
275
|
|
|
(self,), |
|
276
|
|
|
dtype=float64_dtype, |
|
277
|
|
|
) |
|
278
|
|
|
return unary_operator |
|
279
|
|
|
|
|
280
|
|
|
|
|
281
|
|
|
def function_application(func): |
|
282
|
|
|
""" |
|
283
|
|
|
Factory function for producing function application methods for Factor |
|
284
|
|
|
subclasses. |
|
285
|
|
|
""" |
|
286
|
|
|
if func not in NUMEXPR_MATH_FUNCS: |
|
287
|
|
|
raise ValueError("Unsupported mathematical function '%s'" % func) |
|
288
|
|
|
|
|
289
|
|
|
@with_name(func) |
|
290
|
|
|
def mathfunc(self): |
|
291
|
|
|
if isinstance(self, NumericalExpression): |
|
292
|
|
|
return NumExprFactor( |
|
293
|
|
|
"{func}({expr})".format(func=func, expr=self._expr), |
|
294
|
|
|
self.inputs, |
|
295
|
|
|
dtype=float64_dtype, |
|
296
|
|
|
) |
|
297
|
|
|
else: |
|
298
|
|
|
return NumExprFactor( |
|
299
|
|
|
"{func}(x_0)".format(func=func), |
|
300
|
|
|
(self,), |
|
301
|
|
|
dtype=float64_dtype, |
|
302
|
|
|
) |
|
303
|
|
|
return mathfunc |
|
304
|
|
|
|
|
305
|
|
|
|
|
306
|
|
|
FACTOR_DTYPES = frozenset([datetime64ns_dtype, float64_dtype]) |
|
307
|
|
|
|
|
308
|
|
|
|
|
309
|
|
|
class Factor(CompositeTerm): |
|
310
|
|
|
""" |
|
311
|
|
|
Pipeline API expression producing numerically-valued outputs. |
|
312
|
|
|
""" |
|
313
|
|
|
# Dynamically add functions for creating NumExprFactor/NumExprFilter |
|
314
|
|
|
# instances. |
|
315
|
|
|
clsdict = locals() |
|
316
|
|
|
clsdict.update( |
|
317
|
|
|
{ |
|
318
|
|
|
method_name_for_op(op): binary_operator(op) |
|
319
|
|
|
# Don't override __eq__ because it breaks comparisons on tuples of |
|
320
|
|
|
# Factors. |
|
321
|
|
|
for op in MATH_BINOPS.union(COMPARISONS - {'=='}) |
|
322
|
|
|
} |
|
323
|
|
|
) |
|
324
|
|
|
clsdict.update( |
|
325
|
|
|
{ |
|
326
|
|
|
method_name_for_op(op, commute=True): reflected_binary_operator(op) |
|
327
|
|
|
for op in MATH_BINOPS |
|
328
|
|
|
} |
|
329
|
|
|
) |
|
330
|
|
|
clsdict.update( |
|
331
|
|
|
{ |
|
332
|
|
|
unary_op_name(op): unary_operator(op) |
|
333
|
|
|
for op in UNARY_OPS |
|
334
|
|
|
} |
|
335
|
|
|
) |
|
336
|
|
|
|
|
337
|
|
|
clsdict.update( |
|
338
|
|
|
{ |
|
339
|
|
|
funcname: function_application(funcname) |
|
340
|
|
|
for funcname in NUMEXPR_MATH_FUNCS |
|
341
|
|
|
} |
|
342
|
|
|
) |
|
343
|
|
|
|
|
344
|
|
|
__truediv__ = clsdict['__div__'] |
|
345
|
|
|
__rtruediv__ = clsdict['__rdiv__'] |
|
346
|
|
|
|
|
347
|
|
|
eq = binary_operator('==') |
|
348
|
|
|
|
|
349
|
|
|
def _validate(self): |
|
350
|
|
|
# Do superclass validation first so that `NotSpecified` dtypes get |
|
351
|
|
|
# handled. |
|
352
|
|
|
retval = super(Factor, self)._validate() |
|
353
|
|
|
if self.dtype not in FACTOR_DTYPES: |
|
354
|
|
|
raise UnsupportedDataType( |
|
355
|
|
|
typename=type(self).__name__, |
|
356
|
|
|
dtype=self.dtype |
|
357
|
|
|
) |
|
358
|
|
|
return retval |
|
359
|
|
|
|
|
360
|
|
|
def rank(self, method='ordinal', ascending=True, mask=NotSpecified): |
|
361
|
|
|
""" |
|
362
|
|
|
Construct a new Factor representing the sorted rank of each column |
|
363
|
|
|
within each row. |
|
364
|
|
|
|
|
365
|
|
|
Parameters |
|
366
|
|
|
---------- |
|
367
|
|
|
method : str, {'ordinal', 'min', 'max', 'dense', 'average'} |
|
368
|
|
|
The method used to assign ranks to tied elements. See |
|
369
|
|
|
`scipy.stats.rankdata` for a full description of the semantics for |
|
370
|
|
|
each ranking method. Default is 'ordinal'. |
|
371
|
|
|
ascending : bool, optional |
|
372
|
|
|
Whether to return sorted rank in ascending or descending order. |
|
373
|
|
|
Default is True. |
|
374
|
|
|
mask : zipline.pipeline.Filter, optional |
|
375
|
|
|
A Filter representing assets to consider when computing ranks. |
|
376
|
|
|
If mask is supplied, ranks are computed ignoring any asset/date |
|
377
|
|
|
pairs for which `mask` produces a value of False. |
|
378
|
|
|
|
|
379
|
|
|
Returns |
|
380
|
|
|
------- |
|
381
|
|
|
ranks : zipline.pipeline.factors.Rank |
|
382
|
|
|
A new factor that will compute the ranking of the data produced by |
|
383
|
|
|
`self`. |
|
384
|
|
|
|
|
385
|
|
|
Notes |
|
386
|
|
|
----- |
|
387
|
|
|
The default value for `method` is different from the default for |
|
388
|
|
|
`scipy.stats.rankdata`. See that function's documentation for a full |
|
389
|
|
|
description of the valid inputs to `method`. |
|
390
|
|
|
|
|
391
|
|
|
Missing or non-existent data on a given day will cause an asset to be |
|
392
|
|
|
given a rank of NaN for that day. |
|
393
|
|
|
|
|
394
|
|
|
See Also |
|
395
|
|
|
-------- |
|
396
|
|
|
scipy.stats.rankdata |
|
397
|
|
|
zipline.lib.rank.masked_rankdata_2d |
|
398
|
|
|
zipline.pipeline.factors.factor.Rank |
|
399
|
|
|
""" |
|
400
|
|
|
return Rank(self, method=method, ascending=ascending, mask=mask) |
|
401
|
|
|
|
|
402
|
|
|
def top(self, N, mask=NotSpecified): |
|
403
|
|
|
""" |
|
404
|
|
|
Construct a Filter matching the top N asset values of self each day. |
|
405
|
|
|
|
|
406
|
|
|
Parameters |
|
407
|
|
|
---------- |
|
408
|
|
|
N : int |
|
409
|
|
|
Number of assets passing the returned filter each day. |
|
410
|
|
|
mask : zipline.pipeline.Filter, optional |
|
411
|
|
|
A Filter representing assets to consider when computing ranks. |
|
412
|
|
|
If mask is supplied, top values are computed ignoring any |
|
413
|
|
|
asset/date pairs for which `mask` produces a value of False. |
|
414
|
|
|
|
|
415
|
|
|
Returns |
|
416
|
|
|
------- |
|
417
|
|
|
filter : zipline.pipeline.filters.Filter |
|
418
|
|
|
""" |
|
419
|
|
|
return self.rank(ascending=False, mask=mask) <= N |
|
420
|
|
|
|
|
421
|
|
|
def bottom(self, N, mask=NotSpecified): |
|
422
|
|
|
""" |
|
423
|
|
|
Construct a Filter matching the bottom N asset values of self each day. |
|
424
|
|
|
|
|
425
|
|
|
Parameters |
|
426
|
|
|
---------- |
|
427
|
|
|
N : int |
|
428
|
|
|
Number of assets passing the returned filter each day. |
|
429
|
|
|
mask : zipline.pipeline.Filter, optional |
|
430
|
|
|
A Filter representing assets to consider when computing ranks. |
|
431
|
|
|
If mask is supplied, bottom values are computed ignoring any |
|
432
|
|
|
asset/date pairs for which `mask` produces a value of False. |
|
433
|
|
|
|
|
434
|
|
|
Returns |
|
435
|
|
|
------- |
|
436
|
|
|
filter : zipline.pipeline.Filter |
|
437
|
|
|
""" |
|
438
|
|
|
return self.rank(ascending=True, mask=mask) <= N |
|
439
|
|
|
|
|
440
|
|
|
def percentile_between(self, |
|
441
|
|
|
min_percentile, |
|
442
|
|
|
max_percentile, |
|
443
|
|
|
mask=NotSpecified): |
|
444
|
|
|
""" |
|
445
|
|
|
Construct a new Filter representing entries from the output of this |
|
446
|
|
|
Factor that fall within the percentile range defined by min_percentile |
|
447
|
|
|
and max_percentile. |
|
448
|
|
|
|
|
449
|
|
|
Parameters |
|
450
|
|
|
---------- |
|
451
|
|
|
min_percentile : float [0.0, 100.0] |
|
452
|
|
|
Return True for assets falling above this percentile in the data. |
|
453
|
|
|
max_percentile : float [0.0, 100.0] |
|
454
|
|
|
Return True for assets falling below this percentile in the data. |
|
455
|
|
|
mask : zipline.pipeline.Filter, optional |
|
456
|
|
|
A Filter representing assets to consider when percentile |
|
457
|
|
|
thresholds. If mask is supplied, percentile cutoffs are computed |
|
458
|
|
|
each day using only assets for which `mask` returns True, and |
|
459
|
|
|
assets not passing `mask` will produce False in the output of this |
|
460
|
|
|
filter as well. |
|
461
|
|
|
|
|
462
|
|
|
Returns |
|
463
|
|
|
------- |
|
464
|
|
|
out : zipline.pipeline.filters.PercentileFilter |
|
465
|
|
|
A new filter that will compute the specified percentile-range mask. |
|
466
|
|
|
|
|
467
|
|
|
See Also |
|
468
|
|
|
-------- |
|
469
|
|
|
zipline.pipeline.filters.filter.PercentileFilter |
|
470
|
|
|
""" |
|
471
|
|
|
return PercentileFilter( |
|
472
|
|
|
self, |
|
473
|
|
|
min_percentile=min_percentile, |
|
474
|
|
|
max_percentile=max_percentile, |
|
475
|
|
|
mask=mask, |
|
476
|
|
|
) |
|
477
|
|
|
|
|
478
|
|
|
def isnan(self): |
|
479
|
|
|
""" |
|
480
|
|
|
A Filter producing True for all values where this Factor is NaN. |
|
481
|
|
|
|
|
482
|
|
|
Returns |
|
483
|
|
|
------- |
|
484
|
|
|
nanfilter : zipline.pipeline.filters.Filter |
|
485
|
|
|
""" |
|
486
|
|
|
return self != self |
|
487
|
|
|
|
|
488
|
|
|
def notnan(self): |
|
489
|
|
|
""" |
|
490
|
|
|
A Filter producing True for values where this Factor is not NaN. |
|
491
|
|
|
|
|
492
|
|
|
Returns |
|
493
|
|
|
------- |
|
494
|
|
|
nanfilter : zipline.pipeline.filters.Filter |
|
495
|
|
|
""" |
|
496
|
|
|
return ~self.isnan() |
|
497
|
|
|
|
|
498
|
|
|
def isfinite(self): |
|
499
|
|
|
""" |
|
500
|
|
|
A Filter producing True for values where this Factor is anything but |
|
501
|
|
|
NaN, inf, or -inf. |
|
502
|
|
|
""" |
|
503
|
|
|
return (-inf < self) & (self < inf) |
|
504
|
|
|
|
|
505
|
|
|
|
|
506
|
|
|
class NumExprFactor(NumericalExpression, Factor): |
|
507
|
|
|
""" |
|
508
|
|
|
Factor computed from a numexpr expression. |
|
509
|
|
|
|
|
510
|
|
|
Parameters |
|
511
|
|
|
---------- |
|
512
|
|
|
expr : string |
|
513
|
|
|
A string suitable for passing to numexpr. All variables in 'expr' |
|
514
|
|
|
should be of the form "x_i", where i is the index of the corresponding |
|
515
|
|
|
factor input in 'binds'. |
|
516
|
|
|
binds : tuple |
|
517
|
|
|
A tuple of factors to use as inputs. |
|
518
|
|
|
|
|
519
|
|
|
Notes |
|
520
|
|
|
----- |
|
521
|
|
|
NumExprFactors are constructed by numerical operators like `+` and `-`. |
|
522
|
|
|
Users should rarely need to construct a NumExprFactor directly. |
|
523
|
|
|
""" |
|
524
|
|
|
pass |
|
525
|
|
|
|
|
526
|
|
|
|
|
527
|
|
|
class Rank(SingleInputMixin, Factor): |
|
528
|
|
|
""" |
|
529
|
|
|
A Factor representing the row-wise rank data of another Factor. |
|
530
|
|
|
|
|
531
|
|
|
Parameters |
|
532
|
|
|
---------- |
|
533
|
|
|
factor : zipline.pipeline.factors.Factor |
|
534
|
|
|
The factor on which to compute ranks. |
|
535
|
|
|
method : str, {'average', 'min', 'max', 'dense', 'ordinal'} |
|
536
|
|
|
The method used to assign ranks to tied elements. See |
|
537
|
|
|
`scipy.stats.rankdata` for a full description of the semantics for each |
|
538
|
|
|
ranking method. |
|
539
|
|
|
|
|
540
|
|
|
See Also |
|
541
|
|
|
-------- |
|
542
|
|
|
scipy.stats.rankdata : Underlying ranking algorithm. |
|
543
|
|
|
zipline.factors.Factor.rank : Method-style interface to same functionality. |
|
544
|
|
|
|
|
545
|
|
|
Notes |
|
546
|
|
|
----- |
|
547
|
|
|
Most users should call Factor.rank rather than directly construct an |
|
548
|
|
|
instance of this class. |
|
549
|
|
|
""" |
|
550
|
|
|
window_length = 0 |
|
551
|
|
|
dtype = float64_dtype |
|
552
|
|
|
|
|
553
|
|
|
def __new__(cls, factor, method, ascending, mask): |
|
554
|
|
|
return super(Rank, cls).__new__( |
|
555
|
|
|
cls, |
|
556
|
|
|
inputs=(factor,), |
|
557
|
|
|
method=method, |
|
558
|
|
|
ascending=ascending, |
|
559
|
|
|
mask=mask, |
|
560
|
|
|
) |
|
561
|
|
|
|
|
562
|
|
|
def _init(self, method, ascending, *args, **kwargs): |
|
563
|
|
|
self._method = method |
|
564
|
|
|
self._ascending = ascending |
|
565
|
|
|
return super(Rank, self)._init(*args, **kwargs) |
|
566
|
|
|
|
|
567
|
|
|
@classmethod |
|
568
|
|
|
def static_identity(cls, method, ascending, *args, **kwargs): |
|
569
|
|
|
return ( |
|
570
|
|
|
super(Rank, cls).static_identity(*args, **kwargs), |
|
571
|
|
|
method, |
|
572
|
|
|
ascending, |
|
573
|
|
|
) |
|
574
|
|
|
|
|
575
|
|
|
def _validate(self): |
|
576
|
|
|
""" |
|
577
|
|
|
Verify that the stored rank method is valid. |
|
578
|
|
|
""" |
|
579
|
|
|
if self._method not in _RANK_METHODS: |
|
580
|
|
|
raise UnknownRankMethod( |
|
581
|
|
|
method=self._method, |
|
582
|
|
|
choices=set(_RANK_METHODS), |
|
583
|
|
|
) |
|
584
|
|
|
return super(Rank, self)._validate() |
|
585
|
|
|
|
|
586
|
|
|
def _compute(self, arrays, dates, assets, mask): |
|
587
|
|
|
""" |
|
588
|
|
|
For each row in the input, compute a like-shaped array of per-row |
|
589
|
|
|
ranks. |
|
590
|
|
|
""" |
|
591
|
|
|
return masked_rankdata_2d( |
|
592
|
|
|
arrays[0], |
|
593
|
|
|
mask, |
|
594
|
|
|
self.inputs[0].missing_value, |
|
595
|
|
|
self._method, |
|
596
|
|
|
self._ascending, |
|
597
|
|
|
) |
|
598
|
|
|
|
|
599
|
|
|
def __repr__(self): |
|
600
|
|
|
return "{type}({input_}, method='{method}', mask={mask})".format( |
|
601
|
|
|
type=type(self).__name__, |
|
602
|
|
|
input_=self.inputs[0], |
|
603
|
|
|
method=self._method, |
|
604
|
|
|
mask=self.mask, |
|
605
|
|
|
) |
|
606
|
|
|
|
|
607
|
|
|
|
|
608
|
|
|
class CustomFactor(PositiveWindowLengthMixin, CustomTermMixin, Factor): |
|
609
|
|
|
''' |
|
610
|
|
|
Base class for user-defined Factors. |
|
611
|
|
|
|
|
612
|
|
|
Parameters |
|
613
|
|
|
---------- |
|
614
|
|
|
inputs : iterable, optional |
|
615
|
|
|
An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), |
|
616
|
|
|
describing the data to load and pass to `self.compute`. If this |
|
617
|
|
|
argument is passed to the CustomFactor constructor, we look for a |
|
618
|
|
|
class-level attribute named `inputs`. |
|
619
|
|
|
window_length : int, optional |
|
620
|
|
|
Number of rows to pass for each input. If this argument is not passed |
|
621
|
|
|
to the CustomFactor constructor, we look for a class-level attribute |
|
622
|
|
|
named `window_length`. |
|
623
|
|
|
|
|
624
|
|
|
Notes |
|
625
|
|
|
----- |
|
626
|
|
|
Users implementing their own Factors should subclass CustomFactor and |
|
627
|
|
|
implement a method named `compute` with the following signature: |
|
628
|
|
|
|
|
629
|
|
|
.. code-block:: python |
|
630
|
|
|
|
|
631
|
|
|
def compute(self, today, assets, out, *inputs): |
|
632
|
|
|
... |
|
633
|
|
|
|
|
634
|
|
|
On each simulation date, ``compute`` will be called with the current date, |
|
635
|
|
|
an array of sids, an output array, and an input array for each expression |
|
636
|
|
|
passed as inputs to the CustomFactor constructor. |
|
637
|
|
|
|
|
638
|
|
|
The specific types of the values passed to `compute` are as follows:: |
|
639
|
|
|
|
|
640
|
|
|
today : np.datetime64[ns] |
|
641
|
|
|
Row label for the last row of all arrays passed as `inputs`. |
|
642
|
|
|
assets : np.array[int64, ndim=1] |
|
643
|
|
|
Column labels for `out` and`inputs`. |
|
644
|
|
|
out : np.array[self.dtype, ndim=1] |
|
645
|
|
|
Output array of the same shape as `assets`. `compute` should write |
|
646
|
|
|
its desired return values into `out`. |
|
647
|
|
|
*inputs : tuple of np.array |
|
648
|
|
|
Raw data arrays corresponding to the values of `self.inputs`. |
|
649
|
|
|
|
|
650
|
|
|
``compute`` functions should expect to be passed NaN values for dates on |
|
651
|
|
|
which no data was available for an asset. This may include dates on which |
|
652
|
|
|
an asset did not yet exist. |
|
653
|
|
|
|
|
654
|
|
|
For example, if a CustomFactor requires 10 rows of close price data, and |
|
655
|
|
|
asset A started trading on Monday June 2nd, 2014, then on Tuesday, June |
|
656
|
|
|
3rd, 2014, the column of input data for asset A will have 9 leading NaNs |
|
657
|
|
|
for the preceding days on which data was not yet available. |
|
658
|
|
|
|
|
659
|
|
|
Examples |
|
660
|
|
|
-------- |
|
661
|
|
|
|
|
662
|
|
|
A CustomFactor with pre-declared defaults: |
|
663
|
|
|
|
|
664
|
|
|
.. code-block:: python |
|
665
|
|
|
|
|
666
|
|
|
class TenDayRange(CustomFactor): |
|
667
|
|
|
""" |
|
668
|
|
|
Computes the difference between the highest high in the last 10 |
|
669
|
|
|
days and the lowest low. |
|
670
|
|
|
|
|
671
|
|
|
Pre-declares high and low as default inputs and `window_length` as |
|
672
|
|
|
10. |
|
673
|
|
|
""" |
|
674
|
|
|
|
|
675
|
|
|
inputs = [USEquityPricing.high, USEquityPricing.low] |
|
676
|
|
|
window_length = 10 |
|
677
|
|
|
|
|
678
|
|
|
def compute(self, today, assets, out, highs, lows): |
|
679
|
|
|
from numpy import nanmin, nanmax |
|
680
|
|
|
|
|
681
|
|
|
highest_highs = nanmax(highs, axis=0) |
|
682
|
|
|
lowest_lows = nanmin(lows, axis=0) |
|
683
|
|
|
out[:] = highest_highs - lowest_lows |
|
684
|
|
|
|
|
685
|
|
|
|
|
686
|
|
|
# Doesn't require passing inputs or window_length because they're |
|
687
|
|
|
# pre-declared as defaults for the TenDayRange class. |
|
688
|
|
|
ten_day_range = TenDayRange() |
|
689
|
|
|
|
|
690
|
|
|
A CustomFactor without defaults: |
|
691
|
|
|
|
|
692
|
|
|
.. code-block:: python |
|
693
|
|
|
|
|
694
|
|
|
class MedianValue(CustomFactor): |
|
695
|
|
|
""" |
|
696
|
|
|
Computes the median value of an arbitrary single input over an |
|
697
|
|
|
arbitrary window.. |
|
698
|
|
|
|
|
699
|
|
|
Does not declare any defaults, so values for `window_length` and |
|
700
|
|
|
`inputs` must be passed explicitly on every construction. |
|
701
|
|
|
""" |
|
702
|
|
|
|
|
703
|
|
|
def compute(self, today, assets, out, data): |
|
704
|
|
|
from numpy import nanmedian |
|
705
|
|
|
out[:] = data.nanmedian(data, axis=0) |
|
706
|
|
|
|
|
707
|
|
|
# Values for `inputs` and `window_length` must be passed explicitly to |
|
708
|
|
|
# MedianValue. |
|
709
|
|
|
median_close10 = MedianValue([USEquityPricing.close], window_length=10) |
|
710
|
|
|
median_low15 = MedianValue([USEquityPricing.low], window_length=15) |
|
711
|
|
|
''' |
|
712
|
|
|
dtype = float64_dtype |
|
713
|
|
|
ctx = nullctx() |
|
714
|
|
|
|