|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2015 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
|
|
16
|
|
|
import unittest |
|
17
|
|
|
|
|
18
|
|
|
import datetime |
|
19
|
|
|
import numpy as np |
|
20
|
|
|
import pytz |
|
21
|
|
|
import zipline.finance.risk as risk |
|
22
|
|
|
from zipline.utils import factory |
|
23
|
|
|
|
|
24
|
|
|
from zipline.finance.trading import SimulationParameters, TradingEnvironment |
|
25
|
|
|
|
|
26
|
|
|
from . import answer_key |
|
27
|
|
|
ANSWER_KEY = answer_key.ANSWER_KEY |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
|
class TestRisk(unittest.TestCase): |
|
31
|
|
|
|
|
32
|
|
|
@classmethod |
|
33
|
|
|
def setUpClass(cls): |
|
34
|
|
|
cls.env = TradingEnvironment() |
|
35
|
|
|
|
|
36
|
|
|
@classmethod |
|
37
|
|
|
def tearDownClass(cls): |
|
38
|
|
|
del cls.env |
|
39
|
|
|
|
|
40
|
|
|
def setUp(self): |
|
41
|
|
|
start_date = datetime.datetime( |
|
42
|
|
|
year=2006, |
|
43
|
|
|
month=1, |
|
44
|
|
|
day=1, |
|
45
|
|
|
hour=0, |
|
46
|
|
|
minute=0, |
|
47
|
|
|
tzinfo=pytz.utc) |
|
48
|
|
|
end_date = datetime.datetime( |
|
49
|
|
|
year=2006, month=12, day=29, tzinfo=pytz.utc) |
|
50
|
|
|
|
|
51
|
|
|
self.sim_params = SimulationParameters( |
|
52
|
|
|
period_start=start_date, |
|
53
|
|
|
period_end=end_date, |
|
54
|
|
|
env=self.env, |
|
55
|
|
|
) |
|
56
|
|
|
|
|
57
|
|
|
self.algo_returns_06 = factory.create_returns_from_list( |
|
58
|
|
|
answer_key.ALGORITHM_RETURNS.values, |
|
59
|
|
|
self.sim_params |
|
60
|
|
|
) |
|
61
|
|
|
|
|
62
|
|
|
self.cumulative_metrics_06 = risk.RiskMetricsCumulative( |
|
63
|
|
|
self.sim_params, env=self.env |
|
64
|
|
|
) |
|
65
|
|
|
|
|
66
|
|
|
for dt, returns in answer_key.RETURNS_DATA.iterrows(): |
|
67
|
|
|
self.cumulative_metrics_06.update(dt, |
|
68
|
|
|
returns['Algorithm Returns'], |
|
69
|
|
|
returns['Benchmark Returns'], |
|
70
|
|
|
0.0) |
|
71
|
|
|
|
|
72
|
|
|
def test_algorithm_volatility_06(self): |
|
73
|
|
|
algo_vol_answers = answer_key.RISK_CUMULATIVE.volatility |
|
74
|
|
|
for dt, value in algo_vol_answers.iteritems(): |
|
75
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
76
|
|
|
np.testing.assert_almost_equal( |
|
77
|
|
|
self.cumulative_metrics_06.algorithm_volatility[dt_loc], |
|
78
|
|
|
value, |
|
79
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
80
|
|
|
|
|
81
|
|
|
def test_sharpe_06(self): |
|
82
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.sharpe.iteritems(): |
|
83
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
84
|
|
|
np.testing.assert_almost_equal( |
|
85
|
|
|
self.cumulative_metrics_06.sharpe[dt_loc], |
|
86
|
|
|
value, |
|
87
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
88
|
|
|
|
|
89
|
|
|
def test_downside_risk_06(self): |
|
90
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.downside_risk.iteritems(): |
|
91
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
92
|
|
|
np.testing.assert_almost_equal( |
|
93
|
|
|
value, |
|
94
|
|
|
self.cumulative_metrics_06.downside_risk[dt_loc], |
|
95
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
96
|
|
|
|
|
97
|
|
|
def test_sortino_06(self): |
|
98
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.sortino.iteritems(): |
|
99
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
100
|
|
|
np.testing.assert_almost_equal( |
|
101
|
|
|
self.cumulative_metrics_06.sortino[dt_loc], |
|
102
|
|
|
value, |
|
103
|
|
|
decimal=4, |
|
104
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
105
|
|
|
|
|
106
|
|
|
def test_information_06(self): |
|
107
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.information.iteritems(): |
|
108
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
109
|
|
|
np.testing.assert_almost_equal( |
|
110
|
|
|
value, |
|
111
|
|
|
self.cumulative_metrics_06.information[dt_loc], |
|
112
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
113
|
|
|
|
|
114
|
|
|
def test_alpha_06(self): |
|
115
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.alpha.iteritems(): |
|
116
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
117
|
|
|
np.testing.assert_almost_equal( |
|
118
|
|
|
self.cumulative_metrics_06.alpha[dt_loc], |
|
119
|
|
|
value, |
|
120
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
121
|
|
|
|
|
122
|
|
|
def test_beta_06(self): |
|
123
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.beta.iteritems(): |
|
124
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
125
|
|
|
np.testing.assert_almost_equal( |
|
126
|
|
|
value, |
|
127
|
|
|
self.cumulative_metrics_06.beta[dt_loc], |
|
128
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
129
|
|
|
|
|
130
|
|
|
def test_max_drawdown_06(self): |
|
131
|
|
|
for dt, value in answer_key.RISK_CUMULATIVE.max_drawdown.iteritems(): |
|
132
|
|
|
dt_loc = self.cumulative_metrics_06.cont_index.get_loc(dt) |
|
133
|
|
|
np.testing.assert_almost_equal( |
|
134
|
|
|
self.cumulative_metrics_06.max_drawdowns[dt_loc], |
|
135
|
|
|
value, |
|
136
|
|
|
err_msg="Mismatch at %s" % (dt,)) |
|
137
|
|
|
|