| Total Complexity | 144 | 
| Total Lines | 1190 | 
| Duplicated Lines | 0 % | 
Complex classes like zipline.data.DataPortal often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | #  | 
            ||
| 49 | class DataPortal(object):  | 
            ||
| 50 | def __init__(self,  | 
            ||
| 51 | env,  | 
            ||
| 52 | equity_daily_reader=None,  | 
            ||
| 53 | equity_minute_reader=None,  | 
            ||
| 54 | future_daily_reader=None,  | 
            ||
| 55 | future_minute_reader=None,  | 
            ||
| 56 | adjustment_reader=None):  | 
            ||
| 57 | self.env = env  | 
            ||
| 58 | |||
| 59 | # This is a bit ugly, but is here for performance reasons. In minute  | 
            ||
| 60 | # simulations, we need to very quickly go from dt -> (# of minutes  | 
            ||
| 61 | # since Jan 1 2002 9:30 Eastern).  | 
            ||
| 62 | #  | 
            ||
| 63 | # The clock that heartbeats the simulation has all the necessary  | 
            ||
| 64 | # information to do this calculation very quickly. This value is  | 
            ||
| 65 | # calculated there, and then set here  | 
            ||
| 66 | self.cur_data_offset = 0  | 
            ||
| 67 | |||
| 68 |         self.views = {} | 
            ||
| 69 | |||
| 70 | self._asset_finder = env.asset_finder  | 
            ||
| 71 | |||
| 72 |         self._carrays = { | 
            ||
| 73 |             'open': {}, | 
            ||
| 74 |             'high': {}, | 
            ||
| 75 |             'low': {}, | 
            ||
| 76 |             'close': {}, | 
            ||
| 77 |             'volume': {}, | 
            ||
| 78 |             'sid': {}, | 
            ||
| 79 |             'dt': {}, | 
            ||
| 80 | }  | 
            ||
| 81 | |||
| 82 | self._adjustment_reader = adjustment_reader  | 
            ||
| 83 | |||
| 84 | # caches of sid -> adjustment list  | 
            ||
| 85 |         self._splits_dict = {} | 
            ||
| 86 |         self._mergers_dict = {} | 
            ||
| 87 |         self._dividends_dict = {} | 
            ||
| 88 | |||
| 89 | # Cache of sid -> the first trading day of an asset, even if that day  | 
            ||
| 90 | # is before 1/2/2002.  | 
            ||
| 91 |         self._asset_start_dates = {} | 
            ||
| 92 |         self._asset_end_dates = {} | 
            ||
| 93 | |||
| 94 | # Handle extra sources, like Fetcher.  | 
            ||
| 95 |         self._augmented_sources_map = {} | 
            ||
| 96 | self._extra_source_df = None  | 
            ||
| 97 | |||
| 98 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001  | 
            ||
| 99 | |||
| 100 | self._equity_daily_reader = equity_daily_reader  | 
            ||
| 101 | self._equity_minute_reader = equity_minute_reader  | 
            ||
| 102 | self._future_daily_reader = future_daily_reader  | 
            ||
| 103 | self._future_minute_reader = future_minute_reader  | 
            ||
| 104 | |||
| 105 | # The following values are used by _minute_offset to calculate the  | 
            ||
| 106 | # index into the minute bcolz date.  | 
            ||
| 107 | |||
| 108 | # A lookup of table every minute to the corresponding day, to avoid  | 
            ||
| 109 | # calling `.date()` on every lookup.  | 
            ||
| 110 |         self._minutes_to_day = {} | 
            ||
| 111 | # A map of days (keyed by midnight) to a DatetimeIndex of market  | 
            ||
| 112 | # minutes for that day.  | 
            ||
| 113 |         self._minutes_by_day = {} | 
            ||
| 114 | # A dict of day to the offset into the minute bcolz on which that  | 
            ||
| 115 | # days data starts.  | 
            ||
| 116 | self._day_offsets = None  | 
            ||
| 117 | |||
| 118 | def handle_extra_source(self, source_df, sim_params):  | 
            ||
| 119 | """  | 
            ||
| 120 | Extra sources always have a sid column.  | 
            ||
| 121 | |||
| 122 | We expand the given data (by forward filling) to the full range of  | 
            ||
| 123 | the simulation dates, so that lookup is fast during simulation.  | 
            ||
| 124 | """  | 
            ||
| 125 | if source_df is None:  | 
            ||
| 126 | return  | 
            ||
| 127 | |||
| 128 | self._extra_source_df = source_df  | 
            ||
| 129 | |||
| 130 | # source_df's sid column can either consist of assets we know about  | 
            ||
| 131 | # (such as sid(24)) or of assets we don't know about (such as  | 
            ||
| 132 | # palladium).  | 
            ||
| 133 | #  | 
            ||
| 134 | # In both cases, we break up the dataframe into individual dfs  | 
            ||
| 135 | # that only contain a single asset's information. ie, if source_df  | 
            ||
| 136 | # has data for PALLADIUM and GOLD, we split source_df into two  | 
            ||
| 137 | # dataframes, one for each. (same applies if source_df has data for  | 
            ||
| 138 | # AAPL and IBM).  | 
            ||
| 139 | #  | 
            ||
| 140 | # We then take each child df and reindex it to the simulation's date  | 
            ||
| 141 | # range by forward-filling missing values. this makes reads simpler.  | 
            ||
| 142 | #  | 
            ||
| 143 | # Finally, we store the data. For each column, we store a mapping in  | 
            ||
| 144 | # self.augmented_sources_map from the column to a dictionary of  | 
            ||
| 145 | # asset -> df. In other words,  | 
            ||
| 146 | # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df  | 
            ||
| 147 | # holding that data.  | 
            ||
| 148 | |||
| 149 | if sim_params.emission_rate == "daily":  | 
            ||
| 150 | source_date_index = self.env.days_in_range(  | 
            ||
| 151 | start=sim_params.period_start,  | 
            ||
| 152 | end=sim_params.period_end  | 
            ||
| 153 | )  | 
            ||
| 154 | else:  | 
            ||
| 155 | source_date_index = self.env.minutes_for_days_in_range(  | 
            ||
| 156 | start=sim_params.period_start,  | 
            ||
| 157 | end=sim_params.period_end  | 
            ||
| 158 | )  | 
            ||
| 159 | |||
| 160 | # Break the source_df up into one dataframe per sid. This lets  | 
            ||
| 161 | # us (more easily) calculate accurate start/end dates for each sid,  | 
            ||
| 162 | # de-dup data, and expand the data to fit the backtest start/end date.  | 
            ||
| 163 | grouped_by_sid = source_df.groupby(["sid"])  | 
            ||
| 164 | group_names = grouped_by_sid.groups.keys()  | 
            ||
| 165 |         group_dict = {} | 
            ||
| 166 | for group_name in group_names:  | 
            ||
| 167 | group_dict[group_name] = grouped_by_sid.get_group(group_name)  | 
            ||
| 168 | |||
| 169 | for identifier, df in iteritems(group_dict):  | 
            ||
| 170 | # Before reindexing, save the earliest and latest dates  | 
            ||
| 171 | earliest_date = df.index[0]  | 
            ||
| 172 | latest_date = df.index[-1]  | 
            ||
| 173 | |||
| 174 | # Since we know this df only contains a single sid, we can safely  | 
            ||
| 175 | # de-dupe by the index (dt)  | 
            ||
| 176 | df = df.groupby(level=0).last()  | 
            ||
| 177 | |||
| 178 | # Reindex the dataframe based on the backtest start/end date.  | 
            ||
| 179 | # This makes reads easier during the backtest.  | 
            ||
| 180 | df = df.reindex(index=source_date_index, method='ffill')  | 
            ||
| 181 | |||
| 182 | if not isinstance(identifier, Asset):  | 
            ||
| 183 | # for fake assets we need to store a start/end date  | 
            ||
| 184 | self._asset_start_dates[identifier] = earliest_date  | 
            ||
| 185 | self._asset_end_dates[identifier] = latest_date  | 
            ||
| 186 | |||
| 187 | for col_name in df.columns.difference(['sid']):  | 
            ||
| 188 | if col_name not in self._augmented_sources_map:  | 
            ||
| 189 |                     self._augmented_sources_map[col_name] = {} | 
            ||
| 190 | |||
| 191 | self._augmented_sources_map[col_name][identifier] = df  | 
            ||
| 192 | |||
| 193 | def _open_minute_file(self, field, asset):  | 
            ||
| 194 | sid_str = str(int(asset))  | 
            ||
| 195 | |||
| 196 | try:  | 
            ||
| 197 | carray = self._carrays[field][sid_str]  | 
            ||
| 198 | except KeyError:  | 
            ||
| 199 | carray = self._carrays[field][sid_str] = \  | 
            ||
| 200 | self._get_ctable(asset)[field]  | 
            ||
| 201 | |||
| 202 | return carray  | 
            ||
| 203 | |||
| 204 | def _get_ctable(self, asset):  | 
            ||
| 205 | sid = int(asset)  | 
            ||
| 206 | |||
| 207 | if isinstance(asset, Future):  | 
            ||
| 208 | if self._future_minute_reader.sid_path_func is not None:  | 
            ||
| 209 | path = self._future_minute_reader.sid_path_func(  | 
            ||
| 210 | self._future_minute_reader.rootdir, sid  | 
            ||
| 211 | )  | 
            ||
| 212 | else:  | 
            ||
| 213 |                 path = "{0}/{1}.bcolz".format( | 
            ||
| 214 | self._future_minute_reader.rootdir, sid)  | 
            ||
| 215 | elif isinstance(asset, Equity):  | 
            ||
| 216 | if self._equity_minute_reader.sid_path_func is not None:  | 
            ||
| 217 | path = self._equity_minute_reader.sid_path_func(  | 
            ||
| 218 | self._equity_minute_reader.rootdir, sid  | 
            ||
| 219 | )  | 
            ||
| 220 | else:  | 
            ||
| 221 |                 path = "{0}/{1}.bcolz".format( | 
            ||
| 222 | self._equity_minute_reader.rootdir, sid)  | 
            ||
| 223 | |||
| 224 | else:  | 
            ||
| 225 | # TODO: Figure out if assets should be allowed if neither, and  | 
            ||
| 226 | # why this code path is being hit.  | 
            ||
| 227 | if self._equity_minute_reader.sid_path_func is not None:  | 
            ||
| 228 | path = self._equity_minute_reader.sid_path_func(  | 
            ||
| 229 | self._equity_minute_reader.rootdir, sid  | 
            ||
| 230 | )  | 
            ||
| 231 | else:  | 
            ||
| 232 |                 path = "{0}/{1}.bcolz".format( | 
            ||
| 233 | self._equity_minute_reader.rootdir, sid)  | 
            ||
| 234 | |||
| 235 | return bcolz.open(path, mode='r')  | 
            ||
| 236 | |||
| 237 | def get_previous_value(self, asset, field, dt, data_frequency):  | 
            ||
| 238 | """  | 
            ||
| 239 | Given an asset and a column and a dt, returns the previous value for  | 
            ||
| 240 | the same asset/column pair. If this data portal is in minute mode,  | 
            ||
| 241 | it's the previous minute value, otherwise it's the previous day's  | 
            ||
| 242 | value.  | 
            ||
| 243 | |||
| 244 | Parameters  | 
            ||
| 245 | ---------  | 
            ||
| 246 | asset : Asset  | 
            ||
| 247 | The asset whose data is desired.  | 
            ||
| 248 | |||
| 249 | field: string  | 
            ||
| 250 | The desired field of the asset. Valid values are "open",  | 
            ||
| 251 | "open_price", "high", "low", "close", "close_price", "volume", and  | 
            ||
| 252 | "price".  | 
            ||
| 253 | |||
| 254 | dt: pd.Timestamp  | 
            ||
| 255 | The timestamp from which to go back in time one slot.  | 
            ||
| 256 | |||
| 257 | data_frequency: string  | 
            ||
| 258 | The frequency of the data to query; i.e. whether the data is  | 
            ||
| 259 | 'daily' or 'minute' bars  | 
            ||
| 260 | |||
| 261 | Returns  | 
            ||
| 262 | -------  | 
            ||
| 263 | The value of the desired field at the desired time.  | 
            ||
| 264 | """  | 
            ||
| 265 | if data_frequency == 'daily':  | 
            ||
| 266 | prev_dt = self.env.previous_trading_day(dt)  | 
            ||
| 267 | elif data_frequency == 'minute':  | 
            ||
| 268 | prev_dt = self.env.previous_market_minute(dt)  | 
            ||
| 269 | |||
| 270 | return self.get_spot_value(asset, field, prev_dt, data_frequency)  | 
            ||
| 271 | |||
| 272 | def _check_extra_sources(self, asset, column, day):  | 
            ||
| 273 | # If we have an extra source with a column called "price", only look  | 
            ||
| 274 | # at it if it's on something like palladium and not AAPL (since our  | 
            ||
| 275 | # own price data always wins when dealing with assets).  | 
            ||
| 276 | look_in_augmented_sources = column in self._augmented_sources_map and \  | 
            ||
| 277 | not (column in BASE_FIELDS and isinstance(asset, Asset))  | 
            ||
| 278 | |||
| 279 | if look_in_augmented_sources:  | 
            ||
| 280 | # we're being asked for a field in an extra source  | 
            ||
| 281 | try:  | 
            ||
| 282 | return self._augmented_sources_map[column][asset].\  | 
            ||
| 283 | loc[day, column]  | 
            ||
| 284 | except:  | 
            ||
| 285 | log.error(  | 
            ||
| 286 |                     "Could not find value for asset={0}, day={1}," | 
            ||
| 287 |                     "column={2}".format( | 
            ||
| 288 | str(asset),  | 
            ||
| 289 | str(day),  | 
            ||
| 290 | str(column)))  | 
            ||
| 291 | |||
| 292 | raise KeyError  | 
            ||
| 293 | |||
| 294 | def get_spot_value(self, asset, field, dt, data_frequency):  | 
            ||
| 295 | """  | 
            ||
| 296 | Public API method that returns a scalar value representing the value  | 
            ||
| 297 | of the desired asset's field at either the given dt.  | 
            ||
| 298 | |||
| 299 | Parameters  | 
            ||
| 300 | ---------  | 
            ||
| 301 | asset : Asset  | 
            ||
| 302 | The asset whose data is desired.gith  | 
            ||
| 303 | |||
| 304 | field: string  | 
            ||
| 305 | The desired field of the asset. Valid values are "open",  | 
            ||
| 306 | "open_price", "high", "low", "close", "close_price", "volume", and  | 
            ||
| 307 | "price".  | 
            ||
| 308 | |||
| 309 | dt: pd.Timestamp  | 
            ||
| 310 | The timestamp for the desired value.  | 
            ||
| 311 | |||
| 312 | data_frequency: string  | 
            ||
| 313 | The frequency of the data to query; i.e. whether the data is  | 
            ||
| 314 | 'daily' or 'minute' bars  | 
            ||
| 315 | |||
| 316 | Returns  | 
            ||
| 317 | -------  | 
            ||
| 318 | The value of the desired field at the desired time.  | 
            ||
| 319 | """  | 
            ||
| 320 | extra_source_val = self._check_extra_sources(  | 
            ||
| 321 | asset,  | 
            ||
| 322 | field,  | 
            ||
| 323 | dt,  | 
            ||
| 324 | )  | 
            ||
| 325 | |||
| 326 | if extra_source_val is not None:  | 
            ||
| 327 | return extra_source_val  | 
            ||
| 328 | |||
| 329 | if field not in BASE_FIELDS:  | 
            ||
| 330 |             raise KeyError("Invalid column: " + str(field)) | 
            ||
| 331 | |||
| 332 | column_to_use = BASE_FIELDS[field]  | 
            ||
| 333 | |||
| 334 | if isinstance(asset, int):  | 
            ||
| 335 | asset = self._asset_finder.retrieve_asset(asset)  | 
            ||
| 336 | |||
| 337 | self._check_is_currently_alive(asset, dt)  | 
            ||
| 338 | |||
| 339 | if data_frequency == "daily":  | 
            ||
| 340 | day_to_use = dt  | 
            ||
| 341 | day_to_use = normalize_date(day_to_use)  | 
            ||
| 342 | return self._get_daily_data(asset, column_to_use, day_to_use)  | 
            ||
| 343 | else:  | 
            ||
| 344 | if isinstance(asset, Future):  | 
            ||
| 345 | return self._get_minute_spot_value_future(  | 
            ||
| 346 | asset, column_to_use, dt)  | 
            ||
| 347 | else:  | 
            ||
| 348 | return self._get_minute_spot_value(  | 
            ||
| 349 | asset, column_to_use, dt)  | 
            ||
| 350 | |||
| 351 | def _get_minute_spot_value_future(self, asset, column, dt):  | 
            ||
| 352 | # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week.  | 
            ||
| 353 | # The file attributes contain the "start_dt" and "last_dt" fields,  | 
            ||
| 354 | # which represent the time period for this bcolz file.  | 
            ||
| 355 | |||
| 356 | # The start_dt is midnight of the first day that this future started  | 
            ||
| 357 | # trading.  | 
            ||
| 358 | |||
| 359 | # figure out the # of minutes between dt and this asset's start_dt  | 
            ||
| 360 | start_date = self._get_asset_start_date(asset)  | 
            ||
| 361 | minute_offset = int((dt - start_date).total_seconds() / 60)  | 
            ||
| 362 | |||
| 363 | if minute_offset < 0:  | 
            ||
| 364 | # asking for a date that is before the asset's start date, no dice  | 
            ||
| 365 | return 0.0  | 
            ||
| 366 | |||
| 367 | # then just index into the bcolz carray at that offset  | 
            ||
| 368 | carray = self._open_minute_file(column, asset)  | 
            ||
| 369 | result = carray[minute_offset]  | 
            ||
| 370 | |||
| 371 | # if there's missing data, go backwards until we run out of file  | 
            ||
| 372 | while result == 0 and minute_offset > 0:  | 
            ||
| 373 | minute_offset -= 1  | 
            ||
| 374 | result = carray[minute_offset]  | 
            ||
| 375 | |||
| 376 | if column != 'volume':  | 
            ||
| 377 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR  | 
            ||
| 378 | else:  | 
            ||
| 379 | return result  | 
            ||
| 380 | |||
| 381 | def setup_offset_cache(self, minutes_by_day, minutes_to_day, trading_days):  | 
            ||
| 382 | # TODO: This case should not be hit, but is when tests are setup  | 
            ||
| 383 | # with data_frequency of daily, but run with minutely.  | 
            ||
| 384 | if self._equity_minute_reader is None:  | 
            ||
| 385 | return  | 
            ||
| 386 | |||
| 387 | self._minutes_to_day = minutes_to_day  | 
            ||
| 388 | self._minutes_by_day = minutes_by_day  | 
            ||
| 389 | start = trading_days[0]  | 
            ||
| 390 | first_trading_day_idx = self._equity_minute_reader.trading_days.\  | 
            ||
| 391 | searchsorted(start)  | 
            ||
| 392 |         self._day_offsets = { | 
            ||
| 393 | day: (i + first_trading_day_idx) * 390  | 
            ||
| 394 | for i, day in enumerate(trading_days)}  | 
            ||
| 395 | |||
| 396 | def _minute_offset(self, dt):  | 
            ||
| 397 | if self._day_offsets is not None:  | 
            ||
| 398 | try:  | 
            ||
| 399 | day = self._minutes_to_day[dt]  | 
            ||
| 400 | minutes = self._minutes_by_day[day]  | 
            ||
| 401 | return self._day_offsets[day] + minutes.get_loc(dt)  | 
            ||
| 402 | except KeyError:  | 
            ||
| 403 | return None  | 
            ||
| 404 | |||
| 405 | def _get_minute_spot_value(self, asset, column, dt):  | 
            ||
| 406 | # if dt is before the first market minute, minute_index  | 
            ||
| 407 | # will be 0. if it's after the last market minute, it'll  | 
            ||
| 408 | # be len(minutes_for_day)  | 
            ||
| 409 | minute_offset_to_use = self._minute_offset(dt)  | 
            ||
| 410 | |||
| 411 | if minute_offset_to_use is None:  | 
            ||
| 412 | given_day = pd.Timestamp(dt.date(), tz='utc')  | 
            ||
| 413 | day_index = self._equity_minute_reader.trading_days.searchsorted(  | 
            ||
| 414 | given_day)  | 
            ||
| 415 | |||
| 416 | # if dt is before the first market minute, minute_index  | 
            ||
| 417 | # will be 0. if it's after the last market minute, it'll  | 
            ||
| 418 | # be len(minutes_for_day)  | 
            ||
| 419 | minute_index = self.env.market_minutes_for_day(given_day).\  | 
            ||
| 420 | searchsorted(dt)  | 
            ||
| 421 | |||
| 422 | minute_offset_to_use = (day_index * 390) + minute_index  | 
            ||
| 423 | |||
| 424 | carray = self._equity_minute_reader._open_minute_file(column, asset)  | 
            ||
| 425 | result = carray[minute_offset_to_use]  | 
            ||
| 426 | |||
| 427 | if result == 0:  | 
            ||
| 428 | # if the given minute doesn't have data, we need to seek  | 
            ||
| 429 | # backwards until we find data. This makes the data  | 
            ||
| 430 | # forward-filled.  | 
            ||
| 431 | |||
| 432 | # get this asset's start date, so that we don't look before it.  | 
            ||
| 433 | start_date = self._get_asset_start_date(asset)  | 
            ||
| 434 | start_date_idx = self._equity_minute_reader.trading_days.\  | 
            ||
| 435 | searchsorted(start_date)  | 
            ||
| 436 | start_day_offset = start_date_idx * 390  | 
            ||
| 437 | |||
| 438 | original_start = minute_offset_to_use  | 
            ||
| 439 | |||
| 440 | while result == 0 and minute_offset_to_use > start_day_offset:  | 
            ||
| 441 | minute_offset_to_use -= 1  | 
            ||
| 442 | result = carray[minute_offset_to_use]  | 
            ||
| 443 | |||
| 444 | # once we've found data, we need to check whether it needs  | 
            ||
| 445 | # to be adjusted.  | 
            ||
| 446 | if result != 0:  | 
            ||
| 447 | minutes = self.env.market_minute_window(  | 
            ||
| 448 | start=dt,  | 
            ||
| 449 | count=(original_start - minute_offset_to_use + 1),  | 
            ||
| 450 | step=-1  | 
            ||
| 451 | ).order()  | 
            ||
| 452 | |||
| 453 | # only need to check for adjustments if we've gone back  | 
            ||
| 454 | # far enough to cross the day boundary.  | 
            ||
| 455 | if minutes[0].date() != minutes[-1].date():  | 
            ||
| 456 | # create a np array of size minutes, fill it all with  | 
            ||
| 457 | # the same value. and adjust the array.  | 
            ||
| 458 | arr = np.array([result] * len(minutes),  | 
            ||
| 459 | dtype=np.float64)  | 
            ||
| 460 | self._apply_all_adjustments(  | 
            ||
| 461 | data=arr,  | 
            ||
| 462 | asset=asset,  | 
            ||
| 463 | dts=minutes,  | 
            ||
| 464 | field=column  | 
            ||
| 465 | )  | 
            ||
| 466 | |||
| 467 | # The first value of the adjusted array is the value  | 
            ||
| 468 | # we want.  | 
            ||
| 469 | result = arr[0]  | 
            ||
| 470 | |||
| 471 | if column != 'volume':  | 
            ||
| 472 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR  | 
            ||
| 473 | else:  | 
            ||
| 474 | return result  | 
            ||
| 475 | |||
| 476 | def _get_daily_data(self, asset, column, dt):  | 
            ||
| 477 | while True:  | 
            ||
| 478 | try:  | 
            ||
| 479 | value = self._equity_daily_reader.spot_price(asset, dt, column)  | 
            ||
| 480 | if value != -1:  | 
            ||
| 481 | return value  | 
            ||
| 482 | else:  | 
            ||
| 483 | dt -= tradingcalendar.trading_day  | 
            ||
| 484 | except NoDataOnDate:  | 
            ||
| 485 | return 0  | 
            ||
| 486 | |||
| 487 | def _get_history_daily_window(self, assets, end_dt, bar_count,  | 
            ||
| 488 | field_to_use):  | 
            ||
| 489 | """  | 
            ||
| 490 | Internal method that returns a dataframe containing history bars  | 
            ||
| 491 | of daily frequency for the given sids.  | 
            ||
| 492 | """  | 
            ||
| 493 | day_idx = tradingcalendar.trading_days.searchsorted(end_dt.date())  | 
            ||
| 494 | days_for_window = tradingcalendar.trading_days[  | 
            ||
| 495 | (day_idx - bar_count + 1):(day_idx + 1)]  | 
            ||
| 496 | |||
| 497 | if len(assets) == 0:  | 
            ||
| 498 | return pd.DataFrame(None,  | 
            ||
| 499 | index=days_for_window,  | 
            ||
| 500 | columns=None)  | 
            ||
| 501 | |||
| 502 | data = []  | 
            ||
| 503 | |||
| 504 | for asset in assets:  | 
            ||
| 505 | if isinstance(asset, Future):  | 
            ||
| 506 | data.append(self._get_history_daily_window_future(  | 
            ||
| 507 | asset, days_for_window, end_dt, field_to_use  | 
            ||
| 508 | ))  | 
            ||
| 509 | else:  | 
            ||
| 510 | data.append(self._get_history_daily_window_equity(  | 
            ||
| 511 | asset, days_for_window, end_dt, field_to_use  | 
            ||
| 512 | ))  | 
            ||
| 513 | |||
| 514 | return pd.DataFrame(  | 
            ||
| 515 | np.array(data).T,  | 
            ||
| 516 | index=days_for_window,  | 
            ||
| 517 | columns=assets  | 
            ||
| 518 | )  | 
            ||
| 519 | |||
| 520 | def _get_history_daily_window_future(self, asset, days_for_window,  | 
            ||
| 521 | end_dt, column):  | 
            ||
| 522 | # Since we don't have daily bcolz files for futures (yet), use minute  | 
            ||
| 523 | # bars to calculate the daily values.  | 
            ||
| 524 | data = []  | 
            ||
| 525 | data_groups = []  | 
            ||
| 526 | |||
| 527 | # get all the minutes for the days NOT including today  | 
            ||
| 528 | for day in days_for_window[:-1]:  | 
            ||
| 529 | minutes = self.env.market_minutes_for_day(day)  | 
            ||
| 530 | |||
| 531 | values_for_day = np.zeros(len(minutes), dtype=np.float64)  | 
            ||
| 532 | |||
| 533 | for idx, minute in enumerate(minutes):  | 
            ||
| 534 | minute_val = self._get_minute_spot_value_future(  | 
            ||
| 535 | asset, column, minute  | 
            ||
| 536 | )  | 
            ||
| 537 | |||
| 538 | values_for_day[idx] = minute_val  | 
            ||
| 539 | |||
| 540 | data_groups.append(values_for_day)  | 
            ||
| 541 | |||
| 542 | # get the minutes for today  | 
            ||
| 543 | last_day_minutes = pd.date_range(  | 
            ||
| 544 | start=self.env.get_open_and_close(end_dt)[0],  | 
            ||
| 545 | end=end_dt,  | 
            ||
| 546 | freq="T"  | 
            ||
| 547 | )  | 
            ||
| 548 | |||
| 549 | values_for_last_day = np.zeros(len(last_day_minutes), dtype=np.float64)  | 
            ||
| 550 | |||
| 551 | for idx, minute in enumerate(last_day_minutes):  | 
            ||
| 552 | minute_val = self._get_minute_spot_value_future(  | 
            ||
| 553 | asset, column, minute  | 
            ||
| 554 | )  | 
            ||
| 555 | |||
| 556 | values_for_last_day[idx] = minute_val  | 
            ||
| 557 | |||
| 558 | data_groups.append(values_for_last_day)  | 
            ||
| 559 | |||
| 560 | for group in data_groups:  | 
            ||
| 561 | if len(group) == 0:  | 
            ||
| 562 | continue  | 
            ||
| 563 | |||
| 564 | if column == 'volume':  | 
            ||
| 565 | data.append(np.sum(group))  | 
            ||
| 566 | elif column == 'open':  | 
            ||
| 567 | data.append(group[0])  | 
            ||
| 568 | elif column == 'close':  | 
            ||
| 569 | data.append(group[-1])  | 
            ||
| 570 | elif column == 'high':  | 
            ||
| 571 | data.append(np.amax(group))  | 
            ||
| 572 | elif column == 'low':  | 
            ||
| 573 | data.append(np.amin(group))  | 
            ||
| 574 | |||
| 575 | return data  | 
            ||
| 576 | |||
| 577 | def _get_history_daily_window_equity(self, asset, days_for_window,  | 
            ||
| 578 | end_dt, field_to_use):  | 
            ||
| 579 | sid = int(asset)  | 
            ||
| 580 | ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0  | 
            ||
| 581 | |||
| 582 | # get the start and end dates for this sid  | 
            ||
| 583 | end_date = self._get_asset_end_date(asset)  | 
            ||
| 584 | |||
| 585 | if ends_at_midnight or (days_for_window[-1] > end_date):  | 
            ||
| 586 | # two cases where we use daily data for the whole range:  | 
            ||
| 587 | # 1) the history window ends at midnight utc.  | 
            ||
| 588 | # 2) the last desired day of the window is after the  | 
            ||
| 589 | # last trading day, use daily data for the whole range.  | 
            ||
| 590 | return self._get_daily_window_for_sid(  | 
            ||
| 591 | asset,  | 
            ||
| 592 | field_to_use,  | 
            ||
| 593 | days_for_window,  | 
            ||
| 594 | extra_slot=False  | 
            ||
| 595 | )  | 
            ||
| 596 | else:  | 
            ||
| 597 | # for the last day of the desired window, use minute  | 
            ||
| 598 | # data and aggregate it.  | 
            ||
| 599 | all_minutes_for_day = self.env.market_minutes_for_day(  | 
            ||
| 600 | pd.Timestamp(end_dt.date()))  | 
            ||
| 601 | |||
| 602 | last_minute_idx = all_minutes_for_day.searchsorted(end_dt)  | 
            ||
| 603 | |||
| 604 | # these are the minutes for the partial day  | 
            ||
| 605 | minutes_for_partial_day =\  | 
            ||
| 606 | all_minutes_for_day[0:(last_minute_idx + 1)]  | 
            ||
| 607 | |||
| 608 | daily_data = self._get_daily_window_for_sid(  | 
            ||
| 609 | sid,  | 
            ||
| 610 | field_to_use,  | 
            ||
| 611 | days_for_window[0:-1]  | 
            ||
| 612 | )  | 
            ||
| 613 | |||
| 614 | minute_data = self._get_minute_window_for_equity(  | 
            ||
| 615 | sid,  | 
            ||
| 616 | field_to_use,  | 
            ||
| 617 | minutes_for_partial_day  | 
            ||
| 618 | )  | 
            ||
| 619 | |||
| 620 | if field_to_use == 'volume':  | 
            ||
| 621 | minute_value = np.sum(minute_data)  | 
            ||
| 622 | elif field_to_use == 'open':  | 
            ||
| 623 | minute_value = minute_data[0]  | 
            ||
| 624 | elif field_to_use == 'close':  | 
            ||
| 625 | minute_value = minute_data[-1]  | 
            ||
| 626 | elif field_to_use == 'high':  | 
            ||
| 627 | minute_value = np.amax(minute_data)  | 
            ||
| 628 | elif field_to_use == 'low':  | 
            ||
| 629 | minute_value = np.amin(minute_data)  | 
            ||
| 630 | |||
| 631 | # append the partial day.  | 
            ||
| 632 | daily_data[-1] = minute_value  | 
            ||
| 633 | |||
| 634 | return daily_data  | 
            ||
| 635 | |||
| 636 | def _get_history_minute_window(self, assets, end_dt, bar_count,  | 
            ||
| 637 | field_to_use):  | 
            ||
| 638 | """  | 
            ||
| 639 | Internal method that returns a dataframe containing history bars  | 
            ||
| 640 | of minute frequency for the given sids.  | 
            ||
| 641 | """  | 
            ||
| 642 | # get all the minutes for this window  | 
            ||
| 643 | minutes_for_window = self.env.market_minute_window(  | 
            ||
| 644 | end_dt, bar_count, step=-1)[::-1]  | 
            ||
| 645 | |||
| 646 | first_trading_day = self._equity_minute_reader.first_trading_day  | 
            ||
| 647 | |||
| 648 | # but then cut it down to only the minutes after  | 
            ||
| 649 | # the first trading day.  | 
            ||
| 650 | modified_minutes_for_window = minutes_for_window[  | 
            ||
| 651 | minutes_for_window.slice_indexer(first_trading_day)]  | 
            ||
| 652 | |||
| 653 | modified_minutes_length = len(modified_minutes_for_window)  | 
            ||
| 654 | |||
| 655 | if modified_minutes_length == 0:  | 
            ||
| 656 |             raise ValueError("Cannot calculate history window that ends" | 
            ||
| 657 | "before 2002-01-02 14:31 UTC!")  | 
            ||
| 658 | |||
| 659 | data = []  | 
            ||
| 660 | bars_to_prepend = 0  | 
            ||
| 661 | nans_to_prepend = None  | 
            ||
| 662 | |||
| 663 | if modified_minutes_length < bar_count:  | 
            ||
| 664 | first_trading_date = first_trading_day.date()  | 
            ||
| 665 | if modified_minutes_for_window[0].date() == first_trading_date:  | 
            ||
| 666 | # the beginning of the window goes before our global trading  | 
            ||
| 667 | # start date  | 
            ||
| 668 | bars_to_prepend = bar_count - modified_minutes_length  | 
            ||
| 669 | nans_to_prepend = np.repeat(np.nan, bars_to_prepend)  | 
            ||
| 670 | |||
| 671 | if len(assets) == 0:  | 
            ||
| 672 | return pd.DataFrame(  | 
            ||
| 673 | None,  | 
            ||
| 674 | index=modified_minutes_for_window,  | 
            ||
| 675 | columns=None  | 
            ||
| 676 | )  | 
            ||
| 677 | |||
| 678 | for asset in assets:  | 
            ||
| 679 | asset_minute_data = self._get_minute_window_for_asset(  | 
            ||
| 680 | asset,  | 
            ||
| 681 | field_to_use,  | 
            ||
| 682 | modified_minutes_for_window  | 
            ||
| 683 | )  | 
            ||
| 684 | |||
| 685 | if bars_to_prepend != 0:  | 
            ||
| 686 | asset_minute_data = np.insert(asset_minute_data, 0,  | 
            ||
| 687 | nans_to_prepend)  | 
            ||
| 688 | |||
| 689 | data.append(asset_minute_data)  | 
            ||
| 690 | |||
| 691 | return pd.DataFrame(  | 
            ||
| 692 | np.array(data).T,  | 
            ||
| 693 | index=minutes_for_window,  | 
            ||
| 694 | columns=assets  | 
            ||
| 695 | )  | 
            ||
| 696 | |||
| 697 | def get_history_window(self, assets, end_dt, bar_count, frequency, field,  | 
            ||
| 698 | ffill=True):  | 
            ||
| 699 | """  | 
            ||
| 700 | Public API method that returns a dataframe containing the requested  | 
            ||
| 701 | history window. Data is fully adjusted.  | 
            ||
| 702 | |||
| 703 | Parameters  | 
            ||
| 704 | ---------  | 
            ||
| 705 | assets : list of zipline.data.Asset objects  | 
            ||
| 706 | The assets whose data is desired.  | 
            ||
| 707 | |||
| 708 | bar_count: int  | 
            ||
| 709 | The number of bars desired.  | 
            ||
| 710 | |||
| 711 | frequency: string  | 
            ||
| 712 | "1d" or "1m"  | 
            ||
| 713 | |||
| 714 | field: string  | 
            ||
| 715 | The desired field of the asset.  | 
            ||
| 716 | |||
| 717 | ffill: boolean  | 
            ||
| 718 | Forward-fill missing values. Only has effect if field  | 
            ||
| 719 | is 'price'.  | 
            ||
| 720 | |||
| 721 | Returns  | 
            ||
| 722 | -------  | 
            ||
| 723 | A dataframe containing the requested data.  | 
            ||
| 724 | """  | 
            ||
| 725 | try:  | 
            ||
| 726 | field_to_use = BASE_FIELDS[field]  | 
            ||
| 727 | except KeyError:  | 
            ||
| 728 |             raise ValueError("Invalid history field: " + str(field)) | 
            ||
| 729 | |||
| 730 | # sanity check in case sids were passed in  | 
            ||
| 731 | assets = [(self.env.asset_finder.retrieve_asset(asset) if  | 
            ||
| 732 | isinstance(asset, int) else asset) for asset in assets]  | 
            ||
| 733 | |||
| 734 | if frequency == "1d":  | 
            ||
| 735 | df = self._get_history_daily_window(assets, end_dt, bar_count,  | 
            ||
| 736 | field_to_use)  | 
            ||
| 737 | elif frequency == "1m":  | 
            ||
| 738 | df = self._get_history_minute_window(assets, end_dt, bar_count,  | 
            ||
| 739 | field_to_use)  | 
            ||
| 740 | else:  | 
            ||
| 741 |             raise ValueError("Invalid frequency: {0}".format(frequency)) | 
            ||
| 742 | |||
| 743 | # forward-fill if needed  | 
            ||
| 744 | if field == "price" and ffill:  | 
            ||
| 745 | df.fillna(method='ffill', inplace=True)  | 
            ||
| 746 | |||
| 747 | return df  | 
            ||
| 748 | |||
| 749 | def _get_minute_window_for_asset(self, asset, field, minutes_for_window):  | 
            ||
| 750 | """  | 
            ||
| 751 | Internal method that gets a window of adjusted minute data for an asset  | 
            ||
| 752 | and specified date range. Used to support the history API method for  | 
            ||
| 753 | minute bars.  | 
            ||
| 754 | |||
| 755 | Missing bars are filled with NaN.  | 
            ||
| 756 | |||
| 757 | Parameters  | 
            ||
| 758 | ----------  | 
            ||
| 759 | asset : Asset  | 
            ||
| 760 | The asset whose data is desired.  | 
            ||
| 761 | |||
| 762 | field: string  | 
            ||
| 763 | The specific field to return. "open", "high", "close_price", etc.  | 
            ||
| 764 | |||
| 765 | minutes_for_window: pd.DateTimeIndex  | 
            ||
| 766 | The list of minutes representing the desired window. Each minute  | 
            ||
| 767 | is a pd.Timestamp.  | 
            ||
| 768 | |||
| 769 | Returns  | 
            ||
| 770 | -------  | 
            ||
| 771 | A numpy array with requested values.  | 
            ||
| 772 | """  | 
            ||
| 773 | if isinstance(asset, int):  | 
            ||
| 774 | asset = self.env.asset_finder.retrieve_asset(asset)  | 
            ||
| 775 | |||
| 776 | if isinstance(asset, Future):  | 
            ||
| 777 | return self._get_minute_window_for_future(asset, field,  | 
            ||
| 778 | minutes_for_window)  | 
            ||
| 779 | else:  | 
            ||
| 780 | return self._get_minute_window_for_equity(asset, field,  | 
            ||
| 781 | minutes_for_window)  | 
            ||
| 782 | |||
| 783 | def _get_minute_window_for_future(self, asset, field, minutes_for_window):  | 
            ||
| 784 | # THIS IS TEMPORARY. For now, we are only exposing futures within  | 
            ||
| 785 | # equity trading hours (9:30 am to 4pm, Eastern). The easiest way to  | 
            ||
| 786 | # do this is to simply do a spot lookup for each desired minute.  | 
            ||
| 787 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64)  | 
            ||
| 788 | for idx, minute in enumerate(minutes_for_window):  | 
            ||
| 789 | return_data[idx] = \  | 
            ||
| 790 | self._get_minute_spot_value_future(asset, field, minute)  | 
            ||
| 791 | |||
| 792 | # Note: an improvement could be to find the consecutive runs within  | 
            ||
| 793 | # minutes_for_window, and use them to read the underlying ctable  | 
            ||
| 794 | # more efficiently.  | 
            ||
| 795 | |||
| 796 | # Once futures are on 24-hour clock, then we can just grab all the  | 
            ||
| 797 | # requested minutes in one shot from the ctable.  | 
            ||
| 798 | |||
| 799 | # no adjustments for futures, yay.  | 
            ||
| 800 | return return_data  | 
            ||
| 801 | |||
| 802 | def _get_minute_window_for_equity(self, asset, field, minutes_for_window):  | 
            ||
| 803 | # each sid's minutes are stored in a bcolz file  | 
            ||
| 804 | # the bcolz file has 390 bars per day, starting at 1/2/2002, regardless  | 
            ||
| 805 | # of when the asset started trading and regardless of half days.  | 
            ||
| 806 | # for a half day, the second half is filled with zeroes.  | 
            ||
| 807 | |||
| 808 | # find the position of start_dt in the entire timeline, go back  | 
            ||
| 809 | # bar_count bars, and that's the unadjusted data  | 
            ||
| 810 | raw_data = self._equity_minute_reader._open_minute_file(field, asset)  | 
            ||
| 811 | |||
| 812 | start_idx = max(  | 
            ||
| 813 | self._equity_minute_reader._find_position_of_minute(  | 
            ||
| 814 | minutes_for_window[0]),  | 
            ||
| 815 | 0)  | 
            ||
| 816 | end_idx = self._equity_minute_reader._find_position_of_minute(  | 
            ||
| 817 | minutes_for_window[-1]) + 1  | 
            ||
| 818 | |||
| 819 | if end_idx == 0:  | 
            ||
| 820 | # No data to return for minute window.  | 
            ||
| 821 | return np.full(len(minutes_for_window), np.nan)  | 
            ||
| 822 | |||
| 823 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64)  | 
            ||
| 824 | |||
| 825 | data_to_copy = raw_data[start_idx:end_idx]  | 
            ||
| 826 | |||
| 827 | num_minutes = len(minutes_for_window)  | 
            ||
| 828 | |||
| 829 | # data_to_copy contains all the zeros (from 1pm to 4pm of an early  | 
            ||
| 830 | # close). num_minutes is the number of actual trading minutes. if  | 
            ||
| 831 | # these two have different lengths, that means that we need to trim  | 
            ||
| 832 | # away data due to early closes.  | 
            ||
| 833 | if len(data_to_copy) != num_minutes:  | 
            ||
| 834 | # get a copy of the minutes in Eastern time, since we depend on  | 
            ||
| 835 | # an early close being at 1pm Eastern.  | 
            ||
| 836 |             eastern_minutes = minutes_for_window.tz_convert("US/Eastern") | 
            ||
| 837 | |||
| 838 | # accumulate a list of indices of the last minute of an early  | 
            ||
| 839 | # close day. For example, if data_to_copy starts at 12:55 pm, and  | 
            ||
| 840 | # there are five minutes of real data before 180 zeroes, we would  | 
            ||
| 841 | # put 5 into last_minute_idx_of_early_close_day, because the fifth  | 
            ||
| 842 | # minute is the last "real" minute of the day.  | 
            ||
| 843 | last_minute_idx_of_early_close_day = []  | 
            ||
| 844 | for minute_idx, minute_dt in enumerate(eastern_minutes):  | 
            ||
| 845 | if minute_idx == (num_minutes - 1):  | 
            ||
| 846 | break  | 
            ||
| 847 | |||
| 848 | if minute_dt.hour == 13 and minute_dt.minute == 0:  | 
            ||
| 849 | next_minute = eastern_minutes[minute_idx + 1]  | 
            ||
| 850 | if next_minute.hour != 13:  | 
            ||
| 851 | # minute_dt is the last minute of an early close day  | 
            ||
| 852 | last_minute_idx_of_early_close_day.append(minute_idx)  | 
            ||
| 853 | |||
| 854 | # spin through the list of early close markers, and use them to  | 
            ||
| 855 | # chop off 180 minutes at a time from data_to_copy.  | 
            ||
| 856 | for idx, early_close_minute_idx in \  | 
            ||
| 857 | enumerate(last_minute_idx_of_early_close_day):  | 
            ||
| 858 | early_close_minute_idx -= (180 * idx)  | 
            ||
| 859 | data_to_copy = np.delete(  | 
            ||
| 860 | data_to_copy,  | 
            ||
| 861 | range(  | 
            ||
| 862 | early_close_minute_idx + 1,  | 
            ||
| 863 | early_close_minute_idx + 181  | 
            ||
| 864 | )  | 
            ||
| 865 | )  | 
            ||
| 866 | |||
| 867 | return_data[0:len(data_to_copy)] = data_to_copy  | 
            ||
| 868 | |||
| 869 | self._apply_all_adjustments(  | 
            ||
| 870 | return_data,  | 
            ||
| 871 | asset,  | 
            ||
| 872 | minutes_for_window,  | 
            ||
| 873 | field,  | 
            ||
| 874 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR  | 
            ||
| 875 | )  | 
            ||
| 876 | |||
| 877 | return return_data  | 
            ||
| 878 | |||
| 879 | def _apply_all_adjustments(self, data, asset, dts, field,  | 
            ||
| 880 | price_adj_factor=1.0):  | 
            ||
| 881 | """  | 
            ||
| 882 | Internal method that applies all the necessary adjustments on the  | 
            ||
| 883 | given data array.  | 
            ||
| 884 | |||
| 885 | The adjustments are:  | 
            ||
| 886 | - splits  | 
            ||
| 887 | - if field != "volume":  | 
            ||
| 888 | - mergers  | 
            ||
| 889 | - dividends  | 
            ||
| 890 | - * 0.001  | 
            ||
| 891 | - any zero fields replaced with NaN  | 
            ||
| 892 | - all values rounded to 3 digits after the decimal point.  | 
            ||
| 893 | |||
| 894 | Parameters  | 
            ||
| 895 | ----------  | 
            ||
| 896 | data : np.array  | 
            ||
| 897 | The data to be adjusted.  | 
            ||
| 898 | |||
| 899 | asset: Asset  | 
            ||
| 900 | The asset whose data is being adjusted.  | 
            ||
| 901 | |||
| 902 | dts: pd.DateTimeIndex  | 
            ||
| 903 | The list of minutes or days representing the desired window.  | 
            ||
| 904 | |||
| 905 | field: string  | 
            ||
| 906 | The field whose values are in the data array.  | 
            ||
| 907 | |||
| 908 | price_adj_factor: float  | 
            ||
| 909 | Factor with which to adjust OHLC values.  | 
            ||
| 910 | Returns  | 
            ||
| 911 | -------  | 
            ||
| 912 | None. The data array is modified in place.  | 
            ||
| 913 | """  | 
            ||
| 914 | self._apply_adjustments_to_window(  | 
            ||
| 915 | self._get_adjustment_list(  | 
            ||
| 916 | asset, self._splits_dict, "SPLITS"  | 
            ||
| 917 | ),  | 
            ||
| 918 | data,  | 
            ||
| 919 | dts,  | 
            ||
| 920 | field != 'volume'  | 
            ||
| 921 | )  | 
            ||
| 922 | |||
| 923 | if field != 'volume':  | 
            ||
| 924 | self._apply_adjustments_to_window(  | 
            ||
| 925 | self._get_adjustment_list(  | 
            ||
| 926 | asset, self._mergers_dict, "MERGERS"  | 
            ||
| 927 | ),  | 
            ||
| 928 | data,  | 
            ||
| 929 | dts,  | 
            ||
| 930 | True  | 
            ||
| 931 | )  | 
            ||
| 932 | |||
| 933 | self._apply_adjustments_to_window(  | 
            ||
| 934 | self._get_adjustment_list(  | 
            ||
| 935 | asset, self._dividends_dict, "DIVIDENDS"  | 
            ||
| 936 | ),  | 
            ||
| 937 | data,  | 
            ||
| 938 | dts,  | 
            ||
| 939 | True  | 
            ||
| 940 | )  | 
            ||
| 941 | |||
| 942 | data *= price_adj_factor  | 
            ||
| 943 | |||
| 944 | # if anything is zero, it's a missing bar, so replace it with NaN.  | 
            ||
| 945 | # we only want to do this for non-volume fields, because a missing  | 
            ||
| 946 | # volume should be 0.  | 
            ||
| 947 | data[data == 0] = np.NaN  | 
            ||
| 948 | |||
| 949 | np.around(data, 3, out=data)  | 
            ||
| 950 | |||
| 951 | def _get_daily_window_for_sid(self, asset, field, days_in_window,  | 
            ||
| 952 | extra_slot=True):  | 
            ||
| 953 | """  | 
            ||
| 954 | Internal method that gets a window of adjusted daily data for a sid  | 
            ||
| 955 | and specified date range. Used to support the history API method for  | 
            ||
| 956 | daily bars.  | 
            ||
| 957 | |||
| 958 | Parameters  | 
            ||
| 959 | ----------  | 
            ||
| 960 | asset : Asset  | 
            ||
| 961 | The asset whose data is desired.  | 
            ||
| 962 | |||
| 963 | start_dt: pandas.Timestamp  | 
            ||
| 964 | The start of the desired window of data.  | 
            ||
| 965 | |||
| 966 | bar_count: int  | 
            ||
| 967 | The number of days of data to return.  | 
            ||
| 968 | |||
| 969 | field: string  | 
            ||
| 970 | The specific field to return. "open", "high", "close_price", etc.  | 
            ||
| 971 | |||
| 972 | extra_slot: boolean  | 
            ||
| 973 | Whether to allocate an extra slot in the returned numpy array.  | 
            ||
| 974 | This extra slot will hold the data for the last partial day. It's  | 
            ||
| 975 | much better to create it here than to create a copy of the array  | 
            ||
| 976 | later just to add a slot.  | 
            ||
| 977 | |||
| 978 | Returns  | 
            ||
| 979 | -------  | 
            ||
| 980 | A numpy array with requested values. Any missing slots filled with  | 
            ||
| 981 | nan.  | 
            ||
| 982 | |||
| 983 | """  | 
            ||
| 984 | bar_count = len(days_in_window)  | 
            ||
| 985 | # create an np.array of size bar_count  | 
            ||
| 986 | if extra_slot:  | 
            ||
| 987 | return_array = np.zeros((bar_count + 1,))  | 
            ||
| 988 | else:  | 
            ||
| 989 | return_array = np.zeros((bar_count,))  | 
            ||
| 990 | |||
| 991 | return_array[:] = np.NAN  | 
            ||
| 992 | |||
| 993 | start_date = self._get_asset_start_date(asset)  | 
            ||
| 994 | end_date = self._get_asset_end_date(asset)  | 
            ||
| 995 | day_slice = days_in_window.slice_indexer(start_date, end_date)  | 
            ||
| 996 | active_days = days_in_window[day_slice]  | 
            ||
| 997 | |||
| 998 | if active_days.shape[0]:  | 
            ||
| 999 | data = self._equity_daily_reader.history_window(field,  | 
            ||
| 1000 | active_days[0],  | 
            ||
| 1001 | active_days[-1],  | 
            ||
| 1002 | asset)  | 
            ||
| 1003 | return_array[day_slice] = data  | 
            ||
| 1004 | self._apply_all_adjustments(  | 
            ||
| 1005 | return_array,  | 
            ||
| 1006 | asset,  | 
            ||
| 1007 | active_days,  | 
            ||
| 1008 | field,  | 
            ||
| 1009 | )  | 
            ||
| 1010 | |||
| 1011 | return return_array  | 
            ||
| 1012 | |||
| 1013 | @staticmethod  | 
            ||
| 1014 | def _apply_adjustments_to_window(adjustments_list, window_data,  | 
            ||
| 1015 | dts_in_window, multiply):  | 
            ||
| 1016 | if len(adjustments_list) == 0:  | 
            ||
| 1017 | return  | 
            ||
| 1018 | |||
| 1019 | # advance idx to the correct spot in the adjustments list, based on  | 
            ||
| 1020 | # when the window starts  | 
            ||
| 1021 | idx = 0  | 
            ||
| 1022 | |||
| 1023 | while idx < len(adjustments_list) and dts_in_window[0] >\  | 
            ||
| 1024 | adjustments_list[idx][0]:  | 
            ||
| 1025 | idx += 1  | 
            ||
| 1026 | |||
| 1027 | # if we've advanced through all the adjustments, then there's nothing  | 
            ||
| 1028 | # to do.  | 
            ||
| 1029 | if idx == len(adjustments_list):  | 
            ||
| 1030 | return  | 
            ||
| 1031 | |||
| 1032 | while idx < len(adjustments_list):  | 
            ||
| 1033 | adjustment_to_apply = adjustments_list[idx]  | 
            ||
| 1034 | |||
| 1035 | if adjustment_to_apply[0] > dts_in_window[-1]:  | 
            ||
| 1036 | break  | 
            ||
| 1037 | |||
| 1038 | range_end = dts_in_window.searchsorted(adjustment_to_apply[0])  | 
            ||
| 1039 | if multiply:  | 
            ||
| 1040 | window_data[0:range_end] *= adjustment_to_apply[1]  | 
            ||
| 1041 | else:  | 
            ||
| 1042 | window_data[0:range_end] /= adjustment_to_apply[1]  | 
            ||
| 1043 | |||
| 1044 | idx += 1  | 
            ||
| 1045 | |||
| 1046 | def _get_adjustment_list(self, asset, adjustments_dict, table_name):  | 
            ||
| 1047 | """  | 
            ||
| 1048 | Internal method that returns a list of adjustments for the given sid.  | 
            ||
| 1049 | |||
| 1050 | Parameters  | 
            ||
| 1051 | ----------  | 
            ||
| 1052 | asset : Asset  | 
            ||
| 1053 | The asset for which to return adjustments.  | 
            ||
| 1054 | |||
| 1055 | adjustments_dict: dict  | 
            ||
| 1056 | A dictionary of sid -> list that is used as a cache.  | 
            ||
| 1057 | |||
| 1058 | table_name: string  | 
            ||
| 1059 | The table that contains this data in the adjustments db.  | 
            ||
| 1060 | |||
| 1061 | Returns  | 
            ||
| 1062 | -------  | 
            ||
| 1063 | adjustments: list  | 
            ||
| 1064 | A list of [multiplier, pd.Timestamp], earliest first  | 
            ||
| 1065 | |||
| 1066 | """  | 
            ||
| 1067 | if self._adjustment_reader is None:  | 
            ||
| 1068 | return []  | 
            ||
| 1069 | |||
| 1070 | sid = int(asset)  | 
            ||
| 1071 | |||
| 1072 | try:  | 
            ||
| 1073 | adjustments = adjustments_dict[sid]  | 
            ||
| 1074 | except KeyError:  | 
            ||
| 1075 | adjustments = adjustments_dict[sid] = self._adjustment_reader.\  | 
            ||
| 1076 | get_adjustments_for_sid(table_name, sid)  | 
            ||
| 1077 | |||
| 1078 | return adjustments  | 
            ||
| 1079 | |||
| 1080 | def _check_is_currently_alive(self, asset, dt):  | 
            ||
| 1081 | sid = int(asset)  | 
            ||
| 1082 | |||
| 1083 | if sid not in self._asset_start_dates:  | 
            ||
| 1084 | self._get_asset_start_date(asset)  | 
            ||
| 1085 | |||
| 1086 | start_date = self._asset_start_dates[sid]  | 
            ||
| 1087 | if self._asset_start_dates[sid] > dt:  | 
            ||
| 1088 | raise NoTradeDataAvailableTooEarly(  | 
            ||
| 1089 | sid=sid,  | 
            ||
| 1090 | dt=normalize_date(dt),  | 
            ||
| 1091 | start_dt=start_date  | 
            ||
| 1092 | )  | 
            ||
| 1093 | |||
| 1094 | end_date = self._asset_end_dates[sid]  | 
            ||
| 1095 | if self._asset_end_dates[sid] < dt:  | 
            ||
| 1096 | raise NoTradeDataAvailableTooLate(  | 
            ||
| 1097 | sid=sid,  | 
            ||
| 1098 | dt=normalize_date(dt),  | 
            ||
| 1099 | end_dt=end_date  | 
            ||
| 1100 | )  | 
            ||
| 1101 | |||
| 1102 | def _get_asset_start_date(self, asset):  | 
            ||
| 1103 | self._ensure_asset_dates(asset)  | 
            ||
| 1104 | return self._asset_start_dates[asset]  | 
            ||
| 1105 | |||
| 1106 | def _get_asset_end_date(self, asset):  | 
            ||
| 1107 | self._ensure_asset_dates(asset)  | 
            ||
| 1108 | return self._asset_end_dates[asset]  | 
            ||
| 1109 | |||
| 1110 | def _ensure_asset_dates(self, asset):  | 
            ||
| 1111 | sid = int(asset)  | 
            ||
| 1112 | |||
| 1113 | if sid not in self._asset_start_dates:  | 
            ||
| 1114 | self._asset_start_dates[sid] = asset.start_date  | 
            ||
| 1115 | self._asset_end_dates[sid] = asset.end_date  | 
            ||
| 1116 | |||
| 1117 | def get_splits(self, sids, dt):  | 
            ||
| 1118 | """  | 
            ||
| 1119 | Returns any splits for the given sids and the given dt.  | 
            ||
| 1120 | |||
| 1121 | Parameters  | 
            ||
| 1122 | ----------  | 
            ||
| 1123 | sids : list  | 
            ||
| 1124 | Sids for which we want splits.  | 
            ||
| 1125 | |||
| 1126 | dt: pd.Timestamp  | 
            ||
| 1127 | The date for which we are checking for splits. Note: this is  | 
            ||
| 1128 | expected to be midnight UTC.  | 
            ||
| 1129 | |||
| 1130 | Returns  | 
            ||
| 1131 | -------  | 
            ||
| 1132 | list: List of splits, where each split is a (sid, ratio) tuple.  | 
            ||
| 1133 | """  | 
            ||
| 1134 | if self._adjustment_reader is None or len(sids) == 0:  | 
            ||
| 1135 |             return {} | 
            ||
| 1136 | |||
| 1137 | # convert dt to # of seconds since epoch, because that's what we use  | 
            ||
| 1138 | # in the adjustments db  | 
            ||
| 1139 | seconds = int(dt.value / 1e9)  | 
            ||
| 1140 | |||
| 1141 | splits = self._adjustment_reader.conn.execute(  | 
            ||
| 1142 | "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?",  | 
            ||
| 1143 | (seconds,)).fetchall()  | 
            ||
| 1144 | |||
| 1145 | sids_set = set(sids)  | 
            ||
| 1146 | splits = [split for split in splits if split[0] in sids_set]  | 
            ||
| 1147 | |||
| 1148 | return splits  | 
            ||
| 1149 | |||
| 1150 | def get_stock_dividends(self, sid, trading_days):  | 
            ||
| 1151 | """  | 
            ||
| 1152 | Returns all the stock dividends for a specific sid that occur  | 
            ||
| 1153 | in the given trading range.  | 
            ||
| 1154 | |||
| 1155 | Parameters  | 
            ||
| 1156 | ----------  | 
            ||
| 1157 | sid: int  | 
            ||
| 1158 | The asset whose stock dividends should be returned.  | 
            ||
| 1159 | |||
| 1160 | trading_days: pd.DatetimeIndex  | 
            ||
| 1161 | The trading range.  | 
            ||
| 1162 | |||
| 1163 | Returns  | 
            ||
| 1164 | -------  | 
            ||
| 1165 | list: A list of objects with all relevant attributes populated.  | 
            ||
| 1166 | All timestamp fields are converted to pd.Timestamps.  | 
            ||
| 1167 | """  | 
            ||
| 1168 | |||
| 1169 | if self._adjustment_reader is None:  | 
            ||
| 1170 | return []  | 
            ||
| 1171 | |||
| 1172 | if len(trading_days) == 0:  | 
            ||
| 1173 | return []  | 
            ||
| 1174 | |||
| 1175 | start_dt = trading_days[0].value / 1e9  | 
            ||
| 1176 | end_dt = trading_days[-1].value / 1e9  | 
            ||
| 1177 | |||
| 1178 | dividends = self._adjustment_reader.conn.execute(  | 
            ||
| 1179 | "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND "  | 
            ||
| 1180 | "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\  | 
            ||
| 1181 | fetchall()  | 
            ||
| 1182 | |||
| 1183 | dividend_info = []  | 
            ||
| 1184 | for dividend_tuple in dividends:  | 
            ||
| 1185 |             dividend_info.append({ | 
            ||
| 1186 | "declared_date": dividend_tuple[1],  | 
            ||
| 1187 | "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"),  | 
            ||
| 1188 | "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"),  | 
            ||
| 1189 | "payment_sid": dividend_tuple[4],  | 
            ||
| 1190 | "ratio": dividend_tuple[5],  | 
            ||
| 1191 | "record_date": pd.Timestamp(dividend_tuple[6], unit="s"),  | 
            ||
| 1192 | "sid": dividend_tuple[7]  | 
            ||
| 1193 | })  | 
            ||
| 1194 | |||
| 1195 | return dividend_info  | 
            ||
| 1196 | |||
| 1197 | def contains(self, asset, field):  | 
            ||
| 1198 | return field in BASE_FIELDS or \  | 
            ||
| 1199 | (field in self._augmented_sources_map and  | 
            ||
| 1200 | asset in self._augmented_sources_map[field])  | 
            ||
| 1201 | |||
| 1202 | def get_fetcher_assets(self, day):  | 
            ||
| 1203 | """  | 
            ||
| 1204 | Returns a list of assets for the current date, as defined by the  | 
            ||
| 1205 | fetcher data.  | 
            ||
| 1206 | |||
| 1207 | Notes  | 
            ||
| 1208 | -----  | 
            ||
| 1209 | Data is forward-filled. If there is no fetcher data defined for day  | 
            ||
| 1210 | N, we use day N-1's data (if available, otherwise we keep going back).  | 
            ||
| 1211 | |||
| 1212 | Returns  | 
            ||
| 1213 | -------  | 
            ||
| 1214 | list: a list of Asset objects.  | 
            ||
| 1215 | """  | 
            ||
| 1216 | # return a list of assets for the current date, as defined by the  | 
            ||
| 1217 | # fetcher source  | 
            ||
| 1218 | if self._extra_source_df is None:  | 
            ||
| 1219 | return []  | 
            ||
| 1220 | |||
| 1221 | if day in self._extra_source_df.index:  | 
            ||
| 1222 | date_to_use = day  | 
            ||
| 1223 | else:  | 
            ||
| 1224 | # current day isn't in the fetcher df, go back the last  | 
            ||
| 1225 | # available day  | 
            ||
| 1226 | idx = self._extra_source_df.index.searchsorted(day)  | 
            ||
| 1227 | if idx == 0:  | 
            ||
| 1228 | return []  | 
            ||
| 1229 | |||
| 1230 | date_to_use = self._extra_source_df.index[idx - 1]  | 
            ||
| 1231 | |||
| 1232 | asset_list = self._extra_source_df.loc[date_to_use]["sid"]  | 
            ||
| 1233 | |||
| 1234 | # make sure they're actually assets  | 
            ||
| 1235 | asset_list = [asset for asset in asset_list  | 
            ||
| 1236 | if isinstance(asset, Asset)]  | 
            ||
| 1237 | |||
| 1238 | return asset_list  | 
            ||
| 1239 |