1
|
|
|
# |
2
|
|
|
# Copyright 2015 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
from datetime import datetime |
17
|
|
|
import bcolz |
18
|
|
|
from logbook import Logger |
19
|
|
|
|
20
|
|
|
import numpy as np |
21
|
|
|
import pandas as pd |
22
|
|
|
|
23
|
|
|
from zipline.assets import Asset |
24
|
|
|
|
25
|
|
|
from zipline.utils import tradingcalendar |
26
|
|
|
from zipline.errors import ( |
27
|
|
|
NoTradeDataAvailableTooEarly, |
28
|
|
|
NoTradeDataAvailableTooLate |
29
|
|
|
) |
30
|
|
|
|
31
|
|
|
# FIXME anything to do with 2002-01-02 probably belongs in qexec, right/ |
32
|
|
|
FIRST_TRADING_DAY = pd.Timestamp("2002-01-02 00:00:00", tz='UTC') |
33
|
|
|
FIRST_TRADING_MINUTE = pd.Timestamp("2002-01-02 14:31:00", tz='UTC') |
34
|
|
|
|
35
|
|
|
# FIXME should this be passed in (is this qexec specific?)? |
36
|
|
|
INDEX_OF_FIRST_TRADING_DAY = 3028 |
37
|
|
|
|
38
|
|
|
log = Logger('DataPortal') |
39
|
|
|
|
40
|
|
|
HISTORY_FREQUENCIES = ["1d", "1m"] |
41
|
|
|
|
42
|
|
|
BASE_FIELDS = { |
43
|
|
|
'open': 'open', |
44
|
|
|
'open_price': 'open', |
45
|
|
|
'high': 'high', |
46
|
|
|
'low': 'low', |
47
|
|
|
'close': 'close', |
48
|
|
|
'close_price': 'close', |
49
|
|
|
'volume': 'volume', |
50
|
|
|
'price': 'close' |
51
|
|
|
} |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
class DataPortal(object): |
55
|
|
|
def __init__(self, |
56
|
|
|
env, |
57
|
|
|
sim_params=None, |
58
|
|
|
minutes_equities_path=None, |
59
|
|
|
daily_equities_path=None, |
60
|
|
|
adjustment_reader=None, |
61
|
|
|
sid_path_func=None): |
62
|
|
|
self.env = env |
63
|
|
|
|
64
|
|
|
# Internal pointers to the current dt (can be minute) and current day. |
65
|
|
|
# In daily mode, they point to the same thing. In minute mode, it's |
66
|
|
|
# useful to have separate pointers to the current day and to the |
67
|
|
|
# current minute. These pointers are updated by the |
68
|
|
|
# AlgorithmSimulator's transform loop. |
69
|
|
|
self.current_dt = None |
70
|
|
|
self.current_day = None |
71
|
|
|
|
72
|
|
|
# This is a bit ugly, but is here for performance reasons. In minute |
73
|
|
|
# simulations, we need to very quickly go from dt -> (# of minutes |
74
|
|
|
# since Jan 1 2002 9:30 Eastern). |
75
|
|
|
# |
76
|
|
|
# The clock that heartbeats the simulation has all the necessary |
77
|
|
|
# information to do this calculation very quickly. This value is |
78
|
|
|
# calculated there, and then set here |
79
|
|
|
self.cur_data_offset = 0 |
80
|
|
|
|
81
|
|
|
self.views = {} |
82
|
|
|
|
83
|
|
|
if minutes_equities_path is None and daily_equities_path is None: |
84
|
|
|
raise ValueError("Must provide at least one of minute or " |
85
|
|
|
"daily data path!") |
86
|
|
|
|
87
|
|
|
self._minutes_equities_path = minutes_equities_path |
88
|
|
|
self._daily_equities_path = daily_equities_path |
89
|
|
|
self._asset_finder = env.asset_finder |
90
|
|
|
|
91
|
|
|
self._carrays = { |
92
|
|
|
'open': {}, |
93
|
|
|
'high': {}, |
94
|
|
|
'low': {}, |
95
|
|
|
'close': {}, |
96
|
|
|
'volume': {}, |
97
|
|
|
'sid': {}, |
98
|
|
|
'dt': {}, |
99
|
|
|
} |
100
|
|
|
|
101
|
|
|
self._adjustment_reader = adjustment_reader |
102
|
|
|
|
103
|
|
|
# caches of sid -> adjustment list |
104
|
|
|
self._splits_dict = {} |
105
|
|
|
self._mergers_dict = {} |
106
|
|
|
self._dividends_dict = {} |
107
|
|
|
|
108
|
|
|
# Pointer to the daily bcolz file. |
109
|
|
|
self._daily_equities_data = None |
110
|
|
|
|
111
|
|
|
# Cache of sid -> the first trading day of an asset, even if that day |
112
|
|
|
# is before 1/2/2002. |
113
|
|
|
self._asset_start_dates = {} |
114
|
|
|
self._asset_end_dates = {} |
115
|
|
|
|
116
|
|
|
# Fetcher state |
117
|
|
|
self._augmented_sources_map = {} |
118
|
|
|
self._fetcher_df = None |
119
|
|
|
|
120
|
|
|
self._sim_params = sim_params |
121
|
|
|
if self._sim_params is not None: |
122
|
|
|
self._data_frequency = self._sim_params.data_frequency |
123
|
|
|
|
124
|
|
|
self._sid_path_func = sid_path_func |
125
|
|
|
|
126
|
|
|
self.DAILY_PRICE_ADJUSTMENT_FACTOR = 0.001 |
127
|
|
|
self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001 |
128
|
|
|
|
129
|
|
|
def handle_extra_source(self, source_df): |
130
|
|
|
""" |
131
|
|
|
Extra sources always have a sid column. |
132
|
|
|
|
133
|
|
|
We expand the given data (by forward filling) to the full range of |
134
|
|
|
the simulation dates, so that lookup is fast during simulation. |
135
|
|
|
""" |
136
|
|
|
if source_df is None: |
137
|
|
|
return |
138
|
|
|
|
139
|
|
|
self._fetcher_df = source_df |
140
|
|
|
|
141
|
|
|
# source_df's sid column can either consist of assets we know about |
142
|
|
|
# (such as sid(24)) or of assets we don't know about (such as |
143
|
|
|
# palladium). |
144
|
|
|
# |
145
|
|
|
# In both cases, we break up the dataframe into individual dfs |
146
|
|
|
# that only contain a single asset's information. ie, if source_df |
147
|
|
|
# has data for PALLADIUM and GOLD, we split source_df into two |
148
|
|
|
# dataframes, one for each. (same applies if source_df has data for |
149
|
|
|
# AAPL and IBM). |
150
|
|
|
# |
151
|
|
|
# We then take each child df and reindex it to the simulation's date |
152
|
|
|
# range by forward-filling missing values. this makes reads simpler. |
153
|
|
|
# |
154
|
|
|
# Finally, we store the data. For each fetcher column, we store a |
155
|
|
|
# mapping in self.augmented_sources_map from it to a dictionary of |
156
|
|
|
# asset -> df. In other words, |
157
|
|
|
# self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df |
158
|
|
|
# holding that data. |
159
|
|
|
|
160
|
|
|
if self._sim_params.emission_rate == "daily": |
161
|
|
|
fetcher_date_index = self.env.days_in_range( |
162
|
|
|
start=self._sim_params.period_start, |
163
|
|
|
end=self._sim_params.period_end |
164
|
|
|
) |
165
|
|
|
else: |
166
|
|
|
fetcher_date_index = self.env.minutes_for_days_in_range( |
167
|
|
|
start=self._sim_params.period_start, |
168
|
|
|
end=self._sim_params.period_end |
169
|
|
|
) |
170
|
|
|
|
171
|
|
|
# break the source_df up into one dataframe per sid. this lets |
172
|
|
|
# us (more easily) calculate accurate start/end dates for each sid, |
173
|
|
|
# de-dup data, and expand the data to fit the backtest start/end date. |
174
|
|
|
grouped_by_sid = source_df.groupby(["sid"]) |
175
|
|
|
group_names = grouped_by_sid.groups.keys() |
176
|
|
|
group_dict = {} |
177
|
|
|
for group_name in group_names: |
178
|
|
|
group_dict[group_name] = grouped_by_sid.get_group(group_name) |
179
|
|
|
|
180
|
|
|
for identifier, df in group_dict.iteritems(): |
181
|
|
|
# before reindexing, save the earliest and latest dates |
182
|
|
|
earliest_date = df.index[0] |
183
|
|
|
latest_date = df.index[-1] |
184
|
|
|
|
185
|
|
|
# since we know this df only contains a single sid, we can safely |
186
|
|
|
# de-dupe by the index (dt) |
187
|
|
|
df = df.groupby(level=0).last() |
188
|
|
|
|
189
|
|
|
# reindex the dataframe based on the backtest start/end date. |
190
|
|
|
# this makes reads easier during the backtest. |
191
|
|
|
df = df.reindex(index=fetcher_date_index, method='ffill') |
192
|
|
|
|
193
|
|
|
if not isinstance(identifier, Asset): |
194
|
|
|
# for fake assets we need to store a start/end date |
195
|
|
|
self._asset_start_dates[identifier] = earliest_date |
196
|
|
|
self._asset_end_dates[identifier] = latest_date |
197
|
|
|
|
198
|
|
|
for col_name in df.columns.difference(['sid']): |
199
|
|
|
if col_name not in self._augmented_sources_map: |
200
|
|
|
self._augmented_sources_map[col_name] = {} |
201
|
|
|
|
202
|
|
|
self._augmented_sources_map[col_name][identifier] = df |
203
|
|
|
|
204
|
|
|
def _open_daily_file(self): |
205
|
|
|
if self._daily_equities_data is None: |
206
|
|
|
self._daily_equities_data = bcolz.open(self._daily_equities_path) |
207
|
|
|
self.daily_equities_attrs = self._daily_equities_data.attrs |
208
|
|
|
|
209
|
|
|
return self._daily_equities_data, self.daily_equities_attrs |
210
|
|
|
|
211
|
|
|
def _open_minute_file(self, field, sid): |
212
|
|
|
if self._sid_path_func is None: |
213
|
|
|
path = "{0}/{1}.bcolz".format(self._minutes_equities_path, sid) |
214
|
|
|
else: |
215
|
|
|
path = self._sid_path_func(self._minutes_equities_path, sid) |
216
|
|
|
|
217
|
|
|
try: |
218
|
|
|
carray = self._carrays[field][path] |
219
|
|
|
except KeyError: |
220
|
|
|
carray = self._carrays[field][path] = bcolz.carray( |
221
|
|
|
rootdir=path + "/" + field, mode='r') |
222
|
|
|
|
223
|
|
|
return carray |
224
|
|
|
|
225
|
|
|
def get_previous_value(self, asset, field, dt): |
226
|
|
|
""" |
227
|
|
|
Given an asset and a column and a dt, returns the previous value for |
228
|
|
|
the same asset/column pair. If this data portal is in minute mode, |
229
|
|
|
it's the previous minute value, otherwise it's the previous day's |
230
|
|
|
value. |
231
|
|
|
|
232
|
|
|
Parameters |
233
|
|
|
--------- |
234
|
|
|
asset : Asset |
235
|
|
|
The asset whose data is desired. |
236
|
|
|
|
237
|
|
|
field: string |
238
|
|
|
The desired field of the asset. Valid values are "open", |
239
|
|
|
"open_price", "high", "low", "close", "close_price", "volume", and |
240
|
|
|
"price". |
241
|
|
|
|
242
|
|
|
dt: pd.Timestamp |
243
|
|
|
The timestamp from which to go back in time one slot. |
244
|
|
|
|
245
|
|
|
Returns |
246
|
|
|
------- |
247
|
|
|
The value of the desired field at the desired time. |
248
|
|
|
""" |
249
|
|
|
if self._data_frequency == 'daily': |
250
|
|
|
prev_dt = self.env.previous_trading_day(dt) |
251
|
|
|
elif self._data_frequency == 'minute': |
252
|
|
|
prev_dt = self.env.previous_market_minute(dt) |
253
|
|
|
|
254
|
|
|
return self.get_spot_value(asset, field, prev_dt) |
255
|
|
|
|
256
|
|
|
def _check_fetcher(self, asset, column, day): |
257
|
|
|
# if there is a fetcher column called "price", only look at it if |
258
|
|
|
# it's on something like palladium and not AAPL (since our own price |
259
|
|
|
# data always wins when dealing with assets) |
260
|
|
|
look_in_augmented_sources = column in self._augmented_sources_map and \ |
261
|
|
|
not (column in BASE_FIELDS and isinstance(asset, Asset)) |
262
|
|
|
|
263
|
|
|
if look_in_augmented_sources: |
264
|
|
|
# we're being asked for a fetcher field |
265
|
|
|
try: |
266
|
|
|
return self._augmented_sources_map[column][asset].\ |
267
|
|
|
loc[day, column] |
268
|
|
|
except: |
269
|
|
|
log.error( |
270
|
|
|
"Could not find value for asset={0}, current_day={1}," |
271
|
|
|
"column={2}".format( |
272
|
|
|
str(asset), |
273
|
|
|
str(self.current_day), |
274
|
|
|
str(column))) |
275
|
|
|
|
276
|
|
|
raise KeyError |
277
|
|
|
|
278
|
|
|
def get_spot_value(self, asset, field, dt=None): |
279
|
|
|
""" |
280
|
|
|
Public API method that returns a scalar value representing the value |
281
|
|
|
of the desired asset's field at either the given dt, or this data |
282
|
|
|
portal's current_dt. |
283
|
|
|
|
284
|
|
|
Parameters |
285
|
|
|
--------- |
286
|
|
|
asset : Asset |
287
|
|
|
The asset whose data is desired. |
288
|
|
|
|
289
|
|
|
field: string |
290
|
|
|
The desired field of the asset. Valid values are "open", |
291
|
|
|
"open_price", "high", "low", "close", "close_price", "volume", and |
292
|
|
|
"price". |
293
|
|
|
|
294
|
|
|
dt: pd.Timestamp |
295
|
|
|
(Optional) The timestamp for the desired value. |
296
|
|
|
|
297
|
|
|
Returns |
298
|
|
|
------- |
299
|
|
|
The value of the desired field at the desired time. |
300
|
|
|
""" |
301
|
|
|
fetcher_val = self._check_fetcher(asset, field, |
302
|
|
|
(dt or self.current_dt)) |
303
|
|
|
|
304
|
|
|
if fetcher_val is not None: |
305
|
|
|
return fetcher_val |
306
|
|
|
|
307
|
|
|
if field not in BASE_FIELDS: |
308
|
|
|
raise KeyError("Invalid column: " + str(field)) |
309
|
|
|
|
310
|
|
|
asset_int = int(asset) |
311
|
|
|
column_to_use = BASE_FIELDS[field] |
312
|
|
|
|
313
|
|
|
self._check_is_currently_alive(asset_int, dt) |
314
|
|
|
|
315
|
|
|
if self._data_frequency == "daily": |
316
|
|
|
day_to_use = dt or self.current_day |
317
|
|
|
return self._get_daily_data(asset_int, column_to_use, day_to_use) |
318
|
|
|
else: |
319
|
|
|
# keeping minute data logic in-lined to avoid the cost of calling |
320
|
|
|
# another method. |
321
|
|
|
|
322
|
|
|
# all our minute bcolz files are written starting on 1/2/2002, |
323
|
|
|
# with 390 minutes per day, regarding of when the security started |
324
|
|
|
# trading. This lets us avoid doing an offset calculation related |
325
|
|
|
# to the asset start date. Hard-coding 390 minutes per day lets us |
326
|
|
|
# ignore half days. |
327
|
|
|
carray = self._open_minute_file(column_to_use, asset_int) |
328
|
|
|
|
329
|
|
|
if dt is None or dt == self.current_dt: |
330
|
|
|
minute_offset_to_use = self.cur_data_offset |
331
|
|
|
else: |
332
|
|
|
# this is the slow path. |
333
|
|
|
# dt was passed in, so calculate the offset. |
334
|
|
|
# = (390 * number of trading days since 1/2/2002) + |
335
|
|
|
# (index of minute in day) |
336
|
|
|
given_day = pd.Timestamp(dt.date(), tz='utc') |
337
|
|
|
day_index = tradingcalendar.trading_days.searchsorted( |
338
|
|
|
given_day) - INDEX_OF_FIRST_TRADING_DAY |
339
|
|
|
|
340
|
|
|
# if dt is before the first market minute, minute_index |
341
|
|
|
# will be 0. if it's after the last market minute, it'll |
342
|
|
|
# be len(minutes_for_day) |
343
|
|
|
minute_index = self.env.market_minutes_for_day(given_day).\ |
344
|
|
|
searchsorted(dt) |
345
|
|
|
|
346
|
|
|
minute_offset_to_use = (day_index * 390) + minute_index |
347
|
|
|
|
348
|
|
|
result = carray[minute_offset_to_use] |
349
|
|
|
if result == 0: |
350
|
|
|
# if the given minute doesn't have data, we need to seek |
351
|
|
|
# backwards until we find data. This makes the data |
352
|
|
|
# forward-filled. |
353
|
|
|
|
354
|
|
|
# get this asset's start date, so that we don't look before it. |
355
|
|
|
start_date = self._get_asset_start_date(asset_int) |
356
|
|
|
start_date_idx = tradingcalendar.trading_days.searchsorted( |
357
|
|
|
start_date) - INDEX_OF_FIRST_TRADING_DAY |
358
|
|
|
start_day_offset = start_date_idx * 390 |
359
|
|
|
|
360
|
|
|
original_start = minute_offset_to_use |
361
|
|
|
|
362
|
|
|
while result == 0 and minute_offset_to_use > start_day_offset: |
363
|
|
|
minute_offset_to_use -= 1 |
364
|
|
|
result = carray[minute_offset_to_use] |
365
|
|
|
|
366
|
|
|
# once we've found data, we need to check whether it needs |
367
|
|
|
# to be adjusted. |
368
|
|
|
if result != 0: |
369
|
|
|
minutes = self.env.market_minute_window( |
370
|
|
|
start=(dt or self.current_dt), |
371
|
|
|
count=(original_start - minute_offset_to_use + 1), |
372
|
|
|
step=-1 |
373
|
|
|
).order() |
374
|
|
|
|
375
|
|
|
# only need to check for adjustments if we've gone back |
376
|
|
|
# far enough to cross the day boundary. |
377
|
|
|
if minutes[0].date() != minutes[-1].date(): |
378
|
|
|
# create a np array of size minutes, fill it all with |
379
|
|
|
# the same value. and adjust the array. |
380
|
|
|
arr = np.array([result] * len(minutes), |
381
|
|
|
dtype=np.float64) |
382
|
|
|
self._apply_all_adjustments( |
383
|
|
|
data=arr, |
384
|
|
|
sid=asset_int, |
385
|
|
|
dts=minutes, |
386
|
|
|
field=column_to_use |
387
|
|
|
) |
388
|
|
|
|
389
|
|
|
# The first value of the adjusted array is the value |
390
|
|
|
# we want. |
391
|
|
|
result = arr[0] |
392
|
|
|
|
393
|
|
|
if column_to_use != 'volume': |
394
|
|
|
return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
395
|
|
|
else: |
396
|
|
|
return result |
397
|
|
|
|
398
|
|
|
def _get_daily_data(self, asset_int, column, dt): |
399
|
|
|
dt = pd.Timestamp(dt.date(), tz='utc') |
400
|
|
|
daily_data, daily_attrs = self._open_daily_file() |
401
|
|
|
|
402
|
|
|
# find the start index in the daily file for this asset |
403
|
|
|
asset_file_index = daily_attrs['first_row'][str(asset_int)] |
404
|
|
|
|
405
|
|
|
# find when the asset started trading |
406
|
|
|
asset_data_start_date = max(self._get_asset_start_date(asset_int), |
407
|
|
|
FIRST_TRADING_DAY) |
408
|
|
|
|
409
|
|
|
tradingdays = tradingcalendar.trading_days |
410
|
|
|
|
411
|
|
|
# figure out how many days it's been between now and when this |
412
|
|
|
# asset starting trading |
413
|
|
|
# FIXME can cache tradingdays.searchsorted(asset_data_start_date) |
414
|
|
|
window_offset = tradingdays.searchsorted(dt) - \ |
415
|
|
|
tradingdays.searchsorted(asset_data_start_date) |
416
|
|
|
|
417
|
|
|
# and use that offset to find our lookup index |
418
|
|
|
lookup_idx = asset_file_index + window_offset |
419
|
|
|
|
420
|
|
|
# sanity check |
421
|
|
|
assert lookup_idx >= asset_file_index |
422
|
|
|
assert lookup_idx <= daily_attrs['last_row'][str(asset_int)] + 1 |
423
|
|
|
|
424
|
|
|
ctable = daily_data[column] |
425
|
|
|
raw_value = ctable[lookup_idx] |
426
|
|
|
|
427
|
|
|
while raw_value == 0 and lookup_idx > asset_file_index: |
428
|
|
|
lookup_idx -= 1 |
429
|
|
|
raw_value = ctable[lookup_idx] |
430
|
|
|
|
431
|
|
|
if column != 'volume': |
432
|
|
|
return raw_value * self.DAILY_PRICE_ADJUSTMENT_FACTOR |
433
|
|
|
else: |
434
|
|
|
return raw_value |
435
|
|
|
|
436
|
|
|
def _get_history_daily_window(self, sids, end_dt, bar_count, field_to_use): |
437
|
|
|
""" |
438
|
|
|
Internal method that returns a dataframe containing history bars |
439
|
|
|
of daily frequency for the given sids. |
440
|
|
|
""" |
441
|
|
|
data = [] |
442
|
|
|
|
443
|
|
|
day = end_dt.date() |
444
|
|
|
day_idx = tradingcalendar.trading_days.searchsorted(day) |
445
|
|
|
days_for_window = tradingcalendar.trading_days[ |
446
|
|
|
(day_idx - bar_count + 1):(day_idx + 1)] |
447
|
|
|
|
448
|
|
|
ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0 |
449
|
|
|
|
450
|
|
|
if len(sids) == 0: |
451
|
|
|
return pd.DataFrame(None, |
452
|
|
|
index=days_for_window, |
453
|
|
|
columns=None) |
454
|
|
|
|
455
|
|
|
for sid in sids: |
456
|
|
|
sid = int(sid) |
457
|
|
|
|
458
|
|
|
# get the start and end dates for this sid |
459
|
|
|
if sid not in self._asset_start_dates: |
460
|
|
|
asset = self._asset_finder.retrieve_asset(sid) |
461
|
|
|
self._asset_start_dates[sid] = asset.start_date |
462
|
|
|
self._asset_end_dates[sid] = asset.end_date |
463
|
|
|
|
464
|
|
|
if ends_at_midnight or \ |
465
|
|
|
(days_for_window[-1] > self._asset_end_dates[sid]): |
466
|
|
|
# two cases where we use daily data for the whole range: |
467
|
|
|
# 1) the history window ends at midnight utc. |
468
|
|
|
# 2) the last desired day of the window is after the |
469
|
|
|
# last trading day, use daily data for the whole range. |
470
|
|
|
data.append(self._get_daily_window_for_sid( |
471
|
|
|
sid, |
472
|
|
|
field_to_use, |
473
|
|
|
days_for_window, |
474
|
|
|
extra_slot=False |
475
|
|
|
)) |
476
|
|
|
else: |
477
|
|
|
# for the last day of the desired window, use minute |
478
|
|
|
# data and aggregate it. |
479
|
|
|
all_minutes_for_day = self.env.market_minutes_for_day( |
480
|
|
|
pd.Timestamp(day)) |
481
|
|
|
|
482
|
|
|
last_minute_idx = all_minutes_for_day.searchsorted(end_dt) |
483
|
|
|
|
484
|
|
|
# these are the minutes for the partial day |
485
|
|
|
minutes_for_partial_day =\ |
486
|
|
|
all_minutes_for_day[0:(last_minute_idx + 1)] |
487
|
|
|
|
488
|
|
|
daily_data = self._get_daily_window_for_sid( |
489
|
|
|
sid, |
490
|
|
|
field_to_use, |
491
|
|
|
days_for_window[0:-1] |
492
|
|
|
) |
493
|
|
|
|
494
|
|
|
minute_data = self._get_minute_window_for_sid( |
495
|
|
|
sid, |
496
|
|
|
field_to_use, |
497
|
|
|
minutes_for_partial_day |
498
|
|
|
) |
499
|
|
|
|
500
|
|
|
if field_to_use == 'volume': |
501
|
|
|
minute_value = np.sum(minute_data) |
502
|
|
|
elif field_to_use == 'open': |
503
|
|
|
minute_value = minute_data[0] |
504
|
|
|
elif field_to_use == 'close': |
505
|
|
|
minute_value = minute_data[-1] |
506
|
|
|
elif field_to_use == 'high': |
507
|
|
|
minute_value = np.amax(minute_data) |
508
|
|
|
elif field_to_use == 'low': |
509
|
|
|
minute_value = np.amin(minute_data) |
510
|
|
|
|
511
|
|
|
# append the partial day. |
512
|
|
|
daily_data[-1] = minute_value |
513
|
|
|
|
514
|
|
|
data.append(daily_data) |
515
|
|
|
|
516
|
|
|
return pd.DataFrame(np.array(data).T, |
517
|
|
|
index=days_for_window, |
518
|
|
|
columns=sids) |
519
|
|
|
|
520
|
|
|
def _get_history_minute_window(self, sids, end_dt, bar_count, |
521
|
|
|
field_to_use): |
522
|
|
|
""" |
523
|
|
|
Internal method that returns a dataframe containing history bars |
524
|
|
|
of minute frequency for the given sids. |
525
|
|
|
""" |
526
|
|
|
# get all the minutes for this window |
527
|
|
|
minutes_for_window = self.env.market_minute_window( |
528
|
|
|
end_dt, bar_count, step=-1)[::-1] |
529
|
|
|
|
530
|
|
|
# but then cut it down to only the minutes after |
531
|
|
|
# FIRST_TRADING_MINUTE |
532
|
|
|
modified_minutes_for_window = minutes_for_window[ |
533
|
|
|
minutes_for_window.slice_indexer(FIRST_TRADING_MINUTE)] |
534
|
|
|
|
535
|
|
|
modified_minutes_length = len(modified_minutes_for_window) |
536
|
|
|
|
537
|
|
|
if modified_minutes_length == 0: |
538
|
|
|
raise ValueError("Cannot calculate history window that ends" |
539
|
|
|
"before 2002-01-02 14:31 UTC!") |
540
|
|
|
|
541
|
|
|
data = [] |
542
|
|
|
bars_to_prepend = 0 |
543
|
|
|
nans_to_prepend = None |
544
|
|
|
|
545
|
|
|
if modified_minutes_length < bar_count and \ |
546
|
|
|
(modified_minutes_for_window[0] == FIRST_TRADING_MINUTE): |
547
|
|
|
# the beginning of the window goes before our global trading |
548
|
|
|
# start date |
549
|
|
|
bars_to_prepend = bar_count - modified_minutes_length |
550
|
|
|
nans_to_prepend = np.repeat(np.nan, bars_to_prepend) |
551
|
|
|
|
552
|
|
|
if len(sids) == 0: |
553
|
|
|
return pd.DataFrame( |
554
|
|
|
None, |
555
|
|
|
index=modified_minutes_for_window, |
556
|
|
|
columns=None |
557
|
|
|
) |
558
|
|
|
|
559
|
|
|
for sid in sids: |
560
|
|
|
sid_minute_data = self._get_minute_window_for_sid( |
561
|
|
|
int(sid), |
562
|
|
|
field_to_use, |
563
|
|
|
modified_minutes_for_window |
564
|
|
|
) |
565
|
|
|
|
566
|
|
|
if bars_to_prepend != 0: |
567
|
|
|
sid_minute_data = np.insert(sid_minute_data, 0, |
568
|
|
|
nans_to_prepend) |
569
|
|
|
|
570
|
|
|
data.append(sid_minute_data) |
571
|
|
|
|
572
|
|
|
return pd.DataFrame(np.array(data).T, |
573
|
|
|
index=minutes_for_window, |
574
|
|
|
columns=sids) |
575
|
|
|
|
576
|
|
|
def get_history_window(self, sids, end_dt, bar_count, frequency, field, |
577
|
|
|
ffill=True): |
578
|
|
|
""" |
579
|
|
|
Public API method that returns a dataframe containing the requested |
580
|
|
|
history window. Data is fully adjusted. |
581
|
|
|
|
582
|
|
|
Parameters |
583
|
|
|
--------- |
584
|
|
|
sids : list |
585
|
|
|
The sids whose data is desired. |
586
|
|
|
|
587
|
|
|
bar_count: int |
588
|
|
|
The number of bars desired. |
589
|
|
|
|
590
|
|
|
frequency: string |
591
|
|
|
"1d" or "1m" |
592
|
|
|
|
593
|
|
|
field: string |
594
|
|
|
The desired field of the asset. |
595
|
|
|
|
596
|
|
|
ffill: boolean |
597
|
|
|
Forward-fill missing values. Only has effect if field |
598
|
|
|
is 'price'. |
599
|
|
|
|
600
|
|
|
Returns |
601
|
|
|
------- |
602
|
|
|
A dataframe containing the requested data. |
603
|
|
|
""" |
604
|
|
|
try: |
605
|
|
|
field_to_use = BASE_FIELDS[field] |
606
|
|
|
except KeyError: |
607
|
|
|
raise ValueError("Invalid history field: " + str(field)) |
608
|
|
|
|
609
|
|
|
if frequency == "1d": |
610
|
|
|
df = self._get_history_daily_window(sids, end_dt, bar_count, |
611
|
|
|
field_to_use) |
612
|
|
|
elif frequency == "1m": |
613
|
|
|
df = self._get_history_minute_window(sids, end_dt, bar_count, |
614
|
|
|
field_to_use) |
615
|
|
|
else: |
616
|
|
|
raise ValueError("Invalid frequency: {0}".format(frequency)) |
617
|
|
|
|
618
|
|
|
# forward-fill if needed |
619
|
|
|
if field == "price" and ffill: |
620
|
|
|
df.fillna(method='ffill', inplace=True) |
621
|
|
|
|
622
|
|
|
return df |
623
|
|
|
|
624
|
|
|
def _get_minute_window_for_sid(self, sid, field, minutes_for_window): |
625
|
|
|
""" |
626
|
|
|
Internal method that gets a window of adjusted minute data for a sid |
627
|
|
|
and specified date range. Used to support the history API method for |
628
|
|
|
minute bars. |
629
|
|
|
|
630
|
|
|
Missing bars are filled with NaN. |
631
|
|
|
|
632
|
|
|
Parameters |
633
|
|
|
---------- |
634
|
|
|
sid : int |
635
|
|
|
The sid whose data is desired. |
636
|
|
|
|
637
|
|
|
field: string |
638
|
|
|
The specific field to return. "open", "high", "close_price", etc. |
639
|
|
|
|
640
|
|
|
minutes_for_window: pd.DateTimeIndex |
641
|
|
|
The list of minutes representing the desired window. Each minute |
642
|
|
|
is a pd.Timestamp. |
643
|
|
|
|
644
|
|
|
Returns |
645
|
|
|
------- |
646
|
|
|
A numpy array with requested values. |
647
|
|
|
""" |
648
|
|
|
# each sid's minutes are stored in a bcolz file |
649
|
|
|
# the bcolz file has 390 bars per day, starting at 1/2/2002, regardless |
650
|
|
|
# of when the asset started trading and regardless of half days. |
651
|
|
|
# for a half day, the second half is filled with zeroes. |
652
|
|
|
|
653
|
|
|
# find the position of start_dt in the entire timeline, go back |
654
|
|
|
# bar_count bars, and that's the unadjusted data |
655
|
|
|
raw_data = self._open_minute_file(field, sid) |
656
|
|
|
|
657
|
|
|
start_idx = max(self._find_position_of_minute(minutes_for_window[0]), |
658
|
|
|
0) |
659
|
|
|
end_idx = self._find_position_of_minute(minutes_for_window[-1]) + 1 |
660
|
|
|
|
661
|
|
|
return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
662
|
|
|
data_to_copy = raw_data[start_idx:end_idx] |
663
|
|
|
|
664
|
|
|
num_minutes = len(minutes_for_window) |
665
|
|
|
|
666
|
|
|
# data_to_copy contains all the zeros (from 1pm to 4pm of an early |
667
|
|
|
# close). num_minutes is the number of actual trading minutes. if |
668
|
|
|
# these two have different lengths, that means that we need to trim |
669
|
|
|
# away data due to early closes. |
670
|
|
|
if len(data_to_copy) != num_minutes: |
671
|
|
|
# get a copy of the minutes in Eastern time, since we depend on |
672
|
|
|
# an early close being at 1pm Eastern. |
673
|
|
|
eastern_minutes = minutes_for_window.tz_convert("US/Eastern") |
674
|
|
|
|
675
|
|
|
# accumulate a list of indices of the last minute of an early |
676
|
|
|
# close day. For example, if data_to_copy starts at 12:55 pm, and |
677
|
|
|
# there are five minutes of real data before 180 zeroes, we would |
678
|
|
|
# put 5 into last_minute_idx_of_early_close_day, because the fifth |
679
|
|
|
# minute is the last "real" minute of the day. |
680
|
|
|
last_minute_idx_of_early_close_day = [] |
681
|
|
|
for minute_idx, minute_dt in enumerate(eastern_minutes): |
682
|
|
|
if minute_idx == (num_minutes - 1): |
683
|
|
|
break |
684
|
|
|
|
685
|
|
|
if minute_dt.hour == 13 and minute_dt.minute == 0: |
686
|
|
|
next_minute = eastern_minutes[minute_idx + 1] |
687
|
|
|
if next_minute.hour != 13: |
688
|
|
|
# minute_dt is the last minute of an early close day |
689
|
|
|
last_minute_idx_of_early_close_day.append(minute_idx) |
690
|
|
|
|
691
|
|
|
# spin through the list of early close markers, and use them to |
692
|
|
|
# chop off 180 minutes at a time from data_to_copy. |
693
|
|
|
for idx, early_close_minute_idx in \ |
694
|
|
|
enumerate(last_minute_idx_of_early_close_day): |
695
|
|
|
early_close_minute_idx -= (180 * idx) |
696
|
|
|
data_to_copy = np.delete( |
697
|
|
|
data_to_copy, |
698
|
|
|
range( |
699
|
|
|
early_close_minute_idx + 1, |
700
|
|
|
early_close_minute_idx + 181 |
701
|
|
|
) |
702
|
|
|
) |
703
|
|
|
|
704
|
|
|
return_data[0:len(data_to_copy)] = data_to_copy |
705
|
|
|
|
706
|
|
|
self._apply_all_adjustments( |
707
|
|
|
return_data, |
708
|
|
|
sid, |
709
|
|
|
minutes_for_window, |
710
|
|
|
field, |
711
|
|
|
self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
712
|
|
|
) |
713
|
|
|
|
714
|
|
|
return return_data |
715
|
|
|
|
716
|
|
|
def _apply_all_adjustments(self, data, sid, dts, field, |
717
|
|
|
price_adj_factor=1.0): |
718
|
|
|
""" |
719
|
|
|
Internal method that applies all the necessary adjustments on the |
720
|
|
|
given data array. |
721
|
|
|
|
722
|
|
|
The adjustments are: |
723
|
|
|
- splits |
724
|
|
|
- if field != "volume": |
725
|
|
|
- mergers |
726
|
|
|
- dividends |
727
|
|
|
- * 0.001 |
728
|
|
|
- any zero fields replaced with NaN |
729
|
|
|
- all values rounded to 3 digits after the decimal point. |
730
|
|
|
|
731
|
|
|
Parameters |
732
|
|
|
---------- |
733
|
|
|
data : np.array |
734
|
|
|
The data to be adjusted. |
735
|
|
|
|
736
|
|
|
sid: integer |
737
|
|
|
The sid whose data is being adjusted. |
738
|
|
|
|
739
|
|
|
dts: pd.DateTimeIndex |
740
|
|
|
The list of minutes or days representing the desired window. |
741
|
|
|
|
742
|
|
|
field: string |
743
|
|
|
The field whose values are in the data array. |
744
|
|
|
|
745
|
|
|
price_adj_factor: float |
746
|
|
|
Factor with which to adjust OHLC values. |
747
|
|
|
Returns |
748
|
|
|
------- |
749
|
|
|
None. The data array is modified in place. |
750
|
|
|
""" |
751
|
|
|
self._apply_adjustments_to_window( |
752
|
|
|
self._get_adjustment_list( |
753
|
|
|
sid, self._splits_dict, "SPLITS" |
754
|
|
|
), |
755
|
|
|
data, |
756
|
|
|
dts, |
757
|
|
|
field != 'volume' |
758
|
|
|
) |
759
|
|
|
|
760
|
|
|
if field != 'volume': |
761
|
|
|
self._apply_adjustments_to_window( |
762
|
|
|
self._get_adjustment_list( |
763
|
|
|
sid, self._mergers_dict, "MERGERS" |
764
|
|
|
), |
765
|
|
|
data, |
766
|
|
|
dts, |
767
|
|
|
True |
768
|
|
|
) |
769
|
|
|
|
770
|
|
|
self._apply_adjustments_to_window( |
771
|
|
|
self._get_adjustment_list( |
772
|
|
|
sid, self._dividends_dict, "DIVIDENDS" |
773
|
|
|
), |
774
|
|
|
data, |
775
|
|
|
dts, |
776
|
|
|
True |
777
|
|
|
) |
778
|
|
|
|
779
|
|
|
data *= price_adj_factor |
780
|
|
|
|
781
|
|
|
# if anything is zero, it's a missing bar, so replace it with NaN. |
782
|
|
|
# we only want to do this for non-volume fields, because a missing |
783
|
|
|
# volume should be 0. |
784
|
|
|
data[data == 0] = np.NaN |
785
|
|
|
|
786
|
|
|
np.around(data, 3, out=data) |
787
|
|
|
|
788
|
|
|
@staticmethod |
789
|
|
|
def _find_position_of_minute(minute_dt): |
790
|
|
|
""" |
791
|
|
|
Internal method that returns the position of the given minute in the |
792
|
|
|
list of every trading minute since market open on 1/2/2002. |
793
|
|
|
|
794
|
|
|
IMPORTANT: This method assumes every day is 390 minutes long, even |
795
|
|
|
early closes. Our minute bcolz files are generated like this to |
796
|
|
|
support fast lookup. |
797
|
|
|
|
798
|
|
|
ex. this method would return 2 for 1/2/2002 9:32 AM Eastern. |
799
|
|
|
|
800
|
|
|
Parameters |
801
|
|
|
---------- |
802
|
|
|
minute_dt: pd.Timestamp |
803
|
|
|
The minute whose position should be calculated. |
804
|
|
|
|
805
|
|
|
Returns |
806
|
|
|
------- |
807
|
|
|
The position of the given minute in the list of all trading minutes |
808
|
|
|
since market open on 1/2/2002. |
809
|
|
|
""" |
810
|
|
|
day = minute_dt.date() |
811
|
|
|
day_idx = tradingcalendar.trading_days.searchsorted(day) -\ |
812
|
|
|
INDEX_OF_FIRST_TRADING_DAY |
813
|
|
|
|
814
|
|
|
day_open = pd.Timestamp( |
815
|
|
|
datetime( |
816
|
|
|
year=day.year, |
817
|
|
|
month=day.month, |
818
|
|
|
day=day.day, |
819
|
|
|
hour=9, |
820
|
|
|
minute=31), |
821
|
|
|
tz='US/Eastern').tz_convert('UTC') |
822
|
|
|
|
823
|
|
|
minutes_offset = int((minute_dt - day_open).total_seconds()) / 60 |
824
|
|
|
|
825
|
|
|
return int((390 * day_idx) + minutes_offset) |
826
|
|
|
|
827
|
|
|
def _get_daily_window_for_sid(self, sid, field, days_in_window, |
828
|
|
|
extra_slot=True): |
829
|
|
|
""" |
830
|
|
|
Internal method that gets a window of adjusted daily data for a sid |
831
|
|
|
and specified date range. Used to support the history API method for |
832
|
|
|
daily bars. |
833
|
|
|
|
834
|
|
|
Parameters |
835
|
|
|
---------- |
836
|
|
|
sid : int |
837
|
|
|
The sid whose data is desired. |
838
|
|
|
|
839
|
|
|
start_dt: pandas.Timestamp |
840
|
|
|
The start of the desired window of data. |
841
|
|
|
|
842
|
|
|
bar_count: int |
843
|
|
|
The number of days of data to return. |
844
|
|
|
|
845
|
|
|
field: string |
846
|
|
|
The specific field to return. "open", "high", "close_price", etc. |
847
|
|
|
|
848
|
|
|
extra_slot: boolean |
849
|
|
|
Whether to allocate an extra slot in the returned numpy array. |
850
|
|
|
This extra slot will hold the data for the last partial day. It's |
851
|
|
|
much better to create it here than to create a copy of the array |
852
|
|
|
later just to add a slot. |
853
|
|
|
|
854
|
|
|
Returns |
855
|
|
|
------- |
856
|
|
|
A numpy array with requested values. Any missing slots filled with |
857
|
|
|
nan. |
858
|
|
|
|
859
|
|
|
""" |
860
|
|
|
daily_data, daily_attrs = self._open_daily_file() |
861
|
|
|
|
862
|
|
|
# the daily file stores each sid's daily OHLCV in a contiguous block. |
863
|
|
|
# the first row per sid is either 1/2/2002, or the sid's start_date if |
864
|
|
|
# it started after 1/2/2002. once a sid stops trading, there are no |
865
|
|
|
# rows for it. |
866
|
|
|
|
867
|
|
|
bar_count = len(days_in_window) |
868
|
|
|
|
869
|
|
|
# create an np.array of size bar_count |
870
|
|
|
if extra_slot: |
871
|
|
|
return_array = np.zeros((bar_count + 1,)) |
872
|
|
|
else: |
873
|
|
|
return_array = np.zeros((bar_count,)) |
874
|
|
|
|
875
|
|
|
return_array[:] = np.NAN |
876
|
|
|
|
877
|
|
|
# find the start index in the daily file for this asset |
878
|
|
|
asset_file_index = daily_attrs['first_row'][str(sid)] |
879
|
|
|
|
880
|
|
|
trading_days = tradingcalendar.trading_days |
881
|
|
|
|
882
|
|
|
# Calculate the starting day to use (either the asset's first trading |
883
|
|
|
# day, or 1/1/2002 (which is the 3028th day in the trading calendar). |
884
|
|
|
first_trading_day_to_use = max(trading_days.searchsorted( |
885
|
|
|
self._asset_start_dates[sid]), INDEX_OF_FIRST_TRADING_DAY) |
886
|
|
|
|
887
|
|
|
# find the # of trading days between max(asset's first trade date, |
888
|
|
|
# 2002-01-02) and start_dt |
889
|
|
|
window_offset = (trading_days.searchsorted(days_in_window[0]) - |
890
|
|
|
first_trading_day_to_use) |
891
|
|
|
|
892
|
|
|
start_index = max(asset_file_index, asset_file_index + window_offset) |
893
|
|
|
|
894
|
|
|
if window_offset < 0 and (abs(window_offset) > bar_count): |
895
|
|
|
# consumer is requesting a history window that starts AND ends |
896
|
|
|
# before this equity started trading, so gtfo |
897
|
|
|
return return_array |
898
|
|
|
|
899
|
|
|
# find the end index in the daily file. make sure it doesn't extend |
900
|
|
|
# past the end of this asset's data in the daily file. |
901
|
|
|
if window_offset < 0: |
902
|
|
|
# if the window_offset is negative, we need to decrease the |
903
|
|
|
# end_index accordingly. |
904
|
|
|
end_index = min(start_index + window_offset + bar_count, |
905
|
|
|
daily_attrs['last_row'][str(sid)] + 1) |
906
|
|
|
|
907
|
|
|
# get data from bcolz file |
908
|
|
|
data = daily_data[field][start_index:end_index] |
909
|
|
|
|
910
|
|
|
# have to leave a bunch of empty slots at the beginning of |
911
|
|
|
# return_array, since they represent days before this asset |
912
|
|
|
# started trading. |
913
|
|
|
return_array[abs(window_offset):bar_count] = data |
914
|
|
|
else: |
915
|
|
|
end_index = min(start_index + bar_count, |
916
|
|
|
daily_attrs['last_row'][str(sid)]) |
917
|
|
|
data = daily_data[field][start_index:(end_index + 1)] |
918
|
|
|
|
919
|
|
|
if len(data) > len(return_array): |
920
|
|
|
return_array[:] = data[0:len(return_array)] |
921
|
|
|
else: |
922
|
|
|
return_array[0:len(data)] = data |
923
|
|
|
|
924
|
|
|
self._apply_all_adjustments( |
925
|
|
|
return_array, |
926
|
|
|
sid, |
927
|
|
|
days_in_window, |
928
|
|
|
field, |
929
|
|
|
self.DAILY_PRICE_ADJUSTMENT_FACTOR |
930
|
|
|
) |
931
|
|
|
|
932
|
|
|
return return_array |
933
|
|
|
|
934
|
|
|
@staticmethod |
935
|
|
|
def _apply_adjustments_to_window(adjustments_list, window_data, |
936
|
|
|
dts_in_window, multiply): |
937
|
|
|
if len(adjustments_list) == 0: |
938
|
|
|
return |
939
|
|
|
|
940
|
|
|
# advance idx to the correct spot in the adjustments list, based on |
941
|
|
|
# when the window starts |
942
|
|
|
idx = 0 |
943
|
|
|
|
944
|
|
|
while idx < len(adjustments_list) and dts_in_window[0] >\ |
945
|
|
|
adjustments_list[idx][0]: |
946
|
|
|
idx += 1 |
947
|
|
|
|
948
|
|
|
# if we've advanced through all the adjustments, then there's nothing |
949
|
|
|
# to do. |
950
|
|
|
if idx == len(adjustments_list): |
951
|
|
|
return |
952
|
|
|
|
953
|
|
|
while idx < len(adjustments_list): |
954
|
|
|
adjustment_to_apply = adjustments_list[idx] |
955
|
|
|
|
956
|
|
|
if adjustment_to_apply[0] > dts_in_window[-1]: |
957
|
|
|
break |
958
|
|
|
|
959
|
|
|
range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) |
960
|
|
|
if multiply: |
961
|
|
|
window_data[0:range_end] *= adjustment_to_apply[1] |
962
|
|
|
else: |
963
|
|
|
window_data[0:range_end] /= adjustment_to_apply[1] |
964
|
|
|
|
965
|
|
|
idx += 1 |
966
|
|
|
|
967
|
|
|
def _get_adjustment_list(self, sid, adjustments_dict, table_name): |
968
|
|
|
""" |
969
|
|
|
Internal method that returns a list of adjustments for the given sid. |
970
|
|
|
|
971
|
|
|
Parameters |
972
|
|
|
---------- |
973
|
|
|
sid : int |
974
|
|
|
The asset for which to return adjustments. |
975
|
|
|
|
976
|
|
|
adjustments_dict: dict |
977
|
|
|
A dictionary of sid -> list that is used as a cache. |
978
|
|
|
|
979
|
|
|
table_name: string |
980
|
|
|
The table that contains this data in the adjustments db. |
981
|
|
|
|
982
|
|
|
Returns |
983
|
|
|
------- |
984
|
|
|
adjustments: list |
985
|
|
|
A list of [multiplier, pd.Timestamp], earliest first |
986
|
|
|
|
987
|
|
|
""" |
988
|
|
|
if self._adjustment_reader is None: |
989
|
|
|
return [] |
990
|
|
|
|
991
|
|
|
if sid not in adjustments_dict: |
992
|
|
|
adjustments_for_sid = self._adjustment_reader.\ |
993
|
|
|
get_adjustments_for_sid(table_name, sid) |
994
|
|
|
adjustments_dict[sid] = adjustments_for_sid |
995
|
|
|
|
996
|
|
|
return adjustments_dict[sid] |
997
|
|
|
|
998
|
|
|
def get_equity_price_view(self, asset): |
999
|
|
|
""" |
1000
|
|
|
Returns a DataPortalSidView for the given asset. Used to support the |
1001
|
|
|
data[sid(N)] public API. Not needed if DataPortal is used standalone. |
1002
|
|
|
|
1003
|
|
|
Parameters |
1004
|
|
|
---------- |
1005
|
|
|
asset : Asset |
1006
|
|
|
Asset that is being queried. |
1007
|
|
|
|
1008
|
|
|
Returns |
1009
|
|
|
------- |
1010
|
|
|
DataPortalSidView: Accessor into the given asset's data. |
1011
|
|
|
""" |
1012
|
|
|
try: |
1013
|
|
|
view = self.views[asset] |
1014
|
|
|
except KeyError: |
1015
|
|
|
view = self.views[asset] = DataPortalSidView(asset, self) |
1016
|
|
|
|
1017
|
|
|
return view |
1018
|
|
|
|
1019
|
|
|
def _check_is_currently_alive(self, name, dt): |
1020
|
|
|
if dt is None: |
1021
|
|
|
dt = self.current_day |
1022
|
|
|
|
1023
|
|
|
if name not in self._asset_start_dates: |
1024
|
|
|
self._get_asset_start_date(name) |
1025
|
|
|
|
1026
|
|
|
start_date = self._asset_start_dates[name] |
1027
|
|
|
if self._asset_start_dates[name] > dt: |
1028
|
|
|
raise NoTradeDataAvailableTooEarly( |
1029
|
|
|
sid=name, |
1030
|
|
|
dt=dt, |
1031
|
|
|
start_dt=start_date |
1032
|
|
|
) |
1033
|
|
|
|
1034
|
|
|
end_date = self._asset_end_dates[name] |
1035
|
|
|
if self._asset_end_dates[name] < dt: |
1036
|
|
|
raise NoTradeDataAvailableTooLate( |
1037
|
|
|
sid=name, |
1038
|
|
|
dt=dt, |
1039
|
|
|
end_dt=end_date |
1040
|
|
|
) |
1041
|
|
|
|
1042
|
|
|
def _get_asset_start_date(self, sid): |
1043
|
|
|
if sid not in self._asset_start_dates: |
1044
|
|
|
asset = self._asset_finder.retrieve_asset(sid) |
1045
|
|
|
self._asset_start_dates[sid] = asset.start_date |
1046
|
|
|
self._asset_end_dates[sid] = asset.end_date |
1047
|
|
|
|
1048
|
|
|
return self._asset_start_dates[sid] |
1049
|
|
|
|
1050
|
|
|
def get_splits(self, sids, dt): |
1051
|
|
|
""" |
1052
|
|
|
Returns any splits for the given sids and the given dt. |
1053
|
|
|
|
1054
|
|
|
Parameters |
1055
|
|
|
---------- |
1056
|
|
|
sids : list |
1057
|
|
|
Sids for which we want splits. |
1058
|
|
|
|
1059
|
|
|
dt: pd.Timestamp |
1060
|
|
|
The date for which we are checking for splits. Note: this is |
1061
|
|
|
expected to be midnight UTC. |
1062
|
|
|
|
1063
|
|
|
Returns |
1064
|
|
|
------- |
1065
|
|
|
list: List of splits, where each split is a (sid, ratio) tuple. |
1066
|
|
|
""" |
1067
|
|
|
if self._adjustment_reader is None or len(sids) == 0: |
1068
|
|
|
return {} |
1069
|
|
|
|
1070
|
|
|
# convert dt to # of seconds since epoch, because that's what we use |
1071
|
|
|
# in the adjustments db |
1072
|
|
|
seconds = int(dt.value / 1e9) |
1073
|
|
|
|
1074
|
|
|
splits = self._adjustment_reader.conn.execute( |
1075
|
|
|
"SELECT sid, ratio FROM SPLITS WHERE effective_date = ?", |
1076
|
|
|
(seconds,)).fetchall() |
1077
|
|
|
|
1078
|
|
|
sids_set = set(sids) |
1079
|
|
|
splits = [split for split in splits if split[0] in sids_set] |
1080
|
|
|
|
1081
|
|
|
return splits |
1082
|
|
|
|
1083
|
|
|
def get_stock_dividends(self, sid, trading_days): |
1084
|
|
|
""" |
1085
|
|
|
Returns all the stock dividends for a specific sid that occur |
1086
|
|
|
in the given trading range. |
1087
|
|
|
|
1088
|
|
|
Parameters |
1089
|
|
|
---------- |
1090
|
|
|
sid: int |
1091
|
|
|
The asset whose stock dividends should be returned. |
1092
|
|
|
|
1093
|
|
|
trading_days: pd.DatetimeIndex |
1094
|
|
|
The trading range. |
1095
|
|
|
|
1096
|
|
|
Returns |
1097
|
|
|
------- |
1098
|
|
|
list: A list of objects with all relevant attributes populated. |
1099
|
|
|
All timestamp fields are converted to pd.Timestamps. |
1100
|
|
|
""" |
1101
|
|
|
|
1102
|
|
|
if self._adjustment_reader is None: |
1103
|
|
|
return [] |
1104
|
|
|
|
1105
|
|
|
if len(trading_days) == 0: |
1106
|
|
|
return [] |
1107
|
|
|
|
1108
|
|
|
start_dt = trading_days[0].value / 1e9 |
1109
|
|
|
end_dt = trading_days[-1].value / 1e9 |
1110
|
|
|
|
1111
|
|
|
dividends = self._adjustment_reader.conn.execute( |
1112
|
|
|
"SELECT * FROM stock_dividend_payouts WHERE sid = ? AND " |
1113
|
|
|
"ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\ |
1114
|
|
|
fetchall() |
1115
|
|
|
|
1116
|
|
|
dividend_info = [] |
1117
|
|
|
for dividend_tuple in dividends: |
1118
|
|
|
dividend_info.append({ |
1119
|
|
|
"declared_date": dividend_tuple[1], |
1120
|
|
|
"ex_date": pd.Timestamp(dividend_tuple[2], unit="s"), |
1121
|
|
|
"pay_date": pd.Timestamp(dividend_tuple[3], unit="s"), |
1122
|
|
|
"payment_sid": dividend_tuple[4], |
1123
|
|
|
"ratio": dividend_tuple[5], |
1124
|
|
|
"record_date": pd.Timestamp(dividend_tuple[6], unit="s"), |
1125
|
|
|
"sid": dividend_tuple[7] |
1126
|
|
|
}) |
1127
|
|
|
|
1128
|
|
|
return dividend_info |
1129
|
|
|
|
1130
|
|
|
def contains(self, asset, field): |
1131
|
|
|
return field in BASE_FIELDS or \ |
1132
|
|
|
(field in self._augmented_sources_map and |
1133
|
|
|
asset in self._augmented_sources_map[field]) |
1134
|
|
|
|
1135
|
|
|
def get_fetcher_assets(self): |
1136
|
|
|
""" |
1137
|
|
|
Returns a list of assets for the current date, as defined by the |
1138
|
|
|
fetcher data. |
1139
|
|
|
|
1140
|
|
|
Notes |
1141
|
|
|
----- |
1142
|
|
|
Data is forward-filled. If there is no fetcher data defined for day |
1143
|
|
|
N, we use day N-1's data (if available, otherwise we keep going back). |
1144
|
|
|
|
1145
|
|
|
Returns |
1146
|
|
|
------- |
1147
|
|
|
list: a list of Asset objects. |
1148
|
|
|
""" |
1149
|
|
|
# return a list of assets for the current date, as defined by the |
1150
|
|
|
# fetcher source |
1151
|
|
|
if self._fetcher_df is None: |
1152
|
|
|
return [] |
1153
|
|
|
|
1154
|
|
|
if self.current_day in self._fetcher_df.index: |
1155
|
|
|
date_to_use = self.current_day |
1156
|
|
|
else: |
1157
|
|
|
# current day isn't in the fetcher df, go back the last |
1158
|
|
|
# available day |
1159
|
|
|
idx = self._fetcher_df.index.searchsorted(self.current_day) |
1160
|
|
|
if idx == 0: |
1161
|
|
|
return [] |
1162
|
|
|
|
1163
|
|
|
date_to_use = self._fetcher_df.index[idx - 1] |
1164
|
|
|
|
1165
|
|
|
asset_list = self._fetcher_df.loc[date_to_use]["sid"] |
1166
|
|
|
|
1167
|
|
|
# make sure they're actually assets |
1168
|
|
|
asset_list = [asset for asset in asset_list |
1169
|
|
|
if isinstance(asset, Asset)] |
1170
|
|
|
|
1171
|
|
|
return asset_list |
1172
|
|
|
|
1173
|
|
|
|
1174
|
|
|
class DataPortalSidView(object): |
1175
|
|
|
def __init__(self, asset, portal): |
1176
|
|
|
self.asset = asset |
1177
|
|
|
self.portal = portal |
1178
|
|
|
|
1179
|
|
|
def __getattr__(self, column): |
1180
|
|
|
return self.portal.get_spot_value(self.asset, column) |
1181
|
|
|
|
1182
|
|
|
def __contains__(self, column): |
1183
|
|
|
return self.portal.contains(self.asset, column) |
1184
|
|
|
|
1185
|
|
|
def __getitem__(self, column): |
1186
|
|
|
return self.__getattr__(column) |
1187
|
|
|
|