1
|
|
|
""" |
2
|
|
|
Technical Analysis Factors |
3
|
|
|
-------------------------- |
4
|
|
|
""" |
5
|
|
|
from bottleneck import ( |
6
|
|
|
nanargmax, |
7
|
|
|
nanmax, |
8
|
|
|
nanmean, |
9
|
|
|
nansum, |
10
|
|
|
) |
11
|
|
|
from numbers import Number |
12
|
|
|
from numpy import ( |
13
|
|
|
abs, |
14
|
|
|
arange, |
15
|
|
|
average, |
16
|
|
|
clip, |
17
|
|
|
diff, |
18
|
|
|
exp, |
19
|
|
|
fmax, |
20
|
|
|
full, |
21
|
|
|
inf, |
22
|
|
|
isnan, |
23
|
|
|
log, |
24
|
|
|
NINF, |
25
|
|
|
sqrt, |
26
|
|
|
sum as np_sum, |
27
|
|
|
) |
28
|
|
|
from numexpr import evaluate |
29
|
|
|
|
30
|
|
|
from zipline.pipeline.data import USEquityPricing |
31
|
|
|
from zipline.pipeline.mixins import SingleInputMixin |
32
|
|
|
from zipline.utils.control_flow import ignore_nanwarnings |
33
|
|
|
from zipline.utils.input_validation import expect_types |
34
|
|
|
from .factor import CustomFactor |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class Returns(CustomFactor): |
38
|
|
|
""" |
39
|
|
|
Calculates the percent change in close price over the given window_length. |
40
|
|
|
|
41
|
|
|
**Default Inputs**: [USEquityPricing.close] |
42
|
|
|
""" |
43
|
|
|
inputs = [USEquityPricing.close] |
44
|
|
|
|
45
|
|
|
def compute(self, today, assets, out, close): |
46
|
|
|
out[:] = (close[-1] - close[0]) / close[0] |
47
|
|
|
|
48
|
|
|
|
49
|
|
|
class RSI(CustomFactor, SingleInputMixin): |
50
|
|
|
""" |
51
|
|
|
Relative Strength Index |
52
|
|
|
|
53
|
|
|
**Default Inputs**: [USEquityPricing.close] |
54
|
|
|
|
55
|
|
|
**Default Window Length**: 15 |
56
|
|
|
""" |
57
|
|
|
window_length = 15 |
58
|
|
|
inputs = (USEquityPricing.close,) |
59
|
|
|
|
60
|
|
|
def compute(self, today, assets, out, closes): |
61
|
|
|
diffs = diff(closes, axis=0) |
62
|
|
|
ups = nanmean(clip(diffs, 0, inf), axis=0) |
63
|
|
|
downs = abs(nanmean(clip(diffs, -inf, 0), axis=0)) |
64
|
|
|
return evaluate( |
65
|
|
|
"100 - (100 / (1 + (ups / downs)))", |
66
|
|
|
local_dict={'ups': ups, 'downs': downs}, |
67
|
|
|
global_dict={}, |
68
|
|
|
out=out, |
69
|
|
|
) |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
class SimpleMovingAverage(CustomFactor, SingleInputMixin): |
73
|
|
|
""" |
74
|
|
|
Average Value of an arbitrary column |
75
|
|
|
|
76
|
|
|
**Default Inputs**: None |
77
|
|
|
|
78
|
|
|
**Default Window Length**: None |
79
|
|
|
""" |
80
|
|
|
# numpy's nan functions throw warnings when passed an array containing only |
81
|
|
|
# nans, but they still returns the desired value (nan), so we ignore the |
82
|
|
|
# warning. |
83
|
|
|
ctx = ignore_nanwarnings() |
84
|
|
|
|
85
|
|
|
def compute(self, today, assets, out, data): |
86
|
|
|
out[:] = nanmean(data, axis=0) |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
class WeightedAverageValue(CustomFactor): |
90
|
|
|
""" |
91
|
|
|
Helper for VWAP-like computations. |
92
|
|
|
|
93
|
|
|
**Default Inputs:** None |
94
|
|
|
|
95
|
|
|
**Default Window Length:** None |
96
|
|
|
""" |
97
|
|
|
def compute(self, today, assets, out, base, weight): |
98
|
|
|
out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0) |
99
|
|
|
|
100
|
|
|
|
101
|
|
|
class VWAP(WeightedAverageValue): |
102
|
|
|
""" |
103
|
|
|
Volume Weighted Average Price |
104
|
|
|
|
105
|
|
|
**Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] |
106
|
|
|
|
107
|
|
|
**Default Window Length:** None |
108
|
|
|
""" |
109
|
|
|
inputs = (USEquityPricing.close, USEquityPricing.volume) |
110
|
|
|
|
111
|
|
|
|
112
|
|
|
class MaxDrawdown(CustomFactor, SingleInputMixin): |
113
|
|
|
""" |
114
|
|
|
Max Drawdown |
115
|
|
|
|
116
|
|
|
**Default Inputs:** None |
117
|
|
|
|
118
|
|
|
**Default Window Length:** None |
119
|
|
|
""" |
120
|
|
|
ctx = ignore_nanwarnings() |
121
|
|
|
|
122
|
|
|
def compute(self, today, assets, out, data): |
123
|
|
|
drawdowns = fmax.accumulate(data, axis=0) - data |
124
|
|
|
drawdowns[isnan(drawdowns)] = NINF |
125
|
|
|
drawdown_ends = nanargmax(drawdowns, axis=0) |
126
|
|
|
|
127
|
|
|
# TODO: Accelerate this loop in Cython or Numba. |
128
|
|
|
for i, end in enumerate(drawdown_ends): |
129
|
|
|
peak = nanmax(data[:end + 1, i]) |
130
|
|
|
out[i] = (peak - data[end, i]) / data[end, i] |
131
|
|
|
|
132
|
|
|
|
133
|
|
|
class AverageDollarVolume(CustomFactor): |
134
|
|
|
""" |
135
|
|
|
Average Daily Dollar Volume |
136
|
|
|
|
137
|
|
|
**Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] |
138
|
|
|
|
139
|
|
|
**Default Window Length:** None |
140
|
|
|
""" |
141
|
|
|
inputs = [USEquityPricing.close, USEquityPricing.volume] |
142
|
|
|
|
143
|
|
|
def compute(self, today, assets, out, close, volume): |
144
|
|
|
out[:] = nanmean(close * volume, axis=0) |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
class _ExponentialWeightedFactor(SingleInputMixin, CustomFactor): |
148
|
|
|
""" |
149
|
|
|
Base class for factors implementing exponential-weighted operations. |
150
|
|
|
|
151
|
|
|
**Default Inputs:** None |
152
|
|
|
|
153
|
|
|
**Default Window Length:** None |
154
|
|
|
|
155
|
|
|
Parameters |
156
|
|
|
---------- |
157
|
|
|
inputs : length-1 list or tuple of BoundColumn |
158
|
|
|
The expression over which to compute the average. |
159
|
|
|
window_length : int > 0 |
160
|
|
|
Length of the lookback window over which to compute the average. |
161
|
|
|
decay_rate : float, 0 < decay_rate <= 1 |
162
|
|
|
Weighting factor by which to discount past observations. |
163
|
|
|
|
164
|
|
|
When calculating historical averages, rows are multiplied by the |
165
|
|
|
sequence:: |
166
|
|
|
|
167
|
|
|
decay_rate, decay_rate ** 2, decay_rate ** 3, ... |
168
|
|
|
|
169
|
|
|
Methods |
170
|
|
|
------- |
171
|
|
|
weights |
172
|
|
|
from_span |
173
|
|
|
from_halflife |
174
|
|
|
from_center_of_mass |
175
|
|
|
""" |
176
|
|
|
params = ('decay_rate',) |
177
|
|
|
|
178
|
|
|
@staticmethod |
179
|
|
|
def weights(length, decay_rate): |
180
|
|
|
""" |
181
|
|
|
Return weighting vector for an exponential moving statistic on `length` |
182
|
|
|
rows with a decay rate of `decay_rate`. |
183
|
|
|
""" |
184
|
|
|
return full(length, decay_rate) ** arange(length + 1, 1, -1) |
185
|
|
|
|
186
|
|
|
@classmethod |
187
|
|
|
@expect_types(span=Number) |
188
|
|
|
def from_span(cls, inputs, window_length, span): |
189
|
|
|
""" |
190
|
|
|
Convenience constructor for passing `decay_rate` in terms of `span`. |
191
|
|
|
|
192
|
|
|
Forwards `decay_rate` as `1 - (2.0 / (1 + span))`. This provides the |
193
|
|
|
behavior equivalent to passing `span` to pandas.ewma. |
194
|
|
|
|
195
|
|
|
Example |
196
|
|
|
------- |
197
|
|
|
.. code-block:: python |
198
|
|
|
|
199
|
|
|
# Equivalent to: |
200
|
|
|
# my_ewma = EWMA( |
201
|
|
|
# inputs=[USEquityPricing.close], |
202
|
|
|
# window_length=30, |
203
|
|
|
# decay_rate=(1 - (2.0 / (1 + 15.0))), |
204
|
|
|
# ) |
205
|
|
|
my_ewma = EWMA.from_span( |
206
|
|
|
inputs=[USEquityPricing.close], |
207
|
|
|
window_length=30, |
208
|
|
|
span=15, |
209
|
|
|
) |
210
|
|
|
|
211
|
|
|
Note |
212
|
|
|
---- |
213
|
|
|
This classmethod is provided by both |
214
|
|
|
:class:`ExponentialWeightedMovingAverage` and |
215
|
|
|
:class:`ExponentialWeightedMovingStdDev`. |
216
|
|
|
""" |
217
|
|
|
if span <= 1: |
218
|
|
|
raise ValueError( |
219
|
|
|
"`span` must be a positive number. %s was passed." % span |
220
|
|
|
) |
221
|
|
|
|
222
|
|
|
decay_rate = (1.0 - (2.0 / (1.0 + span))) |
223
|
|
|
assert 0.0 < decay_rate <= 1.0 |
224
|
|
|
|
225
|
|
|
return cls( |
226
|
|
|
inputs=inputs, |
227
|
|
|
window_length=window_length, |
228
|
|
|
decay_rate=decay_rate, |
229
|
|
|
) |
230
|
|
|
|
231
|
|
|
@classmethod |
232
|
|
|
@expect_types(halflife=Number) |
233
|
|
|
def from_halflife(cls, inputs, window_length, halflife): |
234
|
|
|
""" |
235
|
|
|
Convenience constructor for passing ``decay_rate`` in terms of half |
236
|
|
|
life. |
237
|
|
|
|
238
|
|
|
Forwards ``decay_rate`` as ``exp(log(.5) / halflife)``. This provides |
239
|
|
|
the behavior equivalent to passing `halflife` to pandas.ewma. |
240
|
|
|
|
241
|
|
|
Example |
242
|
|
|
------- |
243
|
|
|
.. code-block:: python |
244
|
|
|
|
245
|
|
|
# Equivalent to: |
246
|
|
|
# my_ewma = EWMA( |
247
|
|
|
# inputs=[USEquityPricing.close], |
248
|
|
|
# window_length=30, |
249
|
|
|
# decay_rate=np.exp(np.log(0.5) / 15), |
250
|
|
|
# ) |
251
|
|
|
my_ewma = EWMA.from_halflife( |
252
|
|
|
inputs=[USEquityPricing.close], |
253
|
|
|
window_length=30, |
254
|
|
|
halflife=15, |
255
|
|
|
) |
256
|
|
|
|
257
|
|
|
Note |
258
|
|
|
---- |
259
|
|
|
This classmethod is provided by both |
260
|
|
|
:class:`ExponentialWeightedMovingAverage` and |
261
|
|
|
:class:`ExponentialWeightedMovingStdDev`. |
262
|
|
|
""" |
263
|
|
|
if halflife <= 0: |
264
|
|
|
raise ValueError( |
265
|
|
|
"`span` must be a positive number. %s was passed." % halflife |
266
|
|
|
) |
267
|
|
|
decay_rate = exp(log(.5) / halflife) |
268
|
|
|
assert 0.0 < decay_rate <= 1.0 |
269
|
|
|
|
270
|
|
|
return cls( |
271
|
|
|
inputs=inputs, |
272
|
|
|
window_length=window_length, |
273
|
|
|
decay_rate=decay_rate, |
274
|
|
|
) |
275
|
|
|
|
276
|
|
|
@classmethod |
277
|
|
|
def from_center_of_mass(cls, inputs, window_length, center_of_mass): |
278
|
|
|
""" |
279
|
|
|
Convenience constructor for passing `decay_rate` in terms of center of |
280
|
|
|
mass. |
281
|
|
|
|
282
|
|
|
Forwards `decay_rate` as `1 - (1 / 1 + center_of_mass)`. This provides |
283
|
|
|
behavior equivalent to passing `center_of_mass` to pandas.ewma. |
284
|
|
|
|
285
|
|
|
Example |
286
|
|
|
------- |
287
|
|
|
.. code-block:: python |
288
|
|
|
|
289
|
|
|
# Equivalent to: |
290
|
|
|
# my_ewma = EWMA( |
291
|
|
|
# inputs=[USEquityPricing.close], |
292
|
|
|
# window_length=30, |
293
|
|
|
# decay_rate=(1 - (1 / 15.0)), |
294
|
|
|
# ) |
295
|
|
|
my_ewma = EWMA.from_center_of_mass( |
296
|
|
|
inputs=[USEquityPricing.close], |
297
|
|
|
window_length=30, |
298
|
|
|
center_of_mass=15, |
299
|
|
|
) |
300
|
|
|
|
301
|
|
|
Note |
302
|
|
|
---- |
303
|
|
|
This classmethod is provided by both |
304
|
|
|
:class:`ExponentialWeightedMovingAverage` and |
305
|
|
|
:class:`ExponentialWeightedMovingStdDev`. |
306
|
|
|
""" |
307
|
|
|
return cls( |
308
|
|
|
inputs=inputs, |
309
|
|
|
window_length=window_length, |
310
|
|
|
decay_rate=(1.0 - (1.0 / (1.0 + center_of_mass))), |
311
|
|
|
) |
312
|
|
|
|
313
|
|
|
|
314
|
|
|
class ExponentialWeightedMovingAverage(_ExponentialWeightedFactor): |
315
|
|
|
""" |
316
|
|
|
Exponentially Weighted Moving Average |
317
|
|
|
|
318
|
|
|
**Default Inputs:** None |
319
|
|
|
|
320
|
|
|
**Default Window Length:** None |
321
|
|
|
|
322
|
|
|
Parameters |
323
|
|
|
---------- |
324
|
|
|
inputs : length-1 list/tuple of BoundColumn |
325
|
|
|
The expression over which to compute the average. |
326
|
|
|
window_length : int > 0 |
327
|
|
|
Length of the lookback window over which to compute the average. |
328
|
|
|
decay_rate : float, 0 < decay_rate <= 1 |
329
|
|
|
Weighting factor by which to discount past observations. |
330
|
|
|
|
331
|
|
|
When calculating historical averages, rows are multiplied by the |
332
|
|
|
sequence:: |
333
|
|
|
|
334
|
|
|
decay_rate, decay_rate ** 2, decay_rate ** 3, ... |
335
|
|
|
|
336
|
|
|
Notes |
337
|
|
|
----- |
338
|
|
|
- This class can also be imported under the name ``EWMA``. |
339
|
|
|
|
340
|
|
|
See Also |
341
|
|
|
-------- |
342
|
|
|
:func:`pandas.ewma` |
343
|
|
|
""" |
344
|
|
|
def compute(self, today, assets, out, data, decay_rate): |
345
|
|
|
out[:] = average( |
346
|
|
|
data, |
347
|
|
|
axis=0, |
348
|
|
|
weights=self.weights(len(data), decay_rate), |
349
|
|
|
) |
350
|
|
|
|
351
|
|
|
|
352
|
|
|
class ExponentialWeightedMovingStdDev(_ExponentialWeightedFactor): |
353
|
|
|
""" |
354
|
|
|
Exponentially Weighted Moving Standard Deviation |
355
|
|
|
|
356
|
|
|
**Default Inputs:** None |
357
|
|
|
|
358
|
|
|
**Default Window Length:** None |
359
|
|
|
|
360
|
|
|
Parameters |
361
|
|
|
---------- |
362
|
|
|
inputs : length-1 list/tuple of BoundColumn |
363
|
|
|
The expression over which to compute the average. |
364
|
|
|
window_length : int > 0 |
365
|
|
|
Length of the lookback window over which to compute the average. |
366
|
|
|
decay_rate : float, 0 < decay_rate <= 1 |
367
|
|
|
Weighting factor by which to discount past observations. |
368
|
|
|
|
369
|
|
|
When calculating historical averages, rows are multiplied by the |
370
|
|
|
sequence:: |
371
|
|
|
|
372
|
|
|
decay_rate, decay_rate ** 2, decay_rate ** 3, ... |
373
|
|
|
|
374
|
|
|
Notes |
375
|
|
|
----- |
376
|
|
|
- This class can also be imported under the name ``EWMSTD``. |
377
|
|
|
|
378
|
|
|
See Also |
379
|
|
|
-------- |
380
|
|
|
:func:`pandas.ewmstd` |
381
|
|
|
""" |
382
|
|
|
|
383
|
|
|
def compute(self, today, assets, out, data, decay_rate): |
384
|
|
|
weights = self.weights(len(data), decay_rate) |
385
|
|
|
|
386
|
|
|
mean = average(data, axis=0, weights=weights) |
387
|
|
|
variance = average((data - mean) ** 2, axis=0, weights=weights) |
388
|
|
|
|
389
|
|
|
squared_weight_sum = (np_sum(weights) ** 2) |
390
|
|
|
bias_correction = ( |
391
|
|
|
squared_weight_sum / (squared_weight_sum - np_sum(weights ** 2)) |
392
|
|
|
) |
393
|
|
|
out[:] = sqrt(variance * bias_correction) |
394
|
|
|
|
395
|
|
|
|
396
|
|
|
# Convenience aliases. |
397
|
|
|
EWMA = ExponentialWeightedMovingAverage |
398
|
|
|
EWMSTD = ExponentialWeightedMovingStdDev |
399
|
|
|
|