| Total Complexity | 52 |
| Total Lines | 429 |
| Duplicated Lines | 0 % |
Complex classes like zipline.data.DataPortal often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # |
||
| 46 | class DataPortal(object): |
||
| 47 | def __init__(self, |
||
| 48 | env, |
||
| 49 | sim_params=None, |
||
| 50 | equity_daily_reader=None, |
||
| 51 | equity_minute_reader=None, |
||
| 52 | future_daily_reader=None, |
||
| 53 | future_minute_reader=None, |
||
| 54 | adjustment_reader=None): |
||
| 55 | self.env = env |
||
| 56 | |||
| 57 | # Internal pointers to the current dt (can be minute) and current day. |
||
| 58 | # In daily mode, they point to the same thing. In minute mode, it's |
||
| 59 | # useful to have separate pointers to the current day and to the |
||
| 60 | # current minute. These pointers are updated by the |
||
| 61 | # AlgorithmSimulator's transform loop. |
||
| 62 | self.current_dt = None |
||
| 63 | self.current_day = None |
||
| 64 | |||
| 65 | self.views = {} |
||
| 66 | |||
| 67 | self._asset_finder = env.asset_finder |
||
| 68 | |||
| 69 | self._carrays = { |
||
| 70 | 'open': {}, |
||
| 71 | 'high': {}, |
||
| 72 | 'low': {}, |
||
| 73 | 'close': {}, |
||
| 74 | 'volume': {}, |
||
| 75 | 'sid': {}, |
||
| 76 | 'dt': {}, |
||
| 77 | } |
||
| 78 | |||
| 79 | self._adjustment_reader = adjustment_reader |
||
| 80 | |||
| 81 | # caches of sid -> adjustment list |
||
| 82 | self._splits_dict = {} |
||
| 83 | self._mergers_dict = {} |
||
| 84 | self._dividends_dict = {} |
||
| 85 | |||
| 86 | # Cache of sid -> the first trading day of an asset, even if that day |
||
| 87 | # is before 1/2/2002. |
||
| 88 | self._asset_start_dates = {} |
||
| 89 | self._asset_end_dates = {} |
||
| 90 | |||
| 91 | # Handle extra sources, like Fetcher. |
||
| 92 | self._augmented_sources_map = {} |
||
| 93 | self._extra_source_df = None |
||
| 94 | |||
| 95 | if self._sim_params is not None: |
||
| 96 | self._data_frequency = self._sim_params.data_frequency |
||
| 97 | else: |
||
| 98 | self._data_frequency = "minute" |
||
| 99 | |||
| 100 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001 |
||
| 101 | |||
| 102 | self._equity_daily_reader = equity_daily_reader |
||
| 103 | self._equity_minute_reader = equity_minute_reader |
||
| 104 | self._future_daily_reader = future_daily_reader |
||
| 105 | self._future_minute_reader = future_minute_reader |
||
| 106 | |||
| 107 | def _open_minute_file(self, field, asset): |
||
| 108 | sid_str = str(int(asset)) |
||
| 109 | |||
| 110 | try: |
||
| 111 | carray = self._carrays[field][sid_str] |
||
| 112 | except KeyError: |
||
| 113 | carray = self._carrays[field][sid_str] = \ |
||
| 114 | self._get_ctable(asset)[field] |
||
| 115 | |||
| 116 | return carray |
||
| 117 | |||
| 118 | def _get_ctable(self, asset): |
||
| 119 | sid = int(asset) |
||
| 120 | |||
| 121 | if isinstance(asset, Future): |
||
| 122 | if self._future_minute_reader.sid_path_func is not None: |
||
| 123 | path = self._future_minute_reader.sid_path_func( |
||
| 124 | self._future_minute_reader.rootdir, sid |
||
| 125 | ) |
||
| 126 | else: |
||
| 127 | path = "{0}/{1}.bcolz".format( |
||
| 128 | self._future_minute_reader.rootdir, sid) |
||
| 129 | elif isinstance(asset, Equity): |
||
| 130 | if self._equity_minute_reader.sid_path_func is not None: |
||
| 131 | path = self._equity_minute_reader.sid_path_func( |
||
| 132 | self._equity_minute_reader.rootdir, sid |
||
| 133 | ) |
||
| 134 | else: |
||
| 135 | path = "{0}/{1}.bcolz".format( |
||
| 136 | self._equity_minute_reader.rootdir, sid) |
||
| 137 | |||
| 138 | return bcolz.open(path, mode='r') |
||
| 139 | |||
| 140 | def get_spot_value(self, asset, field, dt=None): |
||
| 141 | """ |
||
| 142 | Public API method that returns a scalar value representing the value |
||
| 143 | of the desired asset's field at either the given dt, or this data |
||
| 144 | portal's current_dt. |
||
| 145 | |||
| 146 | Parameters |
||
| 147 | --------- |
||
| 148 | asset : Asset |
||
| 149 | The asset whose data is desired. |
||
| 150 | |||
| 151 | field: string |
||
| 152 | The desired field of the asset. Valid values are "open", |
||
| 153 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
| 154 | "price". |
||
| 155 | |||
| 156 | dt: pd.Timestamp |
||
| 157 | (Optional) The timestamp for the desired value. |
||
| 158 | |||
| 159 | Returns |
||
| 160 | ------- |
||
| 161 | The value of the desired field at the desired time. |
||
| 162 | """ |
||
| 163 | if field not in BASE_FIELDS: |
||
| 164 | raise KeyError("Invalid column: " + str(field)) |
||
| 165 | |||
| 166 | column_to_use = BASE_FIELDS[field] |
||
| 167 | |||
| 168 | if isinstance(asset, int): |
||
| 169 | asset = self._asset_finder.retrieve_asset(asset) |
||
| 170 | |||
| 171 | self._check_is_currently_alive(asset, dt) |
||
| 172 | |||
| 173 | if self._data_frequency == "daily": |
||
| 174 | day_to_use = dt or self.current_day |
||
| 175 | day_to_use = normalize_date(day_to_use) |
||
| 176 | return self._get_daily_data(asset, column_to_use, day_to_use) |
||
| 177 | else: |
||
| 178 | dt_to_use = dt or self.current_dt |
||
| 179 | |||
| 180 | if isinstance(asset, Future): |
||
| 181 | return self._get_minute_spot_value_future( |
||
| 182 | asset, column_to_use, dt_to_use) |
||
| 183 | else: |
||
| 184 | return self._get_minute_spot_value( |
||
| 185 | asset, column_to_use, dt_to_use) |
||
| 186 | |||
| 187 | def _get_minute_spot_value_future(self, asset, column, dt): |
||
| 188 | # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week. |
||
| 189 | # The file attributes contain the "start_dt" and "last_dt" fields, |
||
| 190 | # which represent the time period for this bcolz file. |
||
| 191 | |||
| 192 | # The start_dt is midnight of the first day that this future started |
||
| 193 | # trading. |
||
| 194 | |||
| 195 | # figure out the # of minutes between dt and this asset's start_dt |
||
| 196 | start_date = self._get_asset_start_date(asset) |
||
| 197 | minute_offset = int((dt - start_date).total_seconds() / 60) |
||
| 198 | |||
| 199 | if minute_offset < 0: |
||
| 200 | # asking for a date that is before the asset's start date, no dice |
||
| 201 | return 0.0 |
||
| 202 | |||
| 203 | # then just index into the bcolz carray at that offset |
||
| 204 | carray = self._open_minute_file(column, asset) |
||
| 205 | result = carray[minute_offset] |
||
| 206 | |||
| 207 | # if there's missing data, go backwards until we run out of file |
||
| 208 | while result == 0 and minute_offset > 0: |
||
| 209 | minute_offset -= 1 |
||
| 210 | result = carray[minute_offset] |
||
| 211 | |||
| 212 | if column != 'volume': |
||
| 213 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
| 214 | else: |
||
| 215 | return result |
||
| 216 | |||
| 217 | def _get_minute_spot_value(self, asset, column, dt): |
||
| 218 | # if dt is before the first market minute, minute_index |
||
| 219 | # will be 0. if it's after the last market minute, it'll |
||
| 220 | # be len(minutes_for_day) |
||
| 221 | given_day = pd.Timestamp(dt.date(), tz='utc') |
||
| 222 | day_index = self._equity_minute_reader.trading_days.searchsorted( |
||
| 223 | given_day) |
||
| 224 | |||
| 225 | # if dt is before the first market minute, minute_index |
||
| 226 | # will be 0. if it's after the last market minute, it'll |
||
| 227 | # be len(minutes_for_day) |
||
| 228 | minute_index = self.env.market_minutes_for_day(given_day).\ |
||
| 229 | searchsorted(dt) |
||
| 230 | |||
| 231 | minute_offset_to_use = (day_index * 390) + minute_index |
||
| 232 | |||
| 233 | carray = self._equity_minute_reader._open_minute_file(column, asset) |
||
| 234 | result = carray[minute_offset_to_use] |
||
| 235 | |||
| 236 | if result == 0: |
||
| 237 | # if the given minute doesn't have data, we need to seek |
||
| 238 | # backwards until we find data. This makes the data |
||
| 239 | # forward-filled. |
||
| 240 | |||
| 241 | # get this asset's start date, so that we don't look before it. |
||
| 242 | start_date = self._get_asset_start_date(asset) |
||
| 243 | start_date_idx = self._equity_minute_reader.trading_days.\ |
||
| 244 | searchsorted(start_date) |
||
| 245 | start_day_offset = start_date_idx * 390 |
||
| 246 | |||
| 247 | original_start = minute_offset_to_use |
||
| 248 | |||
| 249 | while result == 0 and minute_offset_to_use > start_day_offset: |
||
| 250 | minute_offset_to_use -= 1 |
||
| 251 | result = carray[minute_offset_to_use] |
||
| 252 | |||
| 253 | # once we've found data, we need to check whether it needs |
||
| 254 | # to be adjusted. |
||
| 255 | if result != 0: |
||
| 256 | minutes = self.env.market_minute_window( |
||
| 257 | start=(dt or self.current_dt), |
||
| 258 | count=(original_start - minute_offset_to_use + 1), |
||
| 259 | step=-1 |
||
| 260 | ).order() |
||
| 261 | |||
| 262 | # only need to check for adjustments if we've gone back |
||
| 263 | # far enough to cross the day boundary. |
||
| 264 | if minutes[0].date() != minutes[-1].date(): |
||
| 265 | # create a np array of size minutes, fill it all with |
||
| 266 | # the same value. and adjust the array. |
||
| 267 | arr = np.array([result] * len(minutes), |
||
| 268 | dtype=np.float64) |
||
| 269 | self._apply_all_adjustments( |
||
| 270 | data=arr, |
||
| 271 | asset=asset, |
||
| 272 | dts=minutes, |
||
| 273 | field=column |
||
| 274 | ) |
||
| 275 | |||
| 276 | # The first value of the adjusted array is the value |
||
| 277 | # we want. |
||
| 278 | result = arr[0] |
||
| 279 | |||
| 280 | if column != 'volume': |
||
| 281 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
| 282 | else: |
||
| 283 | return result |
||
| 284 | |||
| 285 | def _get_daily_data(self, asset, column, dt): |
||
| 286 | while True: |
||
| 287 | try: |
||
| 288 | value = self._equity_daily_reader.spot_price( |
||
| 289 | asset, dt, column) |
||
| 290 | if value != -1: |
||
| 291 | return value |
||
| 292 | else: |
||
| 293 | dt -= tradingcalendar.trading_day |
||
| 294 | except NoDataOnDate: |
||
| 295 | return 0 |
||
| 296 | |||
| 297 | def _apply_all_adjustments(self, data, asset, dts, field, |
||
| 298 | price_adj_factor=1.0): |
||
| 299 | """ |
||
| 300 | Internal method that applies all the necessary adjustments on the |
||
| 301 | given data array. |
||
| 302 | |||
| 303 | The adjustments are: |
||
| 304 | - splits |
||
| 305 | - if field != "volume": |
||
| 306 | - mergers |
||
| 307 | - dividends |
||
| 308 | - * 0.001 |
||
| 309 | - any zero fields replaced with NaN |
||
| 310 | - all values rounded to 3 digits after the decimal point. |
||
| 311 | |||
| 312 | Parameters |
||
| 313 | ---------- |
||
| 314 | data : np.array |
||
| 315 | The data to be adjusted. |
||
| 316 | |||
| 317 | asset: Asset |
||
| 318 | The asset whose data is being adjusted. |
||
| 319 | |||
| 320 | dts: pd.DateTimeIndex |
||
| 321 | The list of minutes or days representing the desired window. |
||
| 322 | |||
| 323 | field: string |
||
| 324 | The field whose values are in the data array. |
||
| 325 | |||
| 326 | price_adj_factor: float |
||
| 327 | Factor with which to adjust OHLC values. |
||
| 328 | Returns |
||
| 329 | ------- |
||
| 330 | None. The data array is modified in place. |
||
| 331 | """ |
||
| 332 | self._apply_adjustments_to_window( |
||
| 333 | self._get_adjustment_list( |
||
| 334 | asset, self._splits_dict, "SPLITS" |
||
| 335 | ), |
||
| 336 | data, |
||
| 337 | dts, |
||
| 338 | field != 'volume' |
||
| 339 | ) |
||
| 340 | |||
| 341 | if field != 'volume': |
||
| 342 | self._apply_adjustments_to_window( |
||
| 343 | self._get_adjustment_list( |
||
| 344 | asset, self._mergers_dict, "MERGERS" |
||
| 345 | ), |
||
| 346 | data, |
||
| 347 | dts, |
||
| 348 | True |
||
| 349 | ) |
||
| 350 | |||
| 351 | self._apply_adjustments_to_window( |
||
| 352 | self._get_adjustment_list( |
||
| 353 | asset, self._dividends_dict, "DIVIDENDS" |
||
| 354 | ), |
||
| 355 | data, |
||
| 356 | dts, |
||
| 357 | True |
||
| 358 | ) |
||
| 359 | |||
| 360 | data *= price_adj_factor |
||
| 361 | |||
| 362 | # if anything is zero, it's a missing bar, so replace it with NaN. |
||
| 363 | # we only want to do this for non-volume fields, because a missing |
||
| 364 | # volume should be 0. |
||
| 365 | data[data == 0] = np.NaN |
||
| 366 | |||
| 367 | np.around(data, 3, out=data) |
||
| 368 | |||
| 369 | @staticmethod |
||
| 370 | def _apply_adjustments_to_window(adjustments_list, window_data, |
||
| 371 | dts_in_window, multiply): |
||
| 372 | if len(adjustments_list) == 0: |
||
| 373 | return |
||
| 374 | |||
| 375 | # advance idx to the correct spot in the adjustments list, based on |
||
| 376 | # when the window starts |
||
| 377 | idx = 0 |
||
| 378 | |||
| 379 | while idx < len(adjustments_list) and dts_in_window[0] >\ |
||
| 380 | adjustments_list[idx][0]: |
||
| 381 | idx += 1 |
||
| 382 | |||
| 383 | # if we've advanced through all the adjustments, then there's nothing |
||
| 384 | # to do. |
||
| 385 | if idx == len(adjustments_list): |
||
| 386 | return |
||
| 387 | |||
| 388 | while idx < len(adjustments_list): |
||
| 389 | adjustment_to_apply = adjustments_list[idx] |
||
| 390 | |||
| 391 | if adjustment_to_apply[0] > dts_in_window[-1]: |
||
| 392 | break |
||
| 393 | |||
| 394 | range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) |
||
| 395 | if multiply: |
||
| 396 | window_data[0:range_end] *= adjustment_to_apply[1] |
||
| 397 | else: |
||
| 398 | window_data[0:range_end] /= adjustment_to_apply[1] |
||
| 399 | |||
| 400 | idx += 1 |
||
| 401 | |||
| 402 | def _get_adjustment_list(self, asset, adjustments_dict, table_name): |
||
| 403 | """ |
||
| 404 | Internal method that returns a list of adjustments for the given sid. |
||
| 405 | |||
| 406 | Parameters |
||
| 407 | ---------- |
||
| 408 | asset : Asset |
||
| 409 | The asset for which to return adjustments. |
||
| 410 | |||
| 411 | adjustments_dict: dict |
||
| 412 | A dictionary of sid -> list that is used as a cache. |
||
| 413 | |||
| 414 | table_name: string |
||
| 415 | The table that contains this data in the adjustments db. |
||
| 416 | |||
| 417 | Returns |
||
| 418 | ------- |
||
| 419 | adjustments: list |
||
| 420 | A list of [multiplier, pd.Timestamp], earliest first |
||
| 421 | |||
| 422 | """ |
||
| 423 | if self._adjustment_reader is None: |
||
| 424 | return [] |
||
| 425 | |||
| 426 | sid = int(asset) |
||
| 427 | |||
| 428 | try: |
||
| 429 | adjustments = adjustments_dict[sid] |
||
| 430 | except KeyError: |
||
| 431 | adjustments = adjustments_dict[sid] = self._adjustment_reader.\ |
||
| 432 | get_adjustments_for_sid(table_name, sid) |
||
| 433 | |||
| 434 | return adjustments |
||
| 435 | |||
| 436 | def _check_is_currently_alive(self, asset, dt): |
||
| 437 | if dt is None: |
||
| 438 | dt = self.current_day |
||
| 439 | |||
| 440 | sid = int(asset) |
||
| 441 | |||
| 442 | if sid not in self._asset_start_dates: |
||
| 443 | self._get_asset_start_date(asset) |
||
| 444 | |||
| 445 | start_date = self._asset_start_dates[sid] |
||
| 446 | if self._asset_start_dates[sid] > dt: |
||
| 447 | raise NoTradeDataAvailableTooEarly( |
||
| 448 | sid=sid, |
||
| 449 | dt=dt, |
||
| 450 | start_dt=start_date |
||
| 451 | ) |
||
| 452 | |||
| 453 | end_date = self._asset_end_dates[sid] |
||
| 454 | if self._asset_end_dates[sid] < dt: |
||
| 455 | raise NoTradeDataAvailableTooLate( |
||
| 456 | sid=sid, |
||
| 457 | dt=dt, |
||
| 458 | end_dt=end_date |
||
| 459 | ) |
||
| 460 | |||
| 461 | def _get_asset_start_date(self, asset): |
||
| 462 | self._ensure_asset_dates(asset) |
||
| 463 | return self._asset_start_dates[asset] |
||
| 464 | |||
| 465 | def _get_asset_end_date(self, asset): |
||
| 466 | self._ensure_asset_dates(asset) |
||
| 467 | return self._asset_end_dates[asset] |
||
| 468 | |||
| 469 | def _ensure_asset_dates(self, asset): |
||
| 470 | sid = int(asset) |
||
| 471 | |||
| 472 | if sid not in self._asset_start_dates: |
||
| 473 | self._asset_start_dates[sid] = asset.start_date |
||
| 474 | self._asset_end_dates[sid] = asset.end_date |
||
| 475 |