1
|
|
|
# Copyright 2015 Quantopian, Inc. |
2
|
|
|
# |
3
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
4
|
|
|
# you may not use this file except in compliance with the License. |
5
|
|
|
# You may obtain a copy of the License at |
6
|
|
|
# |
7
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
8
|
|
|
# |
9
|
|
|
# Unless required by applicable law or agreed to in writing, software |
10
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
11
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12
|
|
|
# See the License for the specific language governing permissions and |
13
|
|
|
# limitations under the License. |
14
|
|
|
from abc import ( |
15
|
|
|
ABCMeta, |
16
|
|
|
abstractmethod, |
17
|
|
|
) |
18
|
|
|
from errno import ENOENT |
19
|
|
|
from os import remove |
20
|
|
|
from os.path import exists |
21
|
|
|
import sqlite3 |
22
|
|
|
|
23
|
|
|
from bcolz import ( |
24
|
|
|
carray, |
25
|
|
|
ctable, |
26
|
|
|
) |
27
|
|
|
from collections import namedtuple |
28
|
|
|
from click import progressbar |
29
|
|
|
from numpy import ( |
30
|
|
|
array, |
31
|
|
|
int64, |
32
|
|
|
float64, |
33
|
|
|
floating, |
34
|
|
|
full, |
35
|
|
|
iinfo, |
36
|
|
|
integer, |
37
|
|
|
issubdtype, |
38
|
|
|
nan, |
39
|
|
|
uint32, |
40
|
|
|
) |
41
|
|
|
from pandas import ( |
42
|
|
|
DataFrame, |
43
|
|
|
DatetimeIndex, |
44
|
|
|
read_csv, |
45
|
|
|
Timestamp, |
46
|
|
|
) |
47
|
|
|
from six import ( |
48
|
|
|
iteritems, |
49
|
|
|
string_types, |
50
|
|
|
with_metaclass, |
51
|
|
|
) |
52
|
|
|
|
53
|
|
|
from ._equities import _compute_row_slices, _read_bcolz_data |
54
|
|
|
from ._adjustments import load_adjustments_from_sqlite |
55
|
|
|
|
56
|
|
|
import logbook |
57
|
|
|
logger = logbook.Logger('UsEquityPricing') |
58
|
|
|
|
59
|
|
|
OHLC = frozenset(['open', 'high', 'low', 'close']) |
60
|
|
|
US_EQUITY_PRICING_BCOLZ_COLUMNS = [ |
61
|
|
|
'open', 'high', 'low', 'close', 'volume', 'day', 'id' |
62
|
|
|
] |
63
|
|
|
SQLITE_ADJUSTMENT_COLUMNS = frozenset(['effective_date', 'ratio', 'sid']) |
64
|
|
|
SQLITE_ADJUSTMENT_COLUMN_DTYPES = { |
65
|
|
|
'effective_date': integer, |
66
|
|
|
'ratio': floating, |
67
|
|
|
'sid': integer, |
68
|
|
|
} |
69
|
|
|
SQLITE_ADJUSTMENT_TABLENAMES = frozenset(['splits', 'dividends', 'mergers']) |
70
|
|
|
|
71
|
|
|
|
72
|
|
|
SQLITE_DIVIDEND_PAYOUT_COLUMNS = frozenset( |
73
|
|
|
['sid', |
74
|
|
|
'ex_date', |
75
|
|
|
'declared_date', |
76
|
|
|
'pay_date', |
77
|
|
|
'record_date', |
78
|
|
|
'amount']) |
79
|
|
|
SQLITE_DIVIDEND_PAYOUT_COLUMN_DTYPES = { |
80
|
|
|
'sid': integer, |
81
|
|
|
'ex_date': integer, |
82
|
|
|
'declared_date': integer, |
83
|
|
|
'record_date': integer, |
84
|
|
|
'pay_date': integer, |
85
|
|
|
'amount': float, |
86
|
|
|
} |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMNS = frozenset( |
90
|
|
|
['sid', |
91
|
|
|
'ex_date', |
92
|
|
|
'declared_date', |
93
|
|
|
'record_date', |
94
|
|
|
'pay_date', |
95
|
|
|
'payment_sid', |
96
|
|
|
'ratio']) |
97
|
|
|
SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMN_DTYPES = { |
98
|
|
|
'sid': integer, |
99
|
|
|
'ex_date': integer, |
100
|
|
|
'declared_date': integer, |
101
|
|
|
'record_date': integer, |
102
|
|
|
'pay_date': integer, |
103
|
|
|
'payment_sid': integer, |
104
|
|
|
'ratio': float, |
105
|
|
|
} |
106
|
|
|
UINT32_MAX = iinfo(uint32).max |
107
|
|
|
|
108
|
|
|
|
109
|
|
|
class NoDataOnDate(Exception): |
110
|
|
|
""" |
111
|
|
|
Raised when a spot price can be found for the sid and date. |
112
|
|
|
""" |
113
|
|
|
pass |
114
|
|
|
|
115
|
|
|
|
116
|
|
|
class BcolzDailyBarWriter(with_metaclass(ABCMeta)): |
117
|
|
|
""" |
118
|
|
|
Class capable of writing daily OHLCV data to disk in a format that can be |
119
|
|
|
read efficiently by BcolzDailyOHLCVReader. |
120
|
|
|
|
121
|
|
|
See Also |
122
|
|
|
-------- |
123
|
|
|
BcolzDailyBarReader : Consumer of the data written by this class. |
124
|
|
|
""" |
125
|
|
|
|
126
|
|
|
@abstractmethod |
127
|
|
|
def gen_tables(self, assets): |
128
|
|
|
""" |
129
|
|
|
Return an iterator of pairs of (asset_id, bcolz.ctable). |
130
|
|
|
""" |
131
|
|
|
raise NotImplementedError() |
132
|
|
|
|
133
|
|
|
@abstractmethod |
134
|
|
|
def to_uint32(self, array, colname): |
135
|
|
|
""" |
136
|
|
|
Convert raw column values produced by gen_tables into uint32 values. |
137
|
|
|
|
138
|
|
|
Parameters |
139
|
|
|
---------- |
140
|
|
|
array : np.array |
141
|
|
|
An array of raw values. |
142
|
|
|
colname : str, {'open', 'high', 'low', 'close', 'volume', 'day'} |
143
|
|
|
The name of the column being loaded. |
144
|
|
|
|
145
|
|
|
For output being read by the default BcolzOHLCVReader, data should be |
146
|
|
|
stored in the following manner: |
147
|
|
|
|
148
|
|
|
- Pricing columns (Open, High, Low, Close) should be stored as 1000 * |
149
|
|
|
as-traded dollar value. |
150
|
|
|
- Volume should be the as-traded volume. |
151
|
|
|
- Dates should be stored as seconds since midnight UTC, Jan 1, 1970. |
152
|
|
|
""" |
153
|
|
|
raise NotImplementedError() |
154
|
|
|
|
155
|
|
|
def write(self, filename, calendar, assets, show_progress=False): |
156
|
|
|
""" |
157
|
|
|
Parameters |
158
|
|
|
---------- |
159
|
|
|
filename : str |
160
|
|
|
The location at which we should write our output. |
161
|
|
|
calendar : pandas.DatetimeIndex |
162
|
|
|
Calendar to use to compute asset calendar offsets. |
163
|
|
|
assets : pandas.Int64Index |
164
|
|
|
The assets for which to write data. |
165
|
|
|
show_progress : bool |
166
|
|
|
Whether or not to show a progress bar while writing. |
167
|
|
|
|
168
|
|
|
Returns |
169
|
|
|
------- |
170
|
|
|
table : bcolz.ctable |
171
|
|
|
The newly-written table. |
172
|
|
|
""" |
173
|
|
|
_iterator = self.gen_tables(assets) |
174
|
|
|
if show_progress: |
175
|
|
|
pbar = progressbar( |
176
|
|
|
_iterator, |
177
|
|
|
length=len(assets), |
178
|
|
|
item_show_func=lambda i: i if i is None else str(i[0]), |
179
|
|
|
label="Merging asset files:", |
180
|
|
|
) |
181
|
|
|
with pbar as pbar_iterator: |
182
|
|
|
return self._write_internal(filename, calendar, pbar_iterator) |
183
|
|
|
return self._write_internal(filename, calendar, _iterator) |
184
|
|
|
|
185
|
|
|
def _write_internal(self, filename, calendar, iterator): |
186
|
|
|
""" |
187
|
|
|
Internal implementation of write. |
188
|
|
|
|
189
|
|
|
`iterator` should be an iterator yielding pairs of (asset, ctable). |
190
|
|
|
""" |
191
|
|
|
total_rows = 0 |
192
|
|
|
first_row = {} |
193
|
|
|
last_row = {} |
194
|
|
|
calendar_offset = {} |
195
|
|
|
|
196
|
|
|
# Maps column name -> output carray. |
197
|
|
|
columns = { |
198
|
|
|
k: carray(array([], dtype=uint32)) |
199
|
|
|
for k in US_EQUITY_PRICING_BCOLZ_COLUMNS |
200
|
|
|
} |
201
|
|
|
|
202
|
|
|
for asset_id, table in iterator: |
203
|
|
|
nrows = len(table) |
204
|
|
|
for column_name in columns: |
205
|
|
|
if column_name == 'id': |
206
|
|
|
# We know what the content of this column is, so don't |
207
|
|
|
# bother reading it. |
208
|
|
|
columns['id'].append(full((nrows,), asset_id)) |
209
|
|
|
continue |
210
|
|
|
columns[column_name].append( |
211
|
|
|
self.to_uint32(table[column_name][:], column_name) |
212
|
|
|
) |
213
|
|
|
|
214
|
|
|
# Bcolz doesn't support ints as keys in `attrs`, so convert |
215
|
|
|
# assets to strings for use as attr keys. |
216
|
|
|
asset_key = str(asset_id) |
217
|
|
|
|
218
|
|
|
# Calculate the index into the array of the first and last row |
219
|
|
|
# for this asset. This allows us to efficiently load single |
220
|
|
|
# assets when querying the data back out of the table. |
221
|
|
|
first_row[asset_key] = total_rows |
222
|
|
|
last_row[asset_key] = total_rows + nrows - 1 |
223
|
|
|
total_rows += nrows |
224
|
|
|
|
225
|
|
|
# Calculate the number of trading days between the first date |
226
|
|
|
# in the stored data and the first date of **this** asset. This |
227
|
|
|
# offset used for output alignment by the reader. |
228
|
|
|
|
229
|
|
|
# HACK: Index with a list so that we get back an array we can pass |
230
|
|
|
# to self.to_uint32. We could try to extract this in the loop |
231
|
|
|
# above, but that makes the logic a lot messier. |
232
|
|
|
asset_first_day = self.to_uint32(table['day'][[0]], 'day')[0] |
233
|
|
|
calendar_offset[asset_key] = calendar.get_loc( |
234
|
|
|
Timestamp(asset_first_day, unit='s', tz='UTC'), |
235
|
|
|
) |
236
|
|
|
|
237
|
|
|
# This writes the table to disk. |
238
|
|
|
full_table = ctable( |
239
|
|
|
columns=[ |
240
|
|
|
columns[colname] |
241
|
|
|
for colname in US_EQUITY_PRICING_BCOLZ_COLUMNS |
242
|
|
|
], |
243
|
|
|
names=US_EQUITY_PRICING_BCOLZ_COLUMNS, |
244
|
|
|
rootdir=filename, |
245
|
|
|
mode='w', |
246
|
|
|
) |
247
|
|
|
full_table.attrs['first_row'] = first_row |
248
|
|
|
full_table.attrs['last_row'] = last_row |
249
|
|
|
full_table.attrs['calendar_offset'] = calendar_offset |
250
|
|
|
full_table.attrs['calendar'] = calendar.asi8.tolist() |
251
|
|
|
return full_table |
252
|
|
|
|
253
|
|
|
|
254
|
|
|
class DailyBarWriterFromCSVs(BcolzDailyBarWriter): |
255
|
|
|
""" |
256
|
|
|
BcolzDailyBarWriter constructed from a map from csvs to assets. |
257
|
|
|
|
258
|
|
|
Parameters |
259
|
|
|
---------- |
260
|
|
|
asset_map : dict |
261
|
|
|
A map from asset_id -> path to csv with data for that asset. |
262
|
|
|
|
263
|
|
|
CSVs should have the following columns: |
264
|
|
|
day : datetime64 |
265
|
|
|
open : float64 |
266
|
|
|
high : float64 |
267
|
|
|
low : float64 |
268
|
|
|
close : float64 |
269
|
|
|
volume : int64 |
270
|
|
|
""" |
271
|
|
|
_csv_dtypes = { |
272
|
|
|
'open': float64, |
273
|
|
|
'high': float64, |
274
|
|
|
'low': float64, |
275
|
|
|
'close': float64, |
276
|
|
|
'volume': float64, |
277
|
|
|
} |
278
|
|
|
|
279
|
|
|
def __init__(self, asset_map): |
280
|
|
|
self._asset_map = asset_map |
281
|
|
|
|
282
|
|
|
def gen_tables(self, assets): |
283
|
|
|
""" |
284
|
|
|
Read CSVs as DataFrames from our asset map. |
285
|
|
|
""" |
286
|
|
|
dtypes = self._csv_dtypes |
287
|
|
|
for asset in assets: |
288
|
|
|
path = self._asset_map.get(asset) |
289
|
|
|
if path is None: |
290
|
|
|
raise KeyError("No path supplied for asset %s" % asset) |
291
|
|
|
data = read_csv(path, parse_dates=['day'], dtype=dtypes) |
292
|
|
|
yield asset, ctable.fromdataframe(data) |
293
|
|
|
|
294
|
|
|
def to_uint32(self, array, colname): |
|
|
|
|
295
|
|
|
arrmax = array.max() |
296
|
|
|
if colname in OHLC: |
297
|
|
|
self.check_uint_safe(arrmax * 1000, colname) |
298
|
|
|
return (array * 1000).astype(uint32) |
299
|
|
|
elif colname == 'volume': |
300
|
|
|
self.check_uint_safe(arrmax, colname) |
301
|
|
|
return array.astype(uint32) |
302
|
|
|
elif colname == 'day': |
303
|
|
|
nanos_per_second = (1000 * 1000 * 1000) |
304
|
|
|
self.check_uint_safe(arrmax.view(int) / nanos_per_second, colname) |
305
|
|
|
return (array.view(int) / nanos_per_second).astype(uint32) |
306
|
|
|
|
307
|
|
|
@staticmethod |
308
|
|
|
def check_uint_safe(value, colname): |
309
|
|
|
if value >= UINT32_MAX: |
310
|
|
|
raise ValueError( |
311
|
|
|
"Value %s from column '%s' is too large" % (value, colname) |
312
|
|
|
) |
313
|
|
|
|
314
|
|
|
|
315
|
|
|
class BcolzDailyBarReader(object): |
316
|
|
|
""" |
317
|
|
|
Reader for raw pricing data written by BcolzDailyOHLCVWriter. |
318
|
|
|
|
319
|
|
|
A Bcolz CTable is comprised of Columns and Attributes. |
320
|
|
|
|
321
|
|
|
Columns |
322
|
|
|
------- |
323
|
|
|
The table with which this loader interacts contains the following columns: |
324
|
|
|
|
325
|
|
|
['open', 'high', 'low', 'close', 'volume', 'day', 'id']. |
326
|
|
|
|
327
|
|
|
The data in these columns is interpreted as follows: |
328
|
|
|
|
329
|
|
|
- Price columns ('open', 'high', 'low', 'close') are interpreted as 1000 * |
330
|
|
|
as-traded dollar value. |
331
|
|
|
- Volume is interpreted as as-traded volume. |
332
|
|
|
- Day is interpreted as seconds since midnight UTC, Jan 1, 1970. |
333
|
|
|
- Id is the asset id of the row. |
334
|
|
|
|
335
|
|
|
The data in each column is grouped by asset and then sorted by day within |
336
|
|
|
each asset block. |
337
|
|
|
|
338
|
|
|
The table is built to represent a long time range of data, e.g. ten years |
339
|
|
|
of equity data, so the lengths of each asset block is not equal to each |
340
|
|
|
other. The blocks are clipped to the known start and end date of each asset |
341
|
|
|
to cut down on the number of empty values that would need to be included to |
342
|
|
|
make a regular/cubic dataset. |
343
|
|
|
|
344
|
|
|
When read across the open, high, low, close, and volume with the same |
345
|
|
|
index should represent the same asset and day. |
346
|
|
|
|
347
|
|
|
Attributes |
348
|
|
|
---------- |
349
|
|
|
The table with which this loader interacts contains the following |
350
|
|
|
attributes: |
351
|
|
|
|
352
|
|
|
first_row : dict |
353
|
|
|
Map from asset_id -> index of first row in the dataset with that id. |
354
|
|
|
last_row : dict |
355
|
|
|
Map from asset_id -> index of last row in the dataset with that id. |
356
|
|
|
calendar_offset : dict |
357
|
|
|
Map from asset_id -> calendar index of first row. |
358
|
|
|
calendar : list[int64] |
359
|
|
|
Calendar used to compute offsets, in asi8 format (ns since EPOCH). |
360
|
|
|
|
361
|
|
|
We use first_row and last_row together to quickly find ranges of rows to |
362
|
|
|
load when reading an asset's data into memory. |
363
|
|
|
|
364
|
|
|
We use calendar_offset and calendar to orient loaded blocks within a |
365
|
|
|
range of queried dates. |
366
|
|
|
""" |
367
|
|
|
def __init__(self, table): |
368
|
|
|
if isinstance(table, string_types): |
369
|
|
|
table = ctable(rootdir=table, mode='r') |
370
|
|
|
|
371
|
|
|
self._table = table |
372
|
|
|
self._calendar = DatetimeIndex(table.attrs['calendar'], tz='UTC') |
373
|
|
|
self._first_rows = { |
374
|
|
|
int(asset_id): start_index |
375
|
|
|
for asset_id, start_index in iteritems(table.attrs['first_row']) |
376
|
|
|
} |
377
|
|
|
self._last_rows = { |
378
|
|
|
int(asset_id): end_index |
379
|
|
|
for asset_id, end_index in iteritems(table.attrs['last_row']) |
380
|
|
|
} |
381
|
|
|
self._calendar_offsets = { |
382
|
|
|
int(id_): offset |
383
|
|
|
for id_, offset in iteritems(table.attrs['calendar_offset']) |
384
|
|
|
} |
385
|
|
|
# Cache of fully read np.array for the carrays in the daily bar table. |
386
|
|
|
# raw_array does not use the same cache, but it could. |
387
|
|
|
# Need to test keeping the entire array in memory for the course of a |
388
|
|
|
# process first. |
389
|
|
|
self._spot_cols = {} |
390
|
|
|
|
391
|
|
|
self.PRICE_ADJUSTMENT_FACTOR = 0.001 |
392
|
|
|
|
393
|
|
|
def _compute_slices(self, start_idx, end_idx, assets): |
394
|
|
|
""" |
395
|
|
|
Compute the raw row indices to load for each asset on a query for the |
396
|
|
|
given dates after applying a shift. |
397
|
|
|
|
398
|
|
|
Parameters |
399
|
|
|
---------- |
400
|
|
|
start_idx : int |
401
|
|
|
Index of first date for which we want data. |
402
|
|
|
end_idx : int |
403
|
|
|
Index of last date for which we want data. |
404
|
|
|
assets : pandas.Int64Index |
405
|
|
|
Assets for which we want to compute row indices |
406
|
|
|
|
407
|
|
|
Returns |
408
|
|
|
------- |
409
|
|
|
A 3-tuple of (first_rows, last_rows, offsets): |
410
|
|
|
first_rows : np.array[intp] |
411
|
|
|
Array with length == len(assets) containing the index of the first |
412
|
|
|
row to load for each asset in `assets`. |
413
|
|
|
last_rows : np.array[intp] |
414
|
|
|
Array with length == len(assets) containing the index of the last |
415
|
|
|
row to load for each asset in `assets`. |
416
|
|
|
offset : np.array[intp] |
417
|
|
|
Array with length == (len(asset) containing the index in a buffer |
418
|
|
|
of length `dates` corresponding to the first row of each asset. |
419
|
|
|
|
420
|
|
|
The value of offset[i] will be 0 if asset[i] existed at the start |
421
|
|
|
of a query. Otherwise, offset[i] will be equal to the number of |
422
|
|
|
entries in `dates` for which the asset did not yet exist. |
423
|
|
|
""" |
424
|
|
|
# The core implementation of the logic here is implemented in Cython |
425
|
|
|
# for efficiency. |
426
|
|
|
return _compute_row_slices( |
427
|
|
|
self._first_rows, |
428
|
|
|
self._last_rows, |
429
|
|
|
self._calendar_offsets, |
430
|
|
|
start_idx, |
431
|
|
|
end_idx, |
432
|
|
|
assets, |
433
|
|
|
) |
434
|
|
|
|
435
|
|
|
def load_raw_arrays(self, columns, start_date, end_date, assets): |
436
|
|
|
# Assumes that the given dates are actually in calendar. |
437
|
|
|
start_idx = self._calendar.get_loc(start_date) |
438
|
|
|
end_idx = self._calendar.get_loc(end_date) |
439
|
|
|
first_rows, last_rows, offsets = self._compute_slices( |
440
|
|
|
start_idx, |
441
|
|
|
end_idx, |
442
|
|
|
assets, |
443
|
|
|
) |
444
|
|
|
return _read_bcolz_data( |
445
|
|
|
self._table, |
446
|
|
|
(end_idx - start_idx + 1, len(assets)), |
447
|
|
|
[column.name for column in columns], |
448
|
|
|
first_rows, |
449
|
|
|
last_rows, |
450
|
|
|
offsets, |
451
|
|
|
) |
452
|
|
|
|
453
|
|
|
def history_window(self, column, start_date, end_date, asset): |
454
|
|
|
start_idx = self.sid_day_index(asset, start_date) |
455
|
|
|
end_idx = self.sid_day_index(asset, end_date) + 1 |
456
|
|
|
col = self._spot_col(column) |
457
|
|
|
window = col[start_idx:end_idx] |
458
|
|
|
if column != 'volume': |
459
|
|
|
window = window.astype(float64) * self.PRICE_ADJUSTMENT_FACTOR |
460
|
|
|
return window |
461
|
|
|
|
462
|
|
|
def _spot_col(self, colname): |
463
|
|
|
""" |
464
|
|
|
Get the colname from daily_bar_table and read all of it into memory, |
465
|
|
|
caching the result. |
466
|
|
|
|
467
|
|
|
Parameters |
468
|
|
|
---------- |
469
|
|
|
colname : string |
470
|
|
|
A name of a OHLCV carray in the daily_bar_table |
471
|
|
|
|
472
|
|
|
Returns |
473
|
|
|
------- |
474
|
|
|
array (uint32) |
475
|
|
|
Full read array of the carray in the daily_bar_table with the |
476
|
|
|
given colname. |
477
|
|
|
""" |
478
|
|
|
try: |
479
|
|
|
col = self._spot_cols[colname] |
480
|
|
|
except KeyError: |
481
|
|
|
col = self._spot_cols[colname] = self._table[colname] |
482
|
|
|
return col |
483
|
|
|
|
484
|
|
|
def sid_day_index(self, sid, day): |
485
|
|
|
""" |
486
|
|
|
Parameters |
487
|
|
|
---------- |
488
|
|
|
sid : int |
489
|
|
|
The asset identifier. |
490
|
|
|
day : datetime64-like |
491
|
|
|
Midnight of the day for which data is requested. |
492
|
|
|
|
493
|
|
|
Returns |
494
|
|
|
------- |
495
|
|
|
int |
496
|
|
|
Index into the data tape for the given sid and day. |
497
|
|
|
Raises a NoDataOnDate exception if the given day and sid is before |
498
|
|
|
or after the date range of the equity. |
499
|
|
|
""" |
500
|
|
|
try: |
501
|
|
|
day_loc = self._calendar.get_loc(day) |
502
|
|
|
except KeyError: |
503
|
|
|
raise NoDataOnDate("day={0} is outside of calendar={1}".format( |
504
|
|
|
day, self._calendar)) |
505
|
|
|
offset = day_loc - self._calendar_offsets[sid] |
506
|
|
|
if offset < 0: |
507
|
|
|
raise NoDataOnDate( |
508
|
|
|
"No data on or before day={0} for sid={1}".format( |
509
|
|
|
day, sid)) |
510
|
|
|
ix = self._first_rows[sid] + offset |
511
|
|
|
if ix > self._last_rows[sid]: |
512
|
|
|
raise NoDataOnDate( |
513
|
|
|
"No data on or after day={0} for sid={1}".format( |
514
|
|
|
day, sid)) |
515
|
|
|
return ix |
516
|
|
|
|
517
|
|
|
def spot_price(self, sid, day, colname): |
518
|
|
|
""" |
519
|
|
|
Parameters |
520
|
|
|
---------- |
521
|
|
|
sid : int |
522
|
|
|
The asset identifier. |
523
|
|
|
day : datetime64-like |
524
|
|
|
Midnight of the day for which data is requested. |
525
|
|
|
colname : string |
526
|
|
|
The price field. e.g. ('open', 'high', 'low', 'close', 'volume') |
527
|
|
|
|
528
|
|
|
Returns |
529
|
|
|
------- |
530
|
|
|
float |
531
|
|
|
The spot price for colname of the given sid on the given day. |
532
|
|
|
Raises a NoDataOnDate exception if the given day and sid is before |
533
|
|
|
or after the date range of the equity. |
534
|
|
|
Returns -1 if the day is within the date range, but the price is |
535
|
|
|
0. |
536
|
|
|
""" |
537
|
|
|
ix = self.sid_day_index(sid, day) |
538
|
|
|
price = self._spot_col(colname)[ix] |
539
|
|
|
if price == 0: |
540
|
|
|
return -1 |
541
|
|
|
if colname != 'volume': |
542
|
|
|
return price * 0.001 |
543
|
|
|
else: |
544
|
|
|
return price |
545
|
|
|
|
546
|
|
|
|
547
|
|
|
class SQLiteAdjustmentWriter(object): |
548
|
|
|
""" |
549
|
|
|
Writer for data to be read by SQLiteAdjustmentReader |
550
|
|
|
|
551
|
|
|
Parameters |
552
|
|
|
---------- |
553
|
|
|
conn_or_path : str or sqlite3.Connection |
554
|
|
|
A handle to the target sqlite database. |
555
|
|
|
overwrite : bool, optional, default=False |
556
|
|
|
If True and conn_or_path is a string, remove any existing files at the |
557
|
|
|
given path before connecting. |
558
|
|
|
|
559
|
|
|
See Also |
560
|
|
|
-------- |
561
|
|
|
SQLiteAdjustmentReader |
562
|
|
|
""" |
563
|
|
|
|
564
|
|
|
def __init__(self, conn_or_path, calendar, daily_bar_reader, |
565
|
|
|
overwrite=False): |
566
|
|
|
if isinstance(conn_or_path, sqlite3.Connection): |
567
|
|
|
self.conn = conn_or_path |
568
|
|
|
elif isinstance(conn_or_path, str): |
569
|
|
|
if overwrite and exists(conn_or_path): |
570
|
|
|
try: |
571
|
|
|
remove(conn_or_path) |
572
|
|
|
except OSError as e: |
573
|
|
|
if e.errno != ENOENT: |
574
|
|
|
raise |
575
|
|
|
self.conn = sqlite3.connect(conn_or_path) |
576
|
|
|
else: |
577
|
|
|
raise TypeError("Unknown connection type %s" % type(conn_or_path)) |
578
|
|
|
|
579
|
|
|
self._daily_bar_reader = daily_bar_reader |
580
|
|
|
self._calendar = calendar |
581
|
|
|
|
582
|
|
|
def write_frame(self, tablename, frame): |
583
|
|
|
if frozenset(frame.columns) != SQLITE_ADJUSTMENT_COLUMNS: |
584
|
|
|
raise ValueError( |
585
|
|
|
"Unexpected frame columns:\n" |
586
|
|
|
"Expected Columns: %s\n" |
587
|
|
|
"Received Columns: %s" % ( |
588
|
|
|
SQLITE_ADJUSTMENT_COLUMNS, |
589
|
|
|
frame.columns.tolist(), |
590
|
|
|
) |
591
|
|
|
) |
592
|
|
|
elif tablename not in SQLITE_ADJUSTMENT_TABLENAMES: |
593
|
|
|
raise ValueError( |
594
|
|
|
"Adjustment table %s not in %s" % ( |
595
|
|
|
tablename, SQLITE_ADJUSTMENT_TABLENAMES |
596
|
|
|
) |
597
|
|
|
) |
598
|
|
|
|
599
|
|
|
expected_dtypes = SQLITE_ADJUSTMENT_COLUMN_DTYPES |
600
|
|
|
actual_dtypes = frame.dtypes |
601
|
|
|
for colname, expected in iteritems(expected_dtypes): |
602
|
|
|
actual = actual_dtypes[colname] |
603
|
|
|
if not issubdtype(actual, expected): |
604
|
|
|
raise TypeError( |
605
|
|
|
"Expected data of type {expected} for column '{colname}', " |
606
|
|
|
"but got {actual}.".format( |
607
|
|
|
expected=expected, |
608
|
|
|
colname=colname, |
609
|
|
|
actual=actual, |
610
|
|
|
) |
611
|
|
|
) |
612
|
|
|
return frame.to_sql(tablename, self.conn) |
613
|
|
|
|
614
|
|
|
def write_dividend_payouts(self, frame): |
615
|
|
|
""" |
616
|
|
|
Write dividend payout data to SQLite table `dividend_payouts`. |
617
|
|
|
""" |
618
|
|
|
if frozenset(frame.columns) != SQLITE_DIVIDEND_PAYOUT_COLUMNS: |
619
|
|
|
raise ValueError( |
620
|
|
|
"Unexpected frame columns:\n" |
621
|
|
|
"Expected Columns: %s\n" |
622
|
|
|
"Received Columns: %s" % ( |
623
|
|
|
sorted(SQLITE_DIVIDEND_PAYOUT_COLUMNS), |
624
|
|
|
sorted(frame.columns.tolist()), |
625
|
|
|
) |
626
|
|
|
) |
627
|
|
|
|
628
|
|
|
expected_dtypes = SQLITE_DIVIDEND_PAYOUT_COLUMN_DTYPES |
629
|
|
|
actual_dtypes = frame.dtypes |
630
|
|
|
for colname, expected in iteritems(expected_dtypes): |
631
|
|
|
actual = actual_dtypes[colname] |
632
|
|
|
if not issubdtype(actual, expected): |
633
|
|
|
raise TypeError( |
634
|
|
|
"Expected data of type {expected} for column '{colname}', " |
635
|
|
|
"but got {actual}.".format( |
636
|
|
|
expected=expected, |
637
|
|
|
colname=colname, |
638
|
|
|
actual=actual, |
639
|
|
|
) |
640
|
|
|
) |
641
|
|
|
return frame.to_sql('dividend_payouts', self.conn) |
642
|
|
|
|
643
|
|
|
def write_stock_dividend_payouts(self, frame): |
644
|
|
|
if frozenset(frame.columns) != SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMNS: |
645
|
|
|
raise ValueError( |
646
|
|
|
"Unexpected frame columns:\n" |
647
|
|
|
"Expected Columns: %s\n" |
648
|
|
|
"Received Columns: %s" % ( |
649
|
|
|
sorted(SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMNS), |
650
|
|
|
sorted(frame.columns.tolist()), |
651
|
|
|
) |
652
|
|
|
) |
653
|
|
|
|
654
|
|
|
expected_dtypes = SQLITE_STOCK_DIVIDEND_PAYOUT_COLUMN_DTYPES |
655
|
|
|
actual_dtypes = frame.dtypes |
656
|
|
|
for colname, expected in iteritems(expected_dtypes): |
657
|
|
|
actual = actual_dtypes[colname] |
658
|
|
|
if not issubdtype(actual, expected): |
659
|
|
|
raise TypeError( |
660
|
|
|
"Expected data of type {expected} for column '{colname}', " |
661
|
|
|
"but got {actual}.".format( |
662
|
|
|
expected=expected, |
663
|
|
|
colname=colname, |
664
|
|
|
actual=actual, |
665
|
|
|
) |
666
|
|
|
) |
667
|
|
|
return frame.to_sql('stock_dividend_payouts', self.conn) |
668
|
|
|
|
669
|
|
|
def calc_dividend_ratios(self, dividends): |
670
|
|
|
""" |
671
|
|
|
Calculate the ratios to apply to equities when looking back at pricing |
672
|
|
|
history so that the price is smoothed over the ex_date, when the market |
673
|
|
|
adjusts to the change in equity value due to upcoming dividend. |
674
|
|
|
|
675
|
|
|
Returns |
676
|
|
|
------- |
677
|
|
|
DataFrame |
678
|
|
|
A frame in the same format as splits and mergers, with keys |
679
|
|
|
- sid, the id of the equity |
680
|
|
|
- effective_date, the date in seconds on which to apply the ratio. |
681
|
|
|
- ratio, the ratio to apply to backwards looking pricing data. |
682
|
|
|
""" |
683
|
|
|
ex_dates = dividends.ex_date.values |
684
|
|
|
|
685
|
|
|
sids = dividends.sid.values |
686
|
|
|
amounts = dividends.amount.values |
687
|
|
|
|
688
|
|
|
ratios = full(len(amounts), nan) |
689
|
|
|
|
690
|
|
|
daily_bar_reader = self._daily_bar_reader |
691
|
|
|
|
692
|
|
|
calendar = self._calendar |
693
|
|
|
|
694
|
|
|
effective_dates = full(len(amounts), -1, dtype=int64) |
695
|
|
|
|
696
|
|
|
for i, amount in enumerate(amounts): |
697
|
|
|
sid = sids[i] |
698
|
|
|
ex_date = ex_dates[i] |
699
|
|
|
day_loc = calendar.get_loc(ex_date) |
700
|
|
|
prev_close_date = calendar[day_loc - 1] |
701
|
|
|
try: |
702
|
|
|
prev_close = daily_bar_reader.spot_price( |
703
|
|
|
sid, prev_close_date, 'close') |
704
|
|
|
if prev_close != 0.0: |
705
|
|
|
ratio = 1.0 - amount / prev_close |
706
|
|
|
ratios[i] = ratio |
707
|
|
|
# only assign effective_date when data is found |
708
|
|
|
effective_dates[i] = ex_date |
709
|
|
|
except NoDataOnDate: |
710
|
|
|
logger.warn("Couldn't compute ratio for dividend %s" % { |
711
|
|
|
'sid': sid, |
712
|
|
|
'ex_date': ex_date, |
713
|
|
|
'amount': amount, |
714
|
|
|
}) |
715
|
|
|
continue |
716
|
|
|
|
717
|
|
|
# Create a mask to filter out indices in the effective_date, sid, and |
718
|
|
|
# ratio vectors for which a ratio was not calculable. |
719
|
|
|
effective_mask = effective_dates != -1 |
720
|
|
|
effective_dates = effective_dates[effective_mask] |
721
|
|
|
effective_dates = effective_dates.astype('datetime64[ns]').\ |
722
|
|
|
astype('datetime64[s]').astype(uint32) |
723
|
|
|
sids = sids[effective_mask] |
724
|
|
|
ratios = ratios[effective_mask] |
725
|
|
|
|
726
|
|
|
return DataFrame({ |
727
|
|
|
'sid': sids, |
728
|
|
|
'effective_date': effective_dates, |
729
|
|
|
'ratio': ratios, |
730
|
|
|
}) |
731
|
|
|
|
732
|
|
|
def write_dividend_data(self, dividends, stock_dividends=None): |
733
|
|
|
""" |
734
|
|
|
Write both dividend payouts and the derived price adjustment ratios. |
735
|
|
|
""" |
736
|
|
|
|
737
|
|
|
# First write the dividend payouts. |
738
|
|
|
dividend_payouts = dividends.copy() |
739
|
|
|
dividend_payouts['ex_date'] = dividend_payouts['ex_date'].values.\ |
740
|
|
|
astype('datetime64[s]').astype(integer) |
741
|
|
|
dividend_payouts['record_date'] = \ |
742
|
|
|
dividend_payouts['record_date'].values.astype('datetime64[s]').\ |
743
|
|
|
astype(integer) |
744
|
|
|
dividend_payouts['declared_date'] = \ |
745
|
|
|
dividend_payouts['declared_date'].values.astype('datetime64[s]').\ |
746
|
|
|
astype(integer) |
747
|
|
|
dividend_payouts['pay_date'] = \ |
748
|
|
|
dividend_payouts['pay_date'].values.astype('datetime64[s]').\ |
749
|
|
|
astype(integer) |
750
|
|
|
|
751
|
|
|
self.write_dividend_payouts(dividend_payouts) |
752
|
|
|
|
753
|
|
|
if stock_dividends is not None: |
754
|
|
|
stock_dividend_payouts = stock_dividends.copy() |
755
|
|
|
stock_dividend_payouts['ex_date'] = \ |
756
|
|
|
stock_dividend_payouts['ex_date'].values.\ |
757
|
|
|
astype('datetime64[s]').astype(integer) |
758
|
|
|
stock_dividend_payouts['record_date'] = \ |
759
|
|
|
stock_dividend_payouts['record_date'].values.\ |
760
|
|
|
astype('datetime64[s]').astype(integer) |
761
|
|
|
stock_dividend_payouts['declared_date'] = \ |
762
|
|
|
stock_dividend_payouts['declared_date'].\ |
763
|
|
|
values.astype('datetime64[s]').astype(integer) |
764
|
|
|
stock_dividend_payouts['pay_date'] = \ |
765
|
|
|
stock_dividend_payouts['pay_date'].\ |
766
|
|
|
values.astype('datetime64[s]').astype(integer) |
767
|
|
|
else: |
768
|
|
|
stock_dividend_payouts = DataFrame({ |
769
|
|
|
'sid': array([], dtype=uint32), |
770
|
|
|
'record_date': array([], dtype=uint32), |
771
|
|
|
'ex_date': array([], dtype=uint32), |
772
|
|
|
'declared_date': array([], dtype=uint32), |
773
|
|
|
'pay_date': array([], dtype=uint32), |
774
|
|
|
'payment_sid': array([], dtype=uint32), |
775
|
|
|
'ratio': array([], dtype=float), |
776
|
|
|
}) |
777
|
|
|
|
778
|
|
|
self.write_stock_dividend_payouts(stock_dividend_payouts) |
779
|
|
|
|
780
|
|
|
# Second from the dividend payouts, calculate ratios. |
781
|
|
|
|
782
|
|
|
dividend_ratios = self.calc_dividend_ratios(dividends) |
783
|
|
|
|
784
|
|
|
self.write_frame('dividends', dividend_ratios) |
785
|
|
|
|
786
|
|
|
def write(self, splits, mergers, dividends, stock_dividends=None): |
787
|
|
|
""" |
788
|
|
|
Writes data to a SQLite file to be read by SQLiteAdjustmentReader. |
789
|
|
|
|
790
|
|
|
Parameters |
791
|
|
|
---------- |
792
|
|
|
splits : pandas.DataFrame |
793
|
|
|
Dataframe containing split data. |
794
|
|
|
mergers : pandas.DataFrame |
795
|
|
|
DataFrame containing merger data. |
796
|
|
|
dividends : pandas.DataFrame |
797
|
|
|
DataFrame containing dividend data. |
798
|
|
|
|
799
|
|
|
Notes |
800
|
|
|
----- |
801
|
|
|
DataFrame input (`splits`, `mergers`) should all have |
802
|
|
|
the following columns: |
803
|
|
|
|
804
|
|
|
effective_date : int |
805
|
|
|
The date, represented as seconds since Unix epoch, on which the |
806
|
|
|
adjustment should be applied. |
807
|
|
|
ratio : float |
808
|
|
|
A value to apply to all data earlier than the effective date. |
809
|
|
|
sid : int |
810
|
|
|
The asset id associated with this adjustment. |
811
|
|
|
|
812
|
|
|
The ratio column is interpreted as follows: |
813
|
|
|
- For all adjustment types, multiply price fields ('open', 'high', |
814
|
|
|
'low', and 'close') by the ratio. |
815
|
|
|
- For **splits only**, **divide** volume by the adjustment ratio. |
816
|
|
|
|
817
|
|
|
DataFrame input, 'dividends' should have the following columns: |
818
|
|
|
|
819
|
|
|
sid : int |
820
|
|
|
The asset id associated with this adjustment. |
821
|
|
|
ex_date : datetime64 |
822
|
|
|
The date on which an equity must be held to be eligible to receive |
823
|
|
|
payment. |
824
|
|
|
declared_date : datetime64 |
825
|
|
|
The date on which the dividend is announced to the public. |
826
|
|
|
pay_date : datetime64 |
827
|
|
|
The date on which the dividend is distributed. |
828
|
|
|
record_date : datetime64 |
829
|
|
|
The date on which the stock ownership is checked to determine |
830
|
|
|
distribution of dividends. |
831
|
|
|
amount : float |
832
|
|
|
The cash amount paid for each share. |
833
|
|
|
|
834
|
|
|
Dividend ratios are calculated as |
835
|
|
|
1.0 - (dividend_value / "close on day prior to dividend ex_date"). |
836
|
|
|
|
837
|
|
|
|
838
|
|
|
DataFrame input, 'stock_dividends' should have the following columns: |
839
|
|
|
|
840
|
|
|
sid : int |
841
|
|
|
The asset id associated with this adjustment. |
842
|
|
|
ex_date : datetime64 |
843
|
|
|
The date on which an equity must be held to be eligible to receive |
844
|
|
|
payment. |
845
|
|
|
declared_date : datetime64 |
846
|
|
|
The date on which the dividend is announced to the public. |
847
|
|
|
pay_date : datetime64 |
848
|
|
|
The date on which the dividend is distributed. |
849
|
|
|
record_date : datetime64 |
850
|
|
|
The date on which the stock ownership is checked to determine |
851
|
|
|
distribution of dividends. |
852
|
|
|
payment_sid : int |
853
|
|
|
The asset id of the shares that should be paid instead of cash. |
854
|
|
|
ratio: float |
855
|
|
|
The ratio of currently held shares in the held sid that should |
856
|
|
|
be paid with new shares of the payment_sid. |
857
|
|
|
|
858
|
|
|
stock_dividends is optional. |
859
|
|
|
|
860
|
|
|
|
861
|
|
|
Returns |
862
|
|
|
------- |
863
|
|
|
None |
864
|
|
|
|
865
|
|
|
See Also |
866
|
|
|
-------- |
867
|
|
|
SQLiteAdjustmentReader : Consumer for the data written by this class |
868
|
|
|
""" |
869
|
|
|
self.write_frame('splits', splits) |
870
|
|
|
self.write_frame('mergers', mergers) |
871
|
|
|
self.write_dividend_data(dividends, stock_dividends) |
872
|
|
|
self.conn.execute( |
873
|
|
|
"CREATE INDEX splits_sids " |
874
|
|
|
"ON splits(sid)" |
875
|
|
|
) |
876
|
|
|
self.conn.execute( |
877
|
|
|
"CREATE INDEX splits_effective_date " |
878
|
|
|
"ON splits(effective_date)" |
879
|
|
|
) |
880
|
|
|
self.conn.execute( |
881
|
|
|
"CREATE INDEX mergers_sids " |
882
|
|
|
"ON mergers(sid)" |
883
|
|
|
) |
884
|
|
|
self.conn.execute( |
885
|
|
|
"CREATE INDEX mergers_effective_date " |
886
|
|
|
"ON mergers(effective_date)" |
887
|
|
|
) |
888
|
|
|
self.conn.execute( |
889
|
|
|
"CREATE INDEX dividends_sid " |
890
|
|
|
"ON dividends(sid)" |
891
|
|
|
) |
892
|
|
|
self.conn.execute( |
893
|
|
|
"CREATE INDEX dividends_effective_date " |
894
|
|
|
"ON dividends(effective_date)" |
895
|
|
|
) |
896
|
|
|
self.conn.execute( |
897
|
|
|
"CREATE INDEX dividend_payouts_sid " |
898
|
|
|
"ON dividend_payouts(sid)" |
899
|
|
|
) |
900
|
|
|
self.conn.execute( |
901
|
|
|
"CREATE INDEX dividends_payouts_ex_date " |
902
|
|
|
"ON dividend_payouts(ex_date)" |
903
|
|
|
) |
904
|
|
|
self.conn.execute( |
905
|
|
|
"CREATE INDEX stock_dividend_payouts_sid " |
906
|
|
|
"ON stock_dividend_payouts(sid)" |
907
|
|
|
) |
908
|
|
|
self.conn.execute( |
909
|
|
|
"CREATE INDEX stock_dividends_payouts_ex_date " |
910
|
|
|
"ON stock_dividend_payouts(ex_date)" |
911
|
|
|
) |
912
|
|
|
|
913
|
|
|
def close(self): |
914
|
|
|
self.conn.close() |
915
|
|
|
|
916
|
|
|
|
917
|
|
|
UNPAID_QUERY_TEMPLATE = """ |
918
|
|
|
SELECT sid, amount, pay_date from dividend_payouts |
919
|
|
|
WHERE ex_date=? AND sid IN ({0}) |
920
|
|
|
""" |
921
|
|
|
|
922
|
|
|
Dividend = namedtuple('Dividend', ['sid', 'amount', 'pay_date']) |
923
|
|
|
|
924
|
|
|
UNPAID_STOCK_DIVIDEND_QUERY_TEMPLATE = """ |
925
|
|
|
SELECT sid, payment_sid, ratio, pay_date from stock_dividend_payouts |
926
|
|
|
WHERE ex_date=? AND sid IN ({0}) |
927
|
|
|
""" |
928
|
|
|
|
929
|
|
|
StockDividend = namedtuple( |
930
|
|
|
'StockDividend', |
931
|
|
|
['sid', 'payment_sid', 'ratio', 'pay_date']) |
932
|
|
|
|
933
|
|
|
|
934
|
|
|
class SQLiteAdjustmentReader(object): |
935
|
|
|
""" |
936
|
|
|
Loads adjustments based on corporate actions from a SQLite database. |
937
|
|
|
|
938
|
|
|
Expects data written in the format output by `SQLiteAdjustmentWriter`. |
939
|
|
|
|
940
|
|
|
Parameters |
941
|
|
|
---------- |
942
|
|
|
conn : str or sqlite3.Connection |
943
|
|
|
Connection from which to load data. |
944
|
|
|
""" |
945
|
|
|
|
946
|
|
|
def __init__(self, conn): |
947
|
|
|
if isinstance(conn, str): |
948
|
|
|
conn = sqlite3.connect(conn) |
949
|
|
|
self.conn = conn |
950
|
|
|
|
951
|
|
|
def load_adjustments(self, columns, dates, assets): |
952
|
|
|
return load_adjustments_from_sqlite( |
953
|
|
|
self.conn, |
954
|
|
|
[column.name for column in columns], |
955
|
|
|
dates, |
956
|
|
|
assets, |
957
|
|
|
) |
958
|
|
|
|
959
|
|
|
def get_adjustments_for_sid(self, table_name, sid): |
960
|
|
|
t = (sid,) |
961
|
|
|
c = self.conn.cursor() |
962
|
|
|
adjustments_for_sid = c.execute( |
963
|
|
|
"SELECT effective_date, ratio FROM %s WHERE sid = ?" % |
964
|
|
|
table_name, t).fetchall() |
965
|
|
|
c.close() |
966
|
|
|
|
967
|
|
|
return [[Timestamp(adjustment[0], unit='s', tz='UTC'), adjustment[1]] |
968
|
|
|
for adjustment in |
969
|
|
|
adjustments_for_sid] |
970
|
|
|
|
971
|
|
|
def get_dividends_with_ex_date(self, assets, date): |
972
|
|
|
seconds = date.value / int(1e9) |
973
|
|
|
c = self.conn.cursor() |
974
|
|
|
|
975
|
|
|
query = UNPAID_QUERY_TEMPLATE.format(",".join(['?' for _ in assets])) |
976
|
|
|
t = (seconds,) + tuple(map(lambda x: int(x), assets)) |
977
|
|
|
|
978
|
|
|
c.execute(query, t) |
979
|
|
|
|
980
|
|
|
rows = c.fetchall() |
981
|
|
|
c.close() |
982
|
|
|
divs = [] |
983
|
|
|
for row in rows: |
984
|
|
|
div = Dividend( |
985
|
|
|
row[0], row[1], Timestamp(row[2], unit='s', tz='UTC')) |
986
|
|
|
divs.append(div) |
987
|
|
|
return divs |
988
|
|
|
|
989
|
|
|
def get_stock_dividends_with_ex_date(self, assets, date): |
990
|
|
|
seconds = date.value / int(1e9) |
991
|
|
|
c = self.conn.cursor() |
992
|
|
|
|
993
|
|
|
query = UNPAID_STOCK_DIVIDEND_QUERY_TEMPLATE.format( |
994
|
|
|
",".join(['?' for _ in assets])) |
995
|
|
|
t = (seconds,) + tuple(map(lambda x: int(x), assets)) |
996
|
|
|
|
997
|
|
|
c.execute(query, t) |
998
|
|
|
|
999
|
|
|
rows = c.fetchall() |
1000
|
|
|
c.close() |
1001
|
|
|
|
1002
|
|
|
stock_divs = [] |
1003
|
|
|
for row in rows: |
1004
|
|
|
stock_div = StockDividend( |
1005
|
|
|
row[0], row[1], row[2], Timestamp(row[3], unit='s', tz='UTC')) |
1006
|
|
|
stock_divs.append(stock_div) |
1007
|
|
|
return stock_divs |
1008
|
|
|
|
Duplicated code is one of the most pungent code smells. If you need to duplicate the same code in three or more different places, we strongly encourage you to look into extracting the code into a single class or operation.
You can also find more detailed suggestions in the “Code” section of your repository.