Conditions | 6 |
Total Lines | 108 |
Lines | 0 |
Ratio | 0 % |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # |
||
79 | def _initialize_precalculated_series(self, sid, env, trading_days, |
||
80 | data_portal): |
||
81 | """ |
||
82 | Internal method that precalculates the benchmark return series for |
||
83 | use in the simulation. |
||
84 | |||
85 | Parameters |
||
86 | ---------- |
||
87 | sid: (int) Asset to use |
||
88 | |||
89 | env: TradingEnvironment |
||
90 | |||
91 | trading_days: pd.DateTimeIndex |
||
92 | |||
93 | data_portal: DataPortal |
||
94 | |||
95 | Notes |
||
96 | ----- |
||
97 | If the benchmark asset started trading after the simulation start, |
||
98 | or finished trading before the simulation end, exceptions are raised. |
||
99 | |||
100 | If the benchmark asset started trading the same day as the simulation |
||
101 | start, the first available minute price on that day is used instead |
||
102 | of the previous close. |
||
103 | |||
104 | We use history to get an adjusted price history for each day's close, |
||
105 | as of the look-back date (the last day of the simulation). Prices are |
||
106 | fully adjusted for dividends, splits, and mergers. |
||
107 | |||
108 | Returns |
||
109 | ------- |
||
110 | A pd.Series, indexed by trading day, whose values represent the % |
||
111 | change from close to close. |
||
112 | """ |
||
113 | if sid is None: |
||
114 | # get benchmark info from trading environment, which defaults to |
||
115 | # downloading data from Yahoo. |
||
116 | daily_series = \ |
||
117 | env.benchmark_returns[trading_days[0]:trading_days[-1]] |
||
118 | |||
119 | if self.emission_rate == "minute": |
||
120 | # we need to take the env's benchmark returns, which are daily, |
||
121 | # and resample them to minute |
||
122 | minutes = env.minutes_for_days_in_range( |
||
123 | start=trading_days[0], |
||
124 | end=trading_days[-1] |
||
125 | ) |
||
126 | |||
127 | minute_series = daily_series.reindex( |
||
128 | index=minutes, |
||
129 | method="ffill" |
||
130 | ) |
||
131 | |||
132 | return minute_series |
||
133 | else: |
||
134 | return daily_series |
||
135 | elif self.emission_rate == "minute": |
||
136 | minutes = env.minutes_for_days_in_range(self.trading_days[0], |
||
137 | self.trading_days[-1]) |
||
138 | benchmark_series = data_portal.get_history_window( |
||
139 | [sid], |
||
140 | minutes[-1], |
||
141 | bar_count=len(minutes) + 1, |
||
142 | frequency="1m", |
||
143 | field="price", |
||
144 | ffill=True |
||
145 | ) |
||
146 | |||
147 | return benchmark_series.pct_change()[1:] |
||
148 | else: |
||
149 | start_date = env.asset_finder.retrieve_asset(sid).start_date |
||
150 | if start_date < trading_days[0]: |
||
151 | # get the window of close prices for benchmark_sid from the |
||
152 | # last trading day of the simulation, going up to one day |
||
153 | # before the simulation start day (so that we can get the % |
||
154 | # change on day 1) |
||
155 | benchmark_series = data_portal.get_history_window( |
||
156 | [sid], |
||
157 | trading_days[-1], |
||
158 | bar_count=len(trading_days) + 1, |
||
159 | frequency="1d", |
||
160 | field="price", |
||
161 | ffill=True |
||
162 | )[sid] |
||
163 | return benchmark_series.pct_change()[1:] |
||
164 | elif start_date == trading_days[0]: |
||
165 | # Attempt to handle case where stock data starts on first |
||
166 | # day, in this case use the open to close return. |
||
167 | benchmark_series = data_portal.get_history_window( |
||
168 | [sid], |
||
169 | trading_days[-1], |
||
170 | bar_count=len(trading_days), |
||
171 | frequency="1d", |
||
172 | field="price", |
||
173 | ffill=True |
||
174 | )[sid] |
||
175 | |||
176 | # get a minute history window of the first day |
||
177 | first_open = data_portal.get_spot_value( |
||
178 | sid, 'open', trading_days[0]) |
||
179 | first_close = data_portal.get_spot_value( |
||
180 | sid, 'close', trading_days[0]) |
||
181 | |||
182 | first_day_return = (first_close - first_open) / first_open |
||
183 | |||
184 | returns = benchmark_series.pct_change()[:] |
||
185 | returns[0] = first_day_return |
||
186 | return returns |
||
187 |