Completed
Push — master ( efcb01...ce3727 )
by
unknown
01:22
created

zipline.pipeline.factors.Returns   A

Complexity

Total Complexity 1

Size/Duplication

Total Lines 10
Duplicated Lines 0 %
Metric Value
dl 0
loc 10
rs 10
wmc 1

1 Method

Rating   Name   Duplication   Size   Complexity  
A compute() 0 2 1
1
"""
2
Technical Analysis Factors
3
--------------------------
4
"""
5
from bottleneck import (
6
    nanargmax,
7
    nanmax,
8
    nanmean,
9
    nansum,
10
)
11
from numpy import (
12
    abs,
13
    clip,
14
    diff,
15
    fmax,
16
    inf,
17
    isnan,
18
    NINF,
19
)
20
from numexpr import evaluate
21
22
from zipline.pipeline.data import USEquityPricing
23
from zipline.pipeline.term import SingleInputMixin
24
from zipline.utils.control_flow import ignore_nanwarnings
25
from .factor import CustomFactor
26
27
28
class Returns(CustomFactor):
29
    """
30
    Calculates the percent change in close price over the given window_length.
31
32
    **Default Inputs**: [USEquityPricing.close]
33
    """
34
    inputs = [USEquityPricing.close]
35
36
    def compute(self, today, assets, out, close):
37
        out[:] = (close[-1] - close[0]) / close[0]
38
39
40
class RSI(CustomFactor, SingleInputMixin):
41
    """
42
    Relative Strength Index
43
44
    **Default Inputs**: [USEquityPricing.close]
45
46
    **Default Window Length**: 15
47
    """
48
    window_length = 15
49
    inputs = (USEquityPricing.close,)
50
51
    def compute(self, today, assets, out, closes):
52
        diffs = diff(closes, axis=0)
53
        ups = nanmean(clip(diffs, 0, inf), axis=0)
54
        downs = abs(nanmean(clip(diffs, -inf, 0), axis=0))
55
        return evaluate(
56
            "100 - (100 / (1 + (ups / downs)))",
57
            local_dict={'ups': ups, 'downs': downs},
58
            global_dict={},
59
            out=out,
60
        )
61
62
63
class SimpleMovingAverage(CustomFactor, SingleInputMixin):
64
    """
65
    Average Value of an arbitrary column
66
67
    **Default Inputs**: None
68
69
    **Default Window Length**: None
70
    """
71
    # numpy's nan functions throw warnings when passed an array containing only
72
    # nans, but they still returns the desired value (nan), so we ignore the
73
    # warning.
74
    ctx = ignore_nanwarnings()
75
76
    def compute(self, today, assets, out, data):
77
        out[:] = nanmean(data, axis=0)
78
79
80
class WeightedAverageValue(CustomFactor):
81
    """
82
    Helper for VWAP-like computations.
83
84
    **Default Inputs:** None
85
86
    **Default Window Length:** None
87
    """
88
    def compute(self, today, assets, out, base, weight):
89
        out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0)
90
91
92
class VWAP(WeightedAverageValue):
93
    """
94
    Volume Weighted Average Price
95
96
    **Default Inputs:** [USEquityPricing.close, USEquityPricing.volume]
97
98
    **Default Window Length:** None
99
    """
100
    inputs = (USEquityPricing.close, USEquityPricing.volume)
101
102
103
class MaxDrawdown(CustomFactor, SingleInputMixin):
104
    """
105
    Max Drawdown
106
107
    **Default Inputs:** None
108
109
    **Default Window Length:** None
110
    """
111
    ctx = ignore_nanwarnings()
112
113
    def compute(self, today, assets, out, data):
114
        drawdowns = fmax.accumulate(data, axis=0) - data
115
        drawdowns[isnan(drawdowns)] = NINF
116
        drawdown_ends = nanargmax(drawdowns, axis=0)
117
118
        # TODO: Accelerate this loop in Cython or Numba.
119
        for i, end in enumerate(drawdown_ends):
120
            peak = nanmax(data[:end + 1, i])
121
            out[i] = (peak - data[end, i]) / data[end, i]
122