1
|
|
|
""" |
2
|
|
|
factor.py |
3
|
|
|
""" |
4
|
|
|
from operator import attrgetter |
5
|
|
|
from numbers import Number |
6
|
|
|
|
7
|
|
|
from numpy import float64, inf |
8
|
|
|
from toolz import curry |
9
|
|
|
|
10
|
|
|
from zipline.errors import ( |
11
|
|
|
UnknownRankMethod, |
12
|
|
|
UnsupportedDataType, |
13
|
|
|
) |
14
|
|
|
from zipline.lib.rank import masked_rankdata_2d |
15
|
|
|
from zipline.pipeline.mixins import ( |
16
|
|
|
CustomTermMixin, |
17
|
|
|
PositiveWindowLengthMixin, |
18
|
|
|
SingleInputMixin, |
19
|
|
|
) |
20
|
|
|
from zipline.pipeline.term import CompositeTerm, NotSpecified |
21
|
|
|
from zipline.pipeline.expression import ( |
22
|
|
|
BadBinaryOperator, |
23
|
|
|
COMPARISONS, |
24
|
|
|
is_comparison, |
25
|
|
|
MATH_BINOPS, |
26
|
|
|
method_name_for_op, |
27
|
|
|
NumericalExpression, |
28
|
|
|
NUMEXPR_MATH_FUNCS, |
29
|
|
|
UNARY_OPS, |
30
|
|
|
unary_op_name, |
31
|
|
|
) |
32
|
|
|
from zipline.pipeline.filters import ( |
33
|
|
|
NumExprFilter, |
34
|
|
|
PercentileFilter, |
35
|
|
|
) |
36
|
|
|
from zipline.utils.control_flow import nullctx |
37
|
|
|
from zipline.utils.numpy_utils import ( |
38
|
|
|
bool_dtype, |
39
|
|
|
datetime64ns_dtype, |
40
|
|
|
float64_dtype, |
41
|
|
|
) |
42
|
|
|
from zipline.utils.preprocess import preprocess |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
_RANK_METHODS = frozenset(['average', 'min', 'max', 'dense', 'ordinal']) |
46
|
|
|
|
47
|
|
|
|
48
|
|
|
def numbers_to_float64(func, argname, argvalue): |
49
|
|
|
""" |
50
|
|
|
Preprocessor for converting numerical inputs into floats. |
51
|
|
|
|
52
|
|
|
This is used in the binary operator constructors for Factor so that |
53
|
|
|
`2 + Factor()` has the same behavior as `2.0 + Factor()`. |
54
|
|
|
""" |
55
|
|
|
if isinstance(argvalue, Number): |
56
|
|
|
return float64(argvalue) |
57
|
|
|
return argvalue |
58
|
|
|
|
59
|
|
|
|
60
|
|
|
@curry |
61
|
|
|
def set_attribute(name, value): |
62
|
|
|
""" |
63
|
|
|
Decorator factory for setting attributes on a function. |
64
|
|
|
|
65
|
|
|
Doesn't change the behavior of the wrapped function. |
66
|
|
|
|
67
|
|
|
Usage |
68
|
|
|
----- |
69
|
|
|
>>> @set_attribute('__name__', 'foo') |
70
|
|
|
... def bar(): |
71
|
|
|
... return 3 |
72
|
|
|
... |
73
|
|
|
>>> bar() |
74
|
|
|
3 |
75
|
|
|
>>> bar.__name__ |
76
|
|
|
'foo' |
77
|
|
|
""" |
78
|
|
|
def decorator(f): |
79
|
|
|
setattr(f, name, value) |
80
|
|
|
return f |
81
|
|
|
return decorator |
82
|
|
|
|
83
|
|
|
|
84
|
|
|
# Decorators for setting the __name__ and __doc__ properties of a decorated |
85
|
|
|
# function. |
86
|
|
|
# Example: |
87
|
|
|
with_name = set_attribute('__name__') |
88
|
|
|
with_doc = set_attribute('__doc__') |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
def binop_return_type(op): |
92
|
|
|
if is_comparison(op): |
93
|
|
|
return NumExprFilter |
94
|
|
|
else: |
95
|
|
|
return NumExprFactor |
96
|
|
|
|
97
|
|
|
|
98
|
|
|
def binop_return_dtype(op, left, right): |
99
|
|
|
""" |
100
|
|
|
Compute the expected return dtype for the given binary operator. |
101
|
|
|
|
102
|
|
|
Parameters |
103
|
|
|
---------- |
104
|
|
|
op : str |
105
|
|
|
Operator symbol, (e.g. '+', '-', ...). |
106
|
|
|
left : numpy.dtype |
107
|
|
|
Dtype of left hand side. |
108
|
|
|
right : numpy.dtype |
109
|
|
|
Dtype of right hand side. |
110
|
|
|
|
111
|
|
|
Returns |
112
|
|
|
------- |
113
|
|
|
outdtype : numpy.dtype |
114
|
|
|
The dtype of the result of `left <op> right`. |
115
|
|
|
""" |
116
|
|
|
if is_comparison(op): |
117
|
|
|
if left != right: |
118
|
|
|
raise TypeError( |
119
|
|
|
"Don't know how to compute {left} {op} {right}.\n" |
120
|
|
|
"Comparisons are only supported between Factors of equal " |
121
|
|
|
"dtypes.".format(left=left, op=op, right=right) |
122
|
|
|
) |
123
|
|
|
return bool_dtype |
124
|
|
|
|
125
|
|
|
elif left != float64_dtype or right != float64_dtype: |
126
|
|
|
raise TypeError( |
127
|
|
|
"Don't know how to compute {left} {op} {right}.\n" |
128
|
|
|
"Arithmetic operators are only supported on Factors of " |
129
|
|
|
"dtype 'float64'.".format( |
130
|
|
|
left=left.name, |
131
|
|
|
op=op, |
132
|
|
|
right=right.name, |
133
|
|
|
) |
134
|
|
|
) |
135
|
|
|
return float64_dtype |
136
|
|
|
|
137
|
|
|
|
138
|
|
|
def binary_operator(op): |
139
|
|
|
""" |
140
|
|
|
Factory function for making binary operator methods on a Factor subclass. |
141
|
|
|
|
142
|
|
|
Returns a function, "binary_operator" suitable for implementing functions |
143
|
|
|
like __add__. |
144
|
|
|
""" |
145
|
|
|
# When combining a Factor with a NumericalExpression, we use this |
146
|
|
|
# attrgetter instance to defer to the commuted implementation of the |
147
|
|
|
# NumericalExpression operator. |
148
|
|
|
commuted_method_getter = attrgetter(method_name_for_op(op, commute=True)) |
149
|
|
|
|
150
|
|
|
@preprocess(other=numbers_to_float64) |
151
|
|
|
@with_doc("Binary Operator: '%s'" % op) |
152
|
|
|
@with_name(method_name_for_op(op)) |
153
|
|
|
def binary_operator(self, other): |
154
|
|
|
# This can't be hoisted up a scope because the types returned by |
155
|
|
|
# binop_return_type aren't defined when the top-level function is |
156
|
|
|
# invoked in the class body of Factor. |
157
|
|
|
return_type = binop_return_type(op) |
158
|
|
|
if isinstance(self, NumExprFactor): |
159
|
|
|
self_expr, other_expr, new_inputs = self.build_binary_op( |
160
|
|
|
op, other, |
161
|
|
|
) |
162
|
|
|
return return_type( |
163
|
|
|
"({left}) {op} ({right})".format( |
164
|
|
|
left=self_expr, |
165
|
|
|
op=op, |
166
|
|
|
right=other_expr, |
167
|
|
|
), |
168
|
|
|
new_inputs, |
169
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype), |
170
|
|
|
) |
171
|
|
|
elif isinstance(other, NumExprFactor): |
172
|
|
|
# NumericalExpression overrides ops to correctly handle merging of |
173
|
|
|
# inputs. Look up and call the appropriate reflected operator with |
174
|
|
|
# ourself as the input. |
175
|
|
|
return commuted_method_getter(other)(self) |
176
|
|
|
elif isinstance(other, Factor): |
177
|
|
|
if self is other: |
178
|
|
|
return return_type( |
179
|
|
|
"x_0 {op} x_0".format(op=op), |
180
|
|
|
(self,), |
181
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype), |
182
|
|
|
) |
183
|
|
|
return return_type( |
184
|
|
|
"x_0 {op} x_1".format(op=op), |
185
|
|
|
(self, other), |
186
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype), |
187
|
|
|
) |
188
|
|
|
elif isinstance(other, Number): |
189
|
|
|
return return_type( |
190
|
|
|
"x_0 {op} ({constant})".format(op=op, constant=other), |
191
|
|
|
binds=(self,), |
192
|
|
|
# Interpret numeric literals as floats. |
193
|
|
|
dtype=binop_return_dtype(op, self.dtype, other.dtype) |
194
|
|
|
) |
195
|
|
|
raise BadBinaryOperator(op, self, other) |
196
|
|
|
|
197
|
|
|
return binary_operator |
198
|
|
|
|
199
|
|
|
|
200
|
|
|
def reflected_binary_operator(op): |
201
|
|
|
""" |
202
|
|
|
Factory function for making binary operator methods on a Factor. |
203
|
|
|
|
204
|
|
|
Returns a function, "reflected_binary_operator" suitable for implementing |
205
|
|
|
functions like __radd__. |
206
|
|
|
""" |
207
|
|
|
assert not is_comparison(op) |
208
|
|
|
|
209
|
|
|
@preprocess(other=numbers_to_float64) |
210
|
|
|
@with_name(method_name_for_op(op, commute=True)) |
211
|
|
|
def reflected_binary_operator(self, other): |
212
|
|
|
|
213
|
|
|
if isinstance(self, NumericalExpression): |
214
|
|
|
self_expr, other_expr, new_inputs = self.build_binary_op( |
215
|
|
|
op, other |
216
|
|
|
) |
217
|
|
|
return NumExprFactor( |
218
|
|
|
"({left}) {op} ({right})".format( |
219
|
|
|
left=other_expr, |
220
|
|
|
right=self_expr, |
221
|
|
|
op=op, |
222
|
|
|
), |
223
|
|
|
new_inputs, |
224
|
|
|
dtype=binop_return_dtype(op, other.dtype, self.dtype) |
225
|
|
|
) |
226
|
|
|
|
227
|
|
|
# Only have to handle the numeric case because in all other valid cases |
228
|
|
|
# the corresponding left-binding method will be called. |
229
|
|
|
elif isinstance(other, Number): |
230
|
|
|
return NumExprFactor( |
231
|
|
|
"{constant} {op} x_0".format(op=op, constant=other), |
232
|
|
|
binds=(self,), |
233
|
|
|
dtype=binop_return_dtype(op, other.dtype, self.dtype), |
234
|
|
|
) |
235
|
|
|
raise BadBinaryOperator(op, other, self) |
236
|
|
|
return reflected_binary_operator |
237
|
|
|
|
238
|
|
|
|
239
|
|
|
def unary_operator(op): |
240
|
|
|
""" |
241
|
|
|
Factory function for making unary operator methods for Factors. |
242
|
|
|
""" |
243
|
|
|
# Only negate is currently supported. |
244
|
|
|
valid_ops = {'-'} |
245
|
|
|
if op not in valid_ops: |
246
|
|
|
raise ValueError("Invalid unary operator %s." % op) |
247
|
|
|
|
248
|
|
|
@with_doc("Unary Operator: '%s'" % op) |
249
|
|
|
@with_name(unary_op_name(op)) |
250
|
|
|
def unary_operator(self): |
251
|
|
|
if self.dtype != float64_dtype: |
252
|
|
|
raise TypeError( |
253
|
|
|
"Can't apply unary operator {op!r} to instance of " |
254
|
|
|
"{typename!r} with dtype {dtypename!r}.\n" |
255
|
|
|
"{op!r} is only supported for Factors of dtype " |
256
|
|
|
"'float64'.".format( |
257
|
|
|
op=op, |
258
|
|
|
typename=type(self).__name__, |
259
|
|
|
dtypename=self.dtype.name, |
260
|
|
|
) |
261
|
|
|
) |
262
|
|
|
|
263
|
|
|
# This can't be hoisted up a scope because the types returned by |
264
|
|
|
# unary_op_return_type aren't defined when the top-level function is |
265
|
|
|
# invoked. |
266
|
|
|
if isinstance(self, NumericalExpression): |
267
|
|
|
return NumExprFactor( |
268
|
|
|
"{op}({expr})".format(op=op, expr=self._expr), |
269
|
|
|
self.inputs, |
270
|
|
|
dtype=float64_dtype, |
271
|
|
|
) |
272
|
|
|
else: |
273
|
|
|
return NumExprFactor( |
274
|
|
|
"{op}x_0".format(op=op), |
275
|
|
|
(self,), |
276
|
|
|
dtype=float64_dtype, |
277
|
|
|
) |
278
|
|
|
return unary_operator |
279
|
|
|
|
280
|
|
|
|
281
|
|
|
def function_application(func): |
282
|
|
|
""" |
283
|
|
|
Factory function for producing function application methods for Factor |
284
|
|
|
subclasses. |
285
|
|
|
""" |
286
|
|
|
if func not in NUMEXPR_MATH_FUNCS: |
287
|
|
|
raise ValueError("Unsupported mathematical function '%s'" % func) |
288
|
|
|
|
289
|
|
|
@with_name(func) |
290
|
|
|
def mathfunc(self): |
291
|
|
|
if isinstance(self, NumericalExpression): |
292
|
|
|
return NumExprFactor( |
293
|
|
|
"{func}({expr})".format(func=func, expr=self._expr), |
294
|
|
|
self.inputs, |
295
|
|
|
dtype=float64_dtype, |
296
|
|
|
) |
297
|
|
|
else: |
298
|
|
|
return NumExprFactor( |
299
|
|
|
"{func}(x_0)".format(func=func), |
300
|
|
|
(self,), |
301
|
|
|
dtype=float64_dtype, |
302
|
|
|
) |
303
|
|
|
return mathfunc |
304
|
|
|
|
305
|
|
|
|
306
|
|
|
FACTOR_DTYPES = frozenset([datetime64ns_dtype, float64_dtype]) |
307
|
|
|
|
308
|
|
|
|
309
|
|
|
class Factor(CompositeTerm): |
310
|
|
|
""" |
311
|
|
|
Pipeline API expression producing numerically-valued outputs. |
312
|
|
|
""" |
313
|
|
|
# Dynamically add functions for creating NumExprFactor/NumExprFilter |
314
|
|
|
# instances. |
315
|
|
|
clsdict = locals() |
316
|
|
|
clsdict.update( |
317
|
|
|
{ |
318
|
|
|
method_name_for_op(op): binary_operator(op) |
319
|
|
|
# Don't override __eq__ because it breaks comparisons on tuples of |
320
|
|
|
# Factors. |
321
|
|
|
for op in MATH_BINOPS.union(COMPARISONS - {'=='}) |
322
|
|
|
} |
323
|
|
|
) |
324
|
|
|
clsdict.update( |
325
|
|
|
{ |
326
|
|
|
method_name_for_op(op, commute=True): reflected_binary_operator(op) |
327
|
|
|
for op in MATH_BINOPS |
328
|
|
|
} |
329
|
|
|
) |
330
|
|
|
clsdict.update( |
331
|
|
|
{ |
332
|
|
|
unary_op_name(op): unary_operator(op) |
333
|
|
|
for op in UNARY_OPS |
334
|
|
|
} |
335
|
|
|
) |
336
|
|
|
|
337
|
|
|
clsdict.update( |
338
|
|
|
{ |
339
|
|
|
funcname: function_application(funcname) |
340
|
|
|
for funcname in NUMEXPR_MATH_FUNCS |
341
|
|
|
} |
342
|
|
|
) |
343
|
|
|
|
344
|
|
|
__truediv__ = clsdict['__div__'] |
345
|
|
|
__rtruediv__ = clsdict['__rdiv__'] |
346
|
|
|
|
347
|
|
|
eq = binary_operator('==') |
348
|
|
|
|
349
|
|
|
def _validate(self): |
350
|
|
|
# Do superclass validation first so that `NotSpecified` dtypes get |
351
|
|
|
# handled. |
352
|
|
|
retval = super(Factor, self)._validate() |
353
|
|
|
if self.dtype not in FACTOR_DTYPES: |
354
|
|
|
raise UnsupportedDataType( |
355
|
|
|
typename=type(self).__name__, |
356
|
|
|
dtype=self.dtype |
357
|
|
|
) |
358
|
|
|
return retval |
359
|
|
|
|
360
|
|
|
def rank(self, method='ordinal', ascending=True, mask=NotSpecified): |
361
|
|
|
""" |
362
|
|
|
Construct a new Factor representing the sorted rank of each column |
363
|
|
|
within each row. |
364
|
|
|
|
365
|
|
|
Parameters |
366
|
|
|
---------- |
367
|
|
|
method : str, {'ordinal', 'min', 'max', 'dense', 'average'} |
368
|
|
|
The method used to assign ranks to tied elements. See |
369
|
|
|
`scipy.stats.rankdata` for a full description of the semantics for |
370
|
|
|
each ranking method. Default is 'ordinal'. |
371
|
|
|
ascending : bool, optional |
372
|
|
|
Whether to return sorted rank in ascending or descending order. |
373
|
|
|
Default is True. |
374
|
|
|
mask : zipline.pipeline.Filter, optional |
375
|
|
|
A Filter representing assets to consider when computing ranks. |
376
|
|
|
If mask is supplied, ranks are computed ignoring any asset/date |
377
|
|
|
pairs for which `mask` produces a value of False. |
378
|
|
|
|
379
|
|
|
Returns |
380
|
|
|
------- |
381
|
|
|
ranks : zipline.pipeline.factors.Rank |
382
|
|
|
A new factor that will compute the ranking of the data produced by |
383
|
|
|
`self`. |
384
|
|
|
|
385
|
|
|
Notes |
386
|
|
|
----- |
387
|
|
|
The default value for `method` is different from the default for |
388
|
|
|
`scipy.stats.rankdata`. See that function's documentation for a full |
389
|
|
|
description of the valid inputs to `method`. |
390
|
|
|
|
391
|
|
|
Missing or non-existent data on a given day will cause an asset to be |
392
|
|
|
given a rank of NaN for that day. |
393
|
|
|
|
394
|
|
|
See Also |
395
|
|
|
-------- |
396
|
|
|
scipy.stats.rankdata |
397
|
|
|
zipline.lib.rank.masked_rankdata_2d |
398
|
|
|
zipline.pipeline.factors.factor.Rank |
399
|
|
|
""" |
400
|
|
|
return Rank(self, method=method, ascending=ascending, mask=mask) |
401
|
|
|
|
402
|
|
|
def top(self, N, mask=NotSpecified): |
403
|
|
|
""" |
404
|
|
|
Construct a Filter matching the top N asset values of self each day. |
405
|
|
|
|
406
|
|
|
Parameters |
407
|
|
|
---------- |
408
|
|
|
N : int |
409
|
|
|
Number of assets passing the returned filter each day. |
410
|
|
|
mask : zipline.pipeline.Filter, optional |
411
|
|
|
A Filter representing assets to consider when computing ranks. |
412
|
|
|
If mask is supplied, top values are computed ignoring any |
413
|
|
|
asset/date pairs for which `mask` produces a value of False. |
414
|
|
|
|
415
|
|
|
Returns |
416
|
|
|
------- |
417
|
|
|
filter : zipline.pipeline.filters.Filter |
418
|
|
|
""" |
419
|
|
|
return self.rank(ascending=False, mask=mask) <= N |
420
|
|
|
|
421
|
|
|
def bottom(self, N, mask=NotSpecified): |
422
|
|
|
""" |
423
|
|
|
Construct a Filter matching the bottom N asset values of self each day. |
424
|
|
|
|
425
|
|
|
Parameters |
426
|
|
|
---------- |
427
|
|
|
N : int |
428
|
|
|
Number of assets passing the returned filter each day. |
429
|
|
|
mask : zipline.pipeline.Filter, optional |
430
|
|
|
A Filter representing assets to consider when computing ranks. |
431
|
|
|
If mask is supplied, bottom values are computed ignoring any |
432
|
|
|
asset/date pairs for which `mask` produces a value of False. |
433
|
|
|
|
434
|
|
|
Returns |
435
|
|
|
------- |
436
|
|
|
filter : zipline.pipeline.Filter |
437
|
|
|
""" |
438
|
|
|
return self.rank(ascending=True, mask=mask) <= N |
439
|
|
|
|
440
|
|
|
def percentile_between(self, |
441
|
|
|
min_percentile, |
442
|
|
|
max_percentile, |
443
|
|
|
mask=NotSpecified): |
444
|
|
|
""" |
445
|
|
|
Construct a new Filter representing entries from the output of this |
446
|
|
|
Factor that fall within the percentile range defined by min_percentile |
447
|
|
|
and max_percentile. |
448
|
|
|
|
449
|
|
|
Parameters |
450
|
|
|
---------- |
451
|
|
|
min_percentile : float [0.0, 100.0] |
452
|
|
|
Return True for assets falling above this percentile in the data. |
453
|
|
|
max_percentile : float [0.0, 100.0] |
454
|
|
|
Return True for assets falling below this percentile in the data. |
455
|
|
|
mask : zipline.pipeline.Filter, optional |
456
|
|
|
A Filter representing assets to consider when percentile |
457
|
|
|
thresholds. If mask is supplied, percentile cutoffs are computed |
458
|
|
|
each day using only assets for which `mask` returns True, and |
459
|
|
|
assets not passing `mask` will produce False in the output of this |
460
|
|
|
filter as well. |
461
|
|
|
|
462
|
|
|
Returns |
463
|
|
|
------- |
464
|
|
|
out : zipline.pipeline.filters.PercentileFilter |
465
|
|
|
A new filter that will compute the specified percentile-range mask. |
466
|
|
|
|
467
|
|
|
See Also |
468
|
|
|
-------- |
469
|
|
|
zipline.pipeline.filters.filter.PercentileFilter |
470
|
|
|
""" |
471
|
|
|
return PercentileFilter( |
472
|
|
|
self, |
473
|
|
|
min_percentile=min_percentile, |
474
|
|
|
max_percentile=max_percentile, |
475
|
|
|
mask=mask, |
476
|
|
|
) |
477
|
|
|
|
478
|
|
|
def isnan(self): |
479
|
|
|
""" |
480
|
|
|
A Filter producing True for all values where this Factor is NaN. |
481
|
|
|
|
482
|
|
|
Returns |
483
|
|
|
------- |
484
|
|
|
nanfilter : zipline.pipeline.filters.Filter |
485
|
|
|
""" |
486
|
|
|
return self != self |
487
|
|
|
|
488
|
|
|
def notnan(self): |
489
|
|
|
""" |
490
|
|
|
A Filter producing True for values where this Factor is not NaN. |
491
|
|
|
|
492
|
|
|
Returns |
493
|
|
|
------- |
494
|
|
|
nanfilter : zipline.pipeline.filters.Filter |
495
|
|
|
""" |
496
|
|
|
return ~self.isnan() |
497
|
|
|
|
498
|
|
|
def isfinite(self): |
499
|
|
|
""" |
500
|
|
|
A Filter producing True for values where this Factor is anything but |
501
|
|
|
NaN, inf, or -inf. |
502
|
|
|
""" |
503
|
|
|
return (-inf < self) & (self < inf) |
504
|
|
|
|
505
|
|
|
|
506
|
|
|
class NumExprFactor(NumericalExpression, Factor): |
507
|
|
|
""" |
508
|
|
|
Factor computed from a numexpr expression. |
509
|
|
|
|
510
|
|
|
Parameters |
511
|
|
|
---------- |
512
|
|
|
expr : string |
513
|
|
|
A string suitable for passing to numexpr. All variables in 'expr' |
514
|
|
|
should be of the form "x_i", where i is the index of the corresponding |
515
|
|
|
factor input in 'binds'. |
516
|
|
|
binds : tuple |
517
|
|
|
A tuple of factors to use as inputs. |
518
|
|
|
|
519
|
|
|
Notes |
520
|
|
|
----- |
521
|
|
|
NumExprFactors are constructed by numerical operators like `+` and `-`. |
522
|
|
|
Users should rarely need to construct a NumExprFactor directly. |
523
|
|
|
""" |
524
|
|
|
pass |
525
|
|
|
|
526
|
|
|
|
527
|
|
|
class Rank(SingleInputMixin, Factor): |
528
|
|
|
""" |
529
|
|
|
A Factor representing the row-wise rank data of another Factor. |
530
|
|
|
|
531
|
|
|
Parameters |
532
|
|
|
---------- |
533
|
|
|
factor : zipline.pipeline.factors.Factor |
534
|
|
|
The factor on which to compute ranks. |
535
|
|
|
method : str, {'average', 'min', 'max', 'dense', 'ordinal'} |
536
|
|
|
The method used to assign ranks to tied elements. See |
537
|
|
|
`scipy.stats.rankdata` for a full description of the semantics for each |
538
|
|
|
ranking method. |
539
|
|
|
|
540
|
|
|
See Also |
541
|
|
|
-------- |
542
|
|
|
scipy.stats.rankdata : Underlying ranking algorithm. |
543
|
|
|
zipline.factors.Factor.rank : Method-style interface to same functionality. |
544
|
|
|
|
545
|
|
|
Notes |
546
|
|
|
----- |
547
|
|
|
Most users should call Factor.rank rather than directly construct an |
548
|
|
|
instance of this class. |
549
|
|
|
""" |
550
|
|
|
window_length = 0 |
551
|
|
|
dtype = float64_dtype |
552
|
|
|
|
553
|
|
|
def __new__(cls, factor, method, ascending, mask): |
554
|
|
|
return super(Rank, cls).__new__( |
555
|
|
|
cls, |
556
|
|
|
inputs=(factor,), |
557
|
|
|
method=method, |
558
|
|
|
ascending=ascending, |
559
|
|
|
mask=mask, |
560
|
|
|
) |
561
|
|
|
|
562
|
|
|
def _init(self, method, ascending, *args, **kwargs): |
563
|
|
|
self._method = method |
564
|
|
|
self._ascending = ascending |
565
|
|
|
return super(Rank, self)._init(*args, **kwargs) |
566
|
|
|
|
567
|
|
|
@classmethod |
568
|
|
|
def static_identity(cls, method, ascending, *args, **kwargs): |
569
|
|
|
return ( |
570
|
|
|
super(Rank, cls).static_identity(*args, **kwargs), |
571
|
|
|
method, |
572
|
|
|
ascending, |
573
|
|
|
) |
574
|
|
|
|
575
|
|
|
def _validate(self): |
576
|
|
|
""" |
577
|
|
|
Verify that the stored rank method is valid. |
578
|
|
|
""" |
579
|
|
|
if self._method not in _RANK_METHODS: |
580
|
|
|
raise UnknownRankMethod( |
581
|
|
|
method=self._method, |
582
|
|
|
choices=set(_RANK_METHODS), |
583
|
|
|
) |
584
|
|
|
return super(Rank, self)._validate() |
585
|
|
|
|
586
|
|
|
def _compute(self, arrays, dates, assets, mask): |
587
|
|
|
""" |
588
|
|
|
For each row in the input, compute a like-shaped array of per-row |
589
|
|
|
ranks. |
590
|
|
|
""" |
591
|
|
|
return masked_rankdata_2d( |
592
|
|
|
arrays[0], |
593
|
|
|
mask, |
594
|
|
|
self.inputs[0].missing_value, |
595
|
|
|
self._method, |
596
|
|
|
self._ascending, |
597
|
|
|
) |
598
|
|
|
|
599
|
|
|
def __repr__(self): |
600
|
|
|
return "{type}({input_}, method='{method}', mask={mask})".format( |
601
|
|
|
type=type(self).__name__, |
602
|
|
|
input_=self.inputs[0], |
603
|
|
|
method=self._method, |
604
|
|
|
mask=self.mask, |
605
|
|
|
) |
606
|
|
|
|
607
|
|
|
|
608
|
|
|
class CustomFactor(PositiveWindowLengthMixin, CustomTermMixin, Factor): |
609
|
|
|
''' |
610
|
|
|
Base class for user-defined Factors. |
611
|
|
|
|
612
|
|
|
Parameters |
613
|
|
|
---------- |
614
|
|
|
inputs : iterable, optional |
615
|
|
|
An iterable of `BoundColumn` instances (e.g. USEquityPricing.close), |
616
|
|
|
describing the data to load and pass to `self.compute`. If this |
617
|
|
|
argument is passed to the CustomFactor constructor, we look for a |
618
|
|
|
class-level attribute named `inputs`. |
619
|
|
|
window_length : int, optional |
620
|
|
|
Number of rows to pass for each input. If this argument is not passed |
621
|
|
|
to the CustomFactor constructor, we look for a class-level attribute |
622
|
|
|
named `window_length`. |
623
|
|
|
|
624
|
|
|
Notes |
625
|
|
|
----- |
626
|
|
|
Users implementing their own Factors should subclass CustomFactor and |
627
|
|
|
implement a method named `compute` with the following signature: |
628
|
|
|
|
629
|
|
|
.. code-block:: python |
630
|
|
|
|
631
|
|
|
def compute(self, today, assets, out, *inputs): |
632
|
|
|
... |
633
|
|
|
|
634
|
|
|
On each simulation date, ``compute`` will be called with the current date, |
635
|
|
|
an array of sids, an output array, and an input array for each expression |
636
|
|
|
passed as inputs to the CustomFactor constructor. |
637
|
|
|
|
638
|
|
|
The specific types of the values passed to `compute` are as follows:: |
639
|
|
|
|
640
|
|
|
today : np.datetime64[ns] |
641
|
|
|
Row label for the last row of all arrays passed as `inputs`. |
642
|
|
|
assets : np.array[int64, ndim=1] |
643
|
|
|
Column labels for `out` and`inputs`. |
644
|
|
|
out : np.array[self.dtype, ndim=1] |
645
|
|
|
Output array of the same shape as `assets`. `compute` should write |
646
|
|
|
its desired return values into `out`. |
647
|
|
|
*inputs : tuple of np.array |
648
|
|
|
Raw data arrays corresponding to the values of `self.inputs`. |
649
|
|
|
|
650
|
|
|
``compute`` functions should expect to be passed NaN values for dates on |
651
|
|
|
which no data was available for an asset. This may include dates on which |
652
|
|
|
an asset did not yet exist. |
653
|
|
|
|
654
|
|
|
For example, if a CustomFactor requires 10 rows of close price data, and |
655
|
|
|
asset A started trading on Monday June 2nd, 2014, then on Tuesday, June |
656
|
|
|
3rd, 2014, the column of input data for asset A will have 9 leading NaNs |
657
|
|
|
for the preceding days on which data was not yet available. |
658
|
|
|
|
659
|
|
|
Examples |
660
|
|
|
-------- |
661
|
|
|
|
662
|
|
|
A CustomFactor with pre-declared defaults: |
663
|
|
|
|
664
|
|
|
.. code-block:: python |
665
|
|
|
|
666
|
|
|
class TenDayRange(CustomFactor): |
667
|
|
|
""" |
668
|
|
|
Computes the difference between the highest high in the last 10 |
669
|
|
|
days and the lowest low. |
670
|
|
|
|
671
|
|
|
Pre-declares high and low as default inputs and `window_length` as |
672
|
|
|
10. |
673
|
|
|
""" |
674
|
|
|
|
675
|
|
|
inputs = [USEquityPricing.high, USEquityPricing.low] |
676
|
|
|
window_length = 10 |
677
|
|
|
|
678
|
|
|
def compute(self, today, assets, out, highs, lows): |
679
|
|
|
from numpy import nanmin, nanmax |
680
|
|
|
|
681
|
|
|
highest_highs = nanmax(highs, axis=0) |
682
|
|
|
lowest_lows = nanmin(lows, axis=0) |
683
|
|
|
out[:] = highest_highs - lowest_lows |
684
|
|
|
|
685
|
|
|
|
686
|
|
|
# Doesn't require passing inputs or window_length because they're |
687
|
|
|
# pre-declared as defaults for the TenDayRange class. |
688
|
|
|
ten_day_range = TenDayRange() |
689
|
|
|
|
690
|
|
|
A CustomFactor without defaults: |
691
|
|
|
|
692
|
|
|
.. code-block:: python |
693
|
|
|
|
694
|
|
|
class MedianValue(CustomFactor): |
695
|
|
|
""" |
696
|
|
|
Computes the median value of an arbitrary single input over an |
697
|
|
|
arbitrary window.. |
698
|
|
|
|
699
|
|
|
Does not declare any defaults, so values for `window_length` and |
700
|
|
|
`inputs` must be passed explicitly on every construction. |
701
|
|
|
""" |
702
|
|
|
|
703
|
|
|
def compute(self, today, assets, out, data): |
704
|
|
|
from numpy import nanmedian |
705
|
|
|
out[:] = data.nanmedian(data, axis=0) |
706
|
|
|
|
707
|
|
|
# Values for `inputs` and `window_length` must be passed explicitly to |
708
|
|
|
# MedianValue. |
709
|
|
|
median_close10 = MedianValue([USEquityPricing.close], window_length=10) |
710
|
|
|
median_low15 = MedianValue([USEquityPricing.low], window_length=15) |
711
|
|
|
''' |
712
|
|
|
dtype = float64_dtype |
713
|
|
|
ctx = nullctx() |
714
|
|
|
|