|
1
|
|
|
from textwrap import dedent |
|
2
|
|
|
|
|
3
|
|
|
from numpy import ( |
|
4
|
|
|
bool_, |
|
5
|
|
|
dtype, |
|
6
|
|
|
float32, |
|
7
|
|
|
float64, |
|
8
|
|
|
int32, |
|
9
|
|
|
int64, |
|
10
|
|
|
ndarray, |
|
11
|
|
|
uint32, |
|
12
|
|
|
uint8, |
|
13
|
|
|
) |
|
14
|
|
|
from zipline.errors import ( |
|
15
|
|
|
WindowLengthNotPositive, |
|
16
|
|
|
WindowLengthTooLong, |
|
17
|
|
|
) |
|
18
|
|
|
from zipline.utils.numpy_utils import ( |
|
19
|
|
|
datetime64ns_dtype, |
|
20
|
|
|
default_fillvalue_for_dtype, |
|
21
|
|
|
float64_dtype, |
|
22
|
|
|
int64_dtype, |
|
23
|
|
|
uint8_dtype, |
|
24
|
|
|
) |
|
25
|
|
|
from zipline.utils.memoize import lazyval |
|
26
|
|
|
from zipline.utils.sentinel import sentinel |
|
27
|
|
|
|
|
28
|
|
|
# These class names are all the same because of our bootleg templating system. |
|
29
|
|
|
from ._float64window import AdjustedArrayWindow as Float64Window |
|
30
|
|
|
from ._int64window import AdjustedArrayWindow as Int64Window |
|
31
|
|
|
from ._uint8window import AdjustedArrayWindow as UInt8Window |
|
32
|
|
|
|
|
33
|
|
|
Infer = sentinel( |
|
34
|
|
|
'Infer', |
|
35
|
|
|
"Sentinel used to say 'infer missing_value from data type.'" |
|
36
|
|
|
) |
|
37
|
|
|
NOMASK = None |
|
38
|
|
|
SUPPORTED_NUMERIC_DTYPES = frozenset( |
|
39
|
|
|
map(dtype, [float32, float64, int32, int64, uint32]) |
|
40
|
|
|
) |
|
41
|
|
|
CONCRETE_WINDOW_TYPES = { |
|
42
|
|
|
float64_dtype: Float64Window, |
|
43
|
|
|
int64_dtype: Int64Window, |
|
44
|
|
|
uint8_dtype: UInt8Window, |
|
45
|
|
|
} |
|
46
|
|
|
|
|
47
|
|
|
|
|
48
|
|
|
def _normalize_array(data): |
|
49
|
|
|
""" |
|
50
|
|
|
Coerce buffer data for an AdjustedArray into a standard scalar |
|
51
|
|
|
representation, returning the coerced array and a numpy dtype object to use |
|
52
|
|
|
as a view type when providing public view into the data. |
|
53
|
|
|
|
|
54
|
|
|
Semantically numerical data (float*, int*, uint*) is coerced to float64 and |
|
55
|
|
|
viewed as float64. We coerce integral data to float so that we can use NaN |
|
56
|
|
|
as a missing value. |
|
57
|
|
|
|
|
58
|
|
|
datetime[*] data is coerced to int64 with a viewtype of ``datetime64[ns]``. |
|
59
|
|
|
|
|
60
|
|
|
``bool_`` data is coerced to uint8 with a viewtype of ``bool_`` |
|
61
|
|
|
|
|
62
|
|
|
Parameters |
|
63
|
|
|
---------- |
|
64
|
|
|
data : np.ndarray |
|
65
|
|
|
|
|
66
|
|
|
Returns |
|
67
|
|
|
------- |
|
68
|
|
|
coerced, viewtype : (np.ndarray, np.dtype) |
|
69
|
|
|
""" |
|
70
|
|
|
data_dtype = data.dtype |
|
71
|
|
|
if data_dtype == bool_: |
|
72
|
|
|
return data.astype(uint8), dtype(bool_) |
|
73
|
|
|
elif data_dtype in SUPPORTED_NUMERIC_DTYPES: |
|
74
|
|
|
return data.astype(float64), dtype(float64) |
|
75
|
|
|
elif data_dtype.name.startswith('datetime'): |
|
76
|
|
|
try: |
|
77
|
|
|
outarray = data.astype('datetime64[ns]').view('int64') |
|
78
|
|
|
return outarray, datetime64ns_dtype |
|
79
|
|
|
except OverflowError: |
|
80
|
|
|
raise ValueError( |
|
81
|
|
|
"AdjustedArray received a datetime array " |
|
82
|
|
|
"not representable as datetime64[ns].\n" |
|
83
|
|
|
"Min Date: %s\n" |
|
84
|
|
|
"Max Date: %s\n" |
|
85
|
|
|
) % (data.min(), data.max()) |
|
86
|
|
|
else: |
|
87
|
|
|
raise TypeError( |
|
88
|
|
|
"Don't know how to construct AdjustedArray " |
|
89
|
|
|
"on data of type %s." % dtype |
|
90
|
|
|
) |
|
91
|
|
|
|
|
92
|
|
|
|
|
93
|
|
|
class AdjustedArray(object): |
|
94
|
|
|
""" |
|
95
|
|
|
An array that can be iterated with a variable-length window, and which can |
|
96
|
|
|
provide different views on data from different perspectives. |
|
97
|
|
|
|
|
98
|
|
|
Parameters |
|
99
|
|
|
---------- |
|
100
|
|
|
data : np.ndarray |
|
101
|
|
|
The baseline data values. |
|
102
|
|
|
mask : np.ndarray[bool] |
|
103
|
|
|
A mask indicating the locations of missing data. |
|
104
|
|
|
adjustments : dict[int -> list[Adjustment]] |
|
105
|
|
|
A dict mapping row indices to lists of adjustments to apply when we |
|
106
|
|
|
reach that row. |
|
107
|
|
|
fillvalue : object, optional |
|
108
|
|
|
A value to use to fill missing data in yielded windows. |
|
109
|
|
|
Default behavior is to infer a value based on the dtype of `data`. |
|
110
|
|
|
`NaN` is used for numeric data, and `NaT` is used for datetime data. |
|
111
|
|
|
""" |
|
112
|
|
|
__slots__ = ('_data', '_viewtype', 'adjustments', '__weakref__') |
|
113
|
|
|
|
|
114
|
|
|
def __init__(self, data, mask, adjustments, fillvalue=Infer): |
|
115
|
|
|
self._data, self._viewtype = _normalize_array(data) |
|
116
|
|
|
self.adjustments = adjustments |
|
117
|
|
|
if fillvalue is Infer: |
|
118
|
|
|
fillvalue = default_fillvalue_for_dtype(self.data.dtype) |
|
119
|
|
|
|
|
120
|
|
|
if mask is not NOMASK: |
|
121
|
|
|
if mask.dtype != bool_: |
|
122
|
|
|
raise ValueError("Mask must be a bool array.") |
|
123
|
|
|
if data.shape != mask.shape: |
|
124
|
|
|
raise ValueError( |
|
125
|
|
|
"Mask shape %s != data shape %s." % |
|
126
|
|
|
(mask.shape, data.shape), |
|
127
|
|
|
) |
|
128
|
|
|
self._data[~mask] = fillvalue |
|
129
|
|
|
|
|
130
|
|
|
@lazyval |
|
131
|
|
|
def data(self): |
|
132
|
|
|
""" |
|
133
|
|
|
The data stored in this array. |
|
134
|
|
|
""" |
|
135
|
|
|
return self._data.view(self._viewtype) |
|
136
|
|
|
|
|
137
|
|
|
@lazyval |
|
138
|
|
|
def dtype(self): |
|
139
|
|
|
""" |
|
140
|
|
|
The dtype of the data stored in this array. |
|
141
|
|
|
""" |
|
142
|
|
|
return self._viewtype |
|
143
|
|
|
|
|
144
|
|
|
@lazyval |
|
145
|
|
|
def _iterator_type(self): |
|
146
|
|
|
""" |
|
147
|
|
|
The iterator produced when `traverse` is called on this Array. |
|
148
|
|
|
""" |
|
149
|
|
|
return CONCRETE_WINDOW_TYPES[self._data.dtype] |
|
150
|
|
|
|
|
151
|
|
|
def traverse(self, window_length, offset=0): |
|
152
|
|
|
""" |
|
153
|
|
|
Produce an iterator rolling windows rows over our data. |
|
154
|
|
|
Each emitted window will have `window_length` rows. |
|
155
|
|
|
|
|
156
|
|
|
Parameters |
|
157
|
|
|
---------- |
|
158
|
|
|
window_length : int |
|
159
|
|
|
The number of rows in each emitted window. |
|
160
|
|
|
offset : int, optional |
|
161
|
|
|
Number of rows to skip before the first window. |
|
162
|
|
|
""" |
|
163
|
|
|
data = self._data.copy() |
|
164
|
|
|
_check_window_params(data, window_length) |
|
165
|
|
|
return self._iterator_type( |
|
166
|
|
|
data, |
|
167
|
|
|
self._viewtype, |
|
168
|
|
|
self.adjustments, |
|
169
|
|
|
offset, |
|
170
|
|
|
window_length, |
|
171
|
|
|
) |
|
172
|
|
|
|
|
173
|
|
|
def inspect(self): |
|
174
|
|
|
""" |
|
175
|
|
|
Return a string representation of the data stored in this array. |
|
176
|
|
|
""" |
|
177
|
|
|
return dedent( |
|
178
|
|
|
"""\ |
|
179
|
|
|
Adjusted Array ({dtype}): |
|
180
|
|
|
|
|
181
|
|
|
Data: |
|
182
|
|
|
{data!r} |
|
183
|
|
|
|
|
184
|
|
|
Adjustments: |
|
185
|
|
|
{adjustments} |
|
186
|
|
|
""" |
|
187
|
|
|
).format( |
|
188
|
|
|
dtype=self.dtype.name, |
|
189
|
|
|
data=self.data, |
|
190
|
|
|
adjustments=self.adjustments, |
|
191
|
|
|
) |
|
192
|
|
|
|
|
193
|
|
|
|
|
194
|
|
|
def ensure_ndarray(ndarray_or_adjusted_array): |
|
195
|
|
|
""" |
|
196
|
|
|
Return the input as a numpy ndarray. |
|
197
|
|
|
|
|
198
|
|
|
This is a no-op if the input is already an ndarray. If the input is an |
|
199
|
|
|
adjusted_array, this extracts a read-only view of its internal data buffer. |
|
200
|
|
|
|
|
201
|
|
|
Parameters |
|
202
|
|
|
---------- |
|
203
|
|
|
ndarray_or_adjusted_array : numpy.ndarray | zipline.data.adjusted_array |
|
204
|
|
|
|
|
205
|
|
|
Returns |
|
206
|
|
|
------- |
|
207
|
|
|
out : The input, converted to an ndarray. |
|
208
|
|
|
""" |
|
209
|
|
|
if isinstance(ndarray_or_adjusted_array, ndarray): |
|
210
|
|
|
return ndarray_or_adjusted_array |
|
211
|
|
|
elif isinstance(ndarray_or_adjusted_array, AdjustedArray): |
|
212
|
|
|
return ndarray_or_adjusted_array.data |
|
213
|
|
|
else: |
|
214
|
|
|
raise TypeError( |
|
215
|
|
|
"Can't convert %s to ndarray" % |
|
216
|
|
|
type(ndarray_or_adjusted_array).__name__ |
|
217
|
|
|
) |
|
218
|
|
|
|
|
219
|
|
|
|
|
220
|
|
|
def _check_window_params(data, window_length): |
|
221
|
|
|
""" |
|
222
|
|
|
Check that a window of length `window_length` is well-defined on `data`. |
|
223
|
|
|
|
|
224
|
|
|
Parameters |
|
225
|
|
|
---------- |
|
226
|
|
|
data : np.ndarray[ndim=2] |
|
227
|
|
|
The array of data to check. |
|
228
|
|
|
window_length : int |
|
229
|
|
|
Length of the desired window. |
|
230
|
|
|
|
|
231
|
|
|
Returns |
|
232
|
|
|
------- |
|
233
|
|
|
None |
|
234
|
|
|
|
|
235
|
|
|
Raises |
|
236
|
|
|
------ |
|
237
|
|
|
WindowLengthNotPositive |
|
238
|
|
|
If window_length < 1. |
|
239
|
|
|
WindowLengthTooLong |
|
240
|
|
|
If window_length is greater than the number of rows in `data`. |
|
241
|
|
|
""" |
|
242
|
|
|
if window_length < 1: |
|
243
|
|
|
raise WindowLengthNotPositive(window_length=window_length) |
|
244
|
|
|
|
|
245
|
|
|
if window_length > data.shape[0]: |
|
246
|
|
|
raise WindowLengthTooLong( |
|
247
|
|
|
nrows=data.shape[0], |
|
248
|
|
|
window_length=window_length, |
|
249
|
|
|
) |
|
250
|
|
|
|