| Total Complexity | 151 | 
| Total Lines | 1268 | 
| Duplicated Lines | 0 % | 
Complex classes like zipline.data.DataPortal often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | #  | 
            ||
| 67 | class DataPortal(object):  | 
            ||
| 68 | def __init__(self,  | 
            ||
| 69 | env,  | 
            ||
| 70 | sim_params=None,  | 
            ||
| 71 | minutes_equities_path=None,  | 
            ||
| 72 | minutes_futures_path=None,  | 
            ||
| 73 | daily_equities_path=None,  | 
            ||
| 74 | adjustment_reader=None,  | 
            ||
| 75 | equity_sid_path_func=None,  | 
            ||
| 76 | futures_sid_path_func=None):  | 
            ||
| 77 | self.env = env  | 
            ||
| 78 | |||
| 79 | # Internal pointers to the current dt (can be minute) and current day.  | 
            ||
| 80 | # In daily mode, they point to the same thing. In minute mode, it's  | 
            ||
| 81 | # useful to have separate pointers to the current day and to the  | 
            ||
| 82 | # current minute. These pointers are updated by the  | 
            ||
| 83 | # AlgorithmSimulator's transform loop.  | 
            ||
| 84 | self.current_dt = None  | 
            ||
| 85 | self.current_day = None  | 
            ||
| 86 | |||
| 87 | # This is a bit ugly, but is here for performance reasons. In minute  | 
            ||
| 88 | # simulations, we need to very quickly go from dt -> (# of minutes  | 
            ||
| 89 | # since Jan 1 2002 9:30 Eastern).  | 
            ||
| 90 | #  | 
            ||
| 91 | # The clock that heartbeats the simulation has all the necessary  | 
            ||
| 92 | # information to do this calculation very quickly. This value is  | 
            ||
| 93 | # calculated there, and then set here  | 
            ||
| 94 | self.cur_data_offset = 0  | 
            ||
| 95 | |||
| 96 |         self.views = {} | 
            ||
| 97 | |||
| 98 | self._daily_equities_path = daily_equities_path  | 
            ||
| 99 | self._minutes_equities_path = minutes_equities_path  | 
            ||
| 100 | self._minutes_futures_path = minutes_futures_path  | 
            ||
| 101 | |||
| 102 | self._asset_finder = env.asset_finder  | 
            ||
| 103 | |||
| 104 |         self._carrays = { | 
            ||
| 105 |             'open': {}, | 
            ||
| 106 |             'high': {}, | 
            ||
| 107 |             'low': {}, | 
            ||
| 108 |             'close': {}, | 
            ||
| 109 |             'volume': {}, | 
            ||
| 110 |             'sid': {}, | 
            ||
| 111 |             'dt': {}, | 
            ||
| 112 | }  | 
            ||
| 113 | |||
| 114 | self._adjustment_reader = adjustment_reader  | 
            ||
| 115 | |||
| 116 | # caches of sid -> adjustment list  | 
            ||
| 117 |         self._splits_dict = {} | 
            ||
| 118 |         self._mergers_dict = {} | 
            ||
| 119 |         self._dividends_dict = {} | 
            ||
| 120 | |||
| 121 | # Cache of sid -> the first trading day of an asset, even if that day  | 
            ||
| 122 | # is before 1/2/2002.  | 
            ||
| 123 |         self._asset_start_dates = {} | 
            ||
| 124 |         self._asset_end_dates = {} | 
            ||
| 125 | |||
| 126 | # Handle extra sources, like Fetcher.  | 
            ||
| 127 |         self._augmented_sources_map = {} | 
            ||
| 128 | self._extra_source_df = None  | 
            ||
| 129 | |||
| 130 | self._sim_params = sim_params  | 
            ||
| 131 | if self._sim_params is not None:  | 
            ||
| 132 | self._data_frequency = self._sim_params.data_frequency  | 
            ||
| 133 | else:  | 
            ||
| 134 | self._data_frequency = "minute"  | 
            ||
| 135 | |||
| 136 | self._equity_sid_path_func = equity_sid_path_func  | 
            ||
| 137 | self._futures_sid_path_func = futures_sid_path_func  | 
            ||
| 138 | |||
| 139 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001  | 
            ||
| 140 | |||
| 141 | if daily_equities_path is not None:  | 
            ||
| 142 | self._daily_bar_reader = BcolzDailyBarReader(daily_equities_path)  | 
            ||
| 143 | else:  | 
            ||
| 144 | self._daily_bar_reader = None  | 
            ||
| 145 | |||
| 146 | self._minute_bar_reader = None  | 
            ||
| 147 | |||
| 148 | # The following values are used by _minute_offset to calculate the  | 
            ||
| 149 | # index into the minute bcolz date.  | 
            ||
| 150 | |||
| 151 | # A lookup of table every minute to the corresponding day, to avoid  | 
            ||
| 152 | # calling `.date()` on every lookup.  | 
            ||
| 153 |         self._minutes_to_day = {} | 
            ||
| 154 | # A map of days (keyed by midnight) to a DatetimeIndex of market  | 
            ||
| 155 | # minutes for that day.  | 
            ||
| 156 |         self._minutes_by_day = {} | 
            ||
| 157 | # A dict of day to the offset into the minute bcolz on which that  | 
            ||
| 158 | # days data starts.  | 
            ||
| 159 | self._day_offsets = None  | 
            ||
| 160 | |||
| 161 | @property  | 
            ||
| 162 | def minute_bar_reader(self):  | 
            ||
| 163 | if self._minute_bar_reader is None:  | 
            ||
| 164 | self._minute_bar_reader = BcolzMinuteBarReader(  | 
            ||
| 165 | self._minutes_equities_path)  | 
            ||
| 166 | return self._minute_bar_reader  | 
            ||
| 167 | |||
| 168 | def handle_extra_source(self, source_df):  | 
            ||
| 169 | """  | 
            ||
| 170 | Extra sources always have a sid column.  | 
            ||
| 171 | |||
| 172 | We expand the given data (by forward filling) to the full range of  | 
            ||
| 173 | the simulation dates, so that lookup is fast during simulation.  | 
            ||
| 174 | """  | 
            ||
| 175 | if source_df is None:  | 
            ||
| 176 | return  | 
            ||
| 177 | |||
| 178 | self._extra_source_df = source_df  | 
            ||
| 179 | |||
| 180 | # source_df's sid column can either consist of assets we know about  | 
            ||
| 181 | # (such as sid(24)) or of assets we don't know about (such as  | 
            ||
| 182 | # palladium).  | 
            ||
| 183 | #  | 
            ||
| 184 | # In both cases, we break up the dataframe into individual dfs  | 
            ||
| 185 | # that only contain a single asset's information. ie, if source_df  | 
            ||
| 186 | # has data for PALLADIUM and GOLD, we split source_df into two  | 
            ||
| 187 | # dataframes, one for each. (same applies if source_df has data for  | 
            ||
| 188 | # AAPL and IBM).  | 
            ||
| 189 | #  | 
            ||
| 190 | # We then take each child df and reindex it to the simulation's date  | 
            ||
| 191 | # range by forward-filling missing values. this makes reads simpler.  | 
            ||
| 192 | #  | 
            ||
| 193 | # Finally, we store the data. For each column, we store a mapping in  | 
            ||
| 194 | # self.augmented_sources_map from the column to a dictionary of  | 
            ||
| 195 | # asset -> df. In other words,  | 
            ||
| 196 | # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df  | 
            ||
| 197 | # holding that data.  | 
            ||
| 198 | |||
| 199 | if self._sim_params.emission_rate == "daily":  | 
            ||
| 200 | source_date_index = self.env.days_in_range(  | 
            ||
| 201 | start=self._sim_params.period_start,  | 
            ||
| 202 | end=self._sim_params.period_end  | 
            ||
| 203 | )  | 
            ||
| 204 | else:  | 
            ||
| 205 | source_date_index = self.env.minutes_for_days_in_range(  | 
            ||
| 206 | start=self._sim_params.period_start,  | 
            ||
| 207 | end=self._sim_params.period_end  | 
            ||
| 208 | )  | 
            ||
| 209 | |||
| 210 | # Break the source_df up into one dataframe per sid. This lets  | 
            ||
| 211 | # us (more easily) calculate accurate start/end dates for each sid,  | 
            ||
| 212 | # de-dup data, and expand the data to fit the backtest start/end date.  | 
            ||
| 213 | grouped_by_sid = source_df.groupby(["sid"])  | 
            ||
| 214 | group_names = grouped_by_sid.groups.keys()  | 
            ||
| 215 |         group_dict = {} | 
            ||
| 216 | for group_name in group_names:  | 
            ||
| 217 | group_dict[group_name] = grouped_by_sid.get_group(group_name)  | 
            ||
| 218 | |||
| 219 | for identifier, df in iteritems(group_dict):  | 
            ||
| 220 | # Before reindexing, save the earliest and latest dates  | 
            ||
| 221 | earliest_date = df.index[0]  | 
            ||
| 222 | latest_date = df.index[-1]  | 
            ||
| 223 | |||
| 224 | # Since we know this df only contains a single sid, we can safely  | 
            ||
| 225 | # de-dupe by the index (dt)  | 
            ||
| 226 | df = df.groupby(level=0).last()  | 
            ||
| 227 | |||
| 228 | # Reindex the dataframe based on the backtest start/end date.  | 
            ||
| 229 | # This makes reads easier during the backtest.  | 
            ||
| 230 | df = df.reindex(index=source_date_index, method='ffill')  | 
            ||
| 231 | |||
| 232 | if not isinstance(identifier, Asset):  | 
            ||
| 233 | # for fake assets we need to store a start/end date  | 
            ||
| 234 | self._asset_start_dates[identifier] = earliest_date  | 
            ||
| 235 | self._asset_end_dates[identifier] = latest_date  | 
            ||
| 236 | |||
| 237 | for col_name in df.columns.difference(['sid']):  | 
            ||
| 238 | if col_name not in self._augmented_sources_map:  | 
            ||
| 239 |                     self._augmented_sources_map[col_name] = {} | 
            ||
| 240 | |||
| 241 | self._augmented_sources_map[col_name][identifier] = df  | 
            ||
| 242 | |||
| 243 | def _open_minute_file(self, field, asset):  | 
            ||
| 244 | sid_str = str(int(asset))  | 
            ||
| 245 | |||
| 246 | try:  | 
            ||
| 247 | carray = self._carrays[field][sid_str]  | 
            ||
| 248 | except KeyError:  | 
            ||
| 249 | carray = self._carrays[field][sid_str] = \  | 
            ||
| 250 | self._get_ctable(asset)[field]  | 
            ||
| 251 | |||
| 252 | return carray  | 
            ||
| 253 | |||
| 254 | def _get_ctable(self, asset):  | 
            ||
| 255 | sid = int(asset)  | 
            ||
| 256 | |||
| 257 | if isinstance(asset, Future):  | 
            ||
| 258 | if self._futures_sid_path_func is not None:  | 
            ||
| 259 | path = self._futures_sid_path_func(  | 
            ||
| 260 | self._minutes_futures_path, sid  | 
            ||
| 261 | )  | 
            ||
| 262 | else:  | 
            ||
| 263 |                 path = "{0}/{1}.bcolz".format(self._minutes_futures_path, sid) | 
            ||
| 264 | elif isinstance(asset, Equity):  | 
            ||
| 265 | if self._equity_sid_path_func is not None:  | 
            ||
| 266 | path = self._equity_sid_path_func(  | 
            ||
| 267 | self._minutes_equities_path, sid  | 
            ||
| 268 | )  | 
            ||
| 269 | else:  | 
            ||
| 270 |                 path = "{0}/{1}.bcolz".format(self._minutes_equities_path, sid) | 
            ||
| 271 | |||
| 272 | else:  | 
            ||
| 273 |             path = "{0}/{1}.bcolz".format(self._minutes_equities_path, sid) | 
            ||
| 274 | |||
| 275 | return bcolz.open(path, mode='r')  | 
            ||
| 276 | |||
| 277 | def get_previous_value(self, asset, field, dt):  | 
            ||
| 278 | """  | 
            ||
| 279 | Given an asset and a column and a dt, returns the previous value for  | 
            ||
| 280 | the same asset/column pair. If this data portal is in minute mode,  | 
            ||
| 281 | it's the previous minute value, otherwise it's the previous day's  | 
            ||
| 282 | value.  | 
            ||
| 283 | |||
| 284 | Parameters  | 
            ||
| 285 | ---------  | 
            ||
| 286 | asset : Asset  | 
            ||
| 287 | The asset whose data is desired.  | 
            ||
| 288 | |||
| 289 | field: string  | 
            ||
| 290 | The desired field of the asset. Valid values are "open",  | 
            ||
| 291 | "open_price", "high", "low", "close", "close_price", "volume", and  | 
            ||
| 292 | "price".  | 
            ||
| 293 | |||
| 294 | dt: pd.Timestamp  | 
            ||
| 295 | The timestamp from which to go back in time one slot.  | 
            ||
| 296 | |||
| 297 | Returns  | 
            ||
| 298 | -------  | 
            ||
| 299 | The value of the desired field at the desired time.  | 
            ||
| 300 | """  | 
            ||
| 301 | if self._data_frequency == 'daily':  | 
            ||
| 302 | prev_dt = self.env.previous_trading_day(dt)  | 
            ||
| 303 | elif self._data_frequency == 'minute':  | 
            ||
| 304 | prev_dt = self.env.previous_market_minute(dt)  | 
            ||
| 305 | |||
| 306 | return self.get_spot_value(asset, field, prev_dt)  | 
            ||
| 307 | |||
| 308 | def _check_extra_sources(self, asset, column, day):  | 
            ||
| 309 | # If we have an extra source with a column called "price", only look  | 
            ||
| 310 | # at it if it's on something like palladium and not AAPL (since our  | 
            ||
| 311 | # own price data always wins when dealing with assets).  | 
            ||
| 312 | look_in_augmented_sources = column in self._augmented_sources_map and \  | 
            ||
| 313 | not (column in BASE_FIELDS and isinstance(asset, Asset))  | 
            ||
| 314 | |||
| 315 | if look_in_augmented_sources:  | 
            ||
| 316 | # we're being asked for a field in an extra source  | 
            ||
| 317 | try:  | 
            ||
| 318 | return self._augmented_sources_map[column][asset].\  | 
            ||
| 319 | loc[day, column]  | 
            ||
| 320 | except:  | 
            ||
| 321 | log.error(  | 
            ||
| 322 |                     "Could not find value for asset={0}, current_day={1}," | 
            ||
| 323 |                     "column={2}".format( | 
            ||
| 324 | str(asset),  | 
            ||
| 325 | str(self.current_day),  | 
            ||
| 326 | str(column)))  | 
            ||
| 327 | |||
| 328 | raise KeyError  | 
            ||
| 329 | |||
| 330 | def get_spot_value(self, asset, field, dt=None):  | 
            ||
| 331 | """  | 
            ||
| 332 | Public API method that returns a scalar value representing the value  | 
            ||
| 333 | of the desired asset's field at either the given dt, or this data  | 
            ||
| 334 | portal's current_dt.  | 
            ||
| 335 | |||
| 336 | Parameters  | 
            ||
| 337 | ---------  | 
            ||
| 338 | asset : Asset  | 
            ||
| 339 | The asset whose data is desired.gith  | 
            ||
| 340 | |||
| 341 | field: string  | 
            ||
| 342 | The desired field of the asset. Valid values are "open",  | 
            ||
| 343 | "open_price", "high", "low", "close", "close_price", "volume", and  | 
            ||
| 344 | "price".  | 
            ||
| 345 | |||
| 346 | dt: pd.Timestamp  | 
            ||
| 347 | (Optional) The timestamp for the desired value.  | 
            ||
| 348 | |||
| 349 | Returns  | 
            ||
| 350 | -------  | 
            ||
| 351 | The value of the desired field at the desired time.  | 
            ||
| 352 | """  | 
            ||
| 353 | extra_source_val = self._check_extra_sources(  | 
            ||
| 354 | asset,  | 
            ||
| 355 | field,  | 
            ||
| 356 | (dt or self.current_dt)  | 
            ||
| 357 | )  | 
            ||
| 358 | |||
| 359 | if extra_source_val is not None:  | 
            ||
| 360 | return extra_source_val  | 
            ||
| 361 | |||
| 362 | if field not in BASE_FIELDS:  | 
            ||
| 363 |             raise KeyError("Invalid column: " + str(field)) | 
            ||
| 364 | |||
| 365 | column_to_use = BASE_FIELDS[field]  | 
            ||
| 366 | |||
| 367 | if isinstance(asset, int):  | 
            ||
| 368 | asset = self._asset_finder.retrieve_asset(asset)  | 
            ||
| 369 | |||
| 370 | self._check_is_currently_alive(asset, dt)  | 
            ||
| 371 | |||
| 372 | if self._data_frequency == "daily":  | 
            ||
| 373 | day_to_use = dt or self.current_day  | 
            ||
| 374 | day_to_use = normalize_date(day_to_use)  | 
            ||
| 375 | return self._get_daily_data(asset, column_to_use, day_to_use)  | 
            ||
| 376 | else:  | 
            ||
| 377 | dt_to_use = dt or self.current_dt  | 
            ||
| 378 | |||
| 379 | if isinstance(asset, Future):  | 
            ||
| 380 | return self._get_minute_spot_value_future(  | 
            ||
| 381 | asset, column_to_use, dt_to_use)  | 
            ||
| 382 | else:  | 
            ||
| 383 | return self._get_minute_spot_value(  | 
            ||
| 384 | asset, column_to_use, dt_to_use)  | 
            ||
| 385 | |||
| 386 | def _get_minute_spot_value_future(self, asset, column, dt):  | 
            ||
| 387 | # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week.  | 
            ||
| 388 | # The file attributes contain the "start_dt" and "last_dt" fields,  | 
            ||
| 389 | # which represent the time period for this bcolz file.  | 
            ||
| 390 | |||
| 391 | # The start_dt is midnight of the first day that this future started  | 
            ||
| 392 | # trading.  | 
            ||
| 393 | |||
| 394 | # figure out the # of minutes between dt and this asset's start_dt  | 
            ||
| 395 | start_date = self._get_asset_start_date(asset)  | 
            ||
| 396 | minute_offset = int((dt - start_date).total_seconds() / 60)  | 
            ||
| 397 | |||
| 398 | if minute_offset < 0:  | 
            ||
| 399 | # asking for a date that is before the asset's start date, no dice  | 
            ||
| 400 | return 0.0  | 
            ||
| 401 | |||
| 402 | # then just index into the bcolz carray at that offset  | 
            ||
| 403 | carray = self._open_minute_file(column, asset)  | 
            ||
| 404 | result = carray[minute_offset]  | 
            ||
| 405 | |||
| 406 | # if there's missing data, go backwards until we run out of file  | 
            ||
| 407 | while result == 0 and minute_offset > 0:  | 
            ||
| 408 | minute_offset -= 1  | 
            ||
| 409 | result = carray[minute_offset]  | 
            ||
| 410 | |||
| 411 | if column != 'volume':  | 
            ||
| 412 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR  | 
            ||
| 413 | else:  | 
            ||
| 414 | return result  | 
            ||
| 415 | |||
| 416 | def setup_offset_cache(self, minutes_by_day, minutes_to_day):  | 
            ||
| 417 | # All our minute bcolz files are written starting on 1/2/2002,  | 
            ||
| 418 | # with 390 minutes per day, regarding of when the security started  | 
            ||
| 419 | # trading. This lets us avoid doing an offset calculation related  | 
            ||
| 420 | # to the asset start date. Hard-coding 390 minutes per day lets us  | 
            ||
| 421 | # ignore half days.  | 
            ||
| 422 | self._minutes_to_day = minutes_to_day  | 
            ||
| 423 | self._minutes_by_day = minutes_by_day  | 
            ||
| 424 | if self._sim_params is not None:  | 
            ||
| 425 | start = self._sim_params.trading_days[0]  | 
            ||
| 426 | first_trading_day_idx = self.minute_bar_reader.trading_days.\  | 
            ||
| 427 | searchsorted(start)  | 
            ||
| 428 |             self._day_offsets = { | 
            ||
| 429 | day: (i + first_trading_day_idx) * 390  | 
            ||
| 430 | for i, day in enumerate(  | 
            ||
| 431 | self._sim_params.trading_days)}  | 
            ||
| 432 | |||
| 433 | def _minute_offset(self, dt):  | 
            ||
| 434 | if self._day_offsets is not None:  | 
            ||
| 435 | try:  | 
            ||
| 436 | day = self._minutes_to_day[dt]  | 
            ||
| 437 | minutes = self._minutes_by_day[day]  | 
            ||
| 438 | return self._day_offsets[day] + minutes.get_loc(dt)  | 
            ||
| 439 | except KeyError:  | 
            ||
| 440 | return None  | 
            ||
| 441 | |||
| 442 | def _get_minute_spot_value(self, asset, column, dt):  | 
            ||
| 443 | # if dt is before the first market minute, minute_index  | 
            ||
| 444 | # will be 0. if it's after the last market minute, it'll  | 
            ||
| 445 | # be len(minutes_for_day)  | 
            ||
| 446 | minute_offset_to_use = self._minute_offset(dt)  | 
            ||
| 447 | |||
| 448 | if minute_offset_to_use is None:  | 
            ||
| 449 | given_day = pd.Timestamp(dt.date(), tz='utc')  | 
            ||
| 450 | day_index = self.minute_bar_reader.trading_days.searchsorted(  | 
            ||
| 451 | given_day)  | 
            ||
| 452 | |||
| 453 | # if dt is before the first market minute, minute_index  | 
            ||
| 454 | # will be 0. if it's after the last market minute, it'll  | 
            ||
| 455 | # be len(minutes_for_day)  | 
            ||
| 456 | minute_index = self.env.market_minutes_for_day(given_day).\  | 
            ||
| 457 | searchsorted(dt)  | 
            ||
| 458 | |||
| 459 | minute_offset_to_use = (day_index * 390) + minute_index  | 
            ||
| 460 | |||
| 461 | carray = self._open_minute_file(column, asset)  | 
            ||
| 462 | result = carray[minute_offset_to_use]  | 
            ||
| 463 | |||
| 464 | if result == 0:  | 
            ||
| 465 | # if the given minute doesn't have data, we need to seek  | 
            ||
| 466 | # backwards until we find data. This makes the data  | 
            ||
| 467 | # forward-filled.  | 
            ||
| 468 | |||
| 469 | # get this asset's start date, so that we don't look before it.  | 
            ||
| 470 | start_date = self._get_asset_start_date(asset)  | 
            ||
| 471 | start_date_idx = self.minute_bar_reader.trading_days.searchsorted(  | 
            ||
| 472 | start_date)  | 
            ||
| 473 | start_day_offset = start_date_idx * 390  | 
            ||
| 474 | |||
| 475 | original_start = minute_offset_to_use  | 
            ||
| 476 | |||
| 477 | while result == 0 and minute_offset_to_use > start_day_offset:  | 
            ||
| 478 | minute_offset_to_use -= 1  | 
            ||
| 479 | result = carray[minute_offset_to_use]  | 
            ||
| 480 | |||
| 481 | # once we've found data, we need to check whether it needs  | 
            ||
| 482 | # to be adjusted.  | 
            ||
| 483 | if result != 0:  | 
            ||
| 484 | minutes = self.env.market_minute_window(  | 
            ||
| 485 | start=(dt or self.current_dt),  | 
            ||
| 486 | count=(original_start - minute_offset_to_use + 1),  | 
            ||
| 487 | step=-1  | 
            ||
| 488 | ).order()  | 
            ||
| 489 | |||
| 490 | # only need to check for adjustments if we've gone back  | 
            ||
| 491 | # far enough to cross the day boundary.  | 
            ||
| 492 | if minutes[0].date() != minutes[-1].date():  | 
            ||
| 493 | # create a np array of size minutes, fill it all with  | 
            ||
| 494 | # the same value. and adjust the array.  | 
            ||
| 495 | arr = np.array([result] * len(minutes),  | 
            ||
| 496 | dtype=np.float64)  | 
            ||
| 497 | self._apply_all_adjustments(  | 
            ||
| 498 | data=arr,  | 
            ||
| 499 | asset=asset,  | 
            ||
| 500 | dts=minutes,  | 
            ||
| 501 | field=column  | 
            ||
| 502 | )  | 
            ||
| 503 | |||
| 504 | # The first value of the adjusted array is the value  | 
            ||
| 505 | # we want.  | 
            ||
| 506 | result = arr[0]  | 
            ||
| 507 | |||
| 508 | if column != 'volume':  | 
            ||
| 509 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR  | 
            ||
| 510 | else:  | 
            ||
| 511 | return result  | 
            ||
| 512 | |||
| 513 | def _get_daily_data(self, asset, column, dt):  | 
            ||
| 514 | while True:  | 
            ||
| 515 | try:  | 
            ||
| 516 | value = self._daily_bar_reader.spot_price(asset, dt, column)  | 
            ||
| 517 | if value != -1:  | 
            ||
| 518 | return value  | 
            ||
| 519 | else:  | 
            ||
| 520 | dt -= tradingcalendar.trading_day  | 
            ||
| 521 | except NoDataOnDate:  | 
            ||
| 522 | return 0  | 
            ||
| 523 | |||
| 524 | def _get_history_daily_window(self, assets, end_dt, bar_count,  | 
            ||
| 525 | field_to_use):  | 
            ||
| 526 | """  | 
            ||
| 527 | Internal method that returns a dataframe containing history bars  | 
            ||
| 528 | of daily frequency for the given sids.  | 
            ||
| 529 | """  | 
            ||
| 530 | day_idx = tradingcalendar.trading_days.searchsorted(end_dt.date())  | 
            ||
| 531 | days_for_window = tradingcalendar.trading_days[  | 
            ||
| 532 | (day_idx - bar_count + 1):(day_idx + 1)]  | 
            ||
| 533 | |||
| 534 | if len(assets) == 0:  | 
            ||
| 535 | return pd.DataFrame(None,  | 
            ||
| 536 | index=days_for_window,  | 
            ||
| 537 | columns=None)  | 
            ||
| 538 | |||
| 539 | data = []  | 
            ||
| 540 | |||
| 541 | for asset in assets:  | 
            ||
| 542 | if isinstance(asset, Future):  | 
            ||
| 543 | data.append(self._get_history_daily_window_future(  | 
            ||
| 544 | asset, days_for_window, end_dt, field_to_use  | 
            ||
| 545 | ))  | 
            ||
| 546 | else:  | 
            ||
| 547 | data.append(self._get_history_daily_window_equity(  | 
            ||
| 548 | asset, days_for_window, end_dt, field_to_use  | 
            ||
| 549 | ))  | 
            ||
| 550 | |||
| 551 | return pd.DataFrame(  | 
            ||
| 552 | np.array(data).T,  | 
            ||
| 553 | index=days_for_window,  | 
            ||
| 554 | columns=assets  | 
            ||
| 555 | )  | 
            ||
| 556 | |||
| 557 | def _get_history_daily_window_future(self, asset, days_for_window,  | 
            ||
| 558 | end_dt, column):  | 
            ||
| 559 | # Since we don't have daily bcolz files for futures (yet), use minute  | 
            ||
| 560 | # bars to calculate the daily values.  | 
            ||
| 561 | data = []  | 
            ||
| 562 | data_groups = []  | 
            ||
| 563 | |||
| 564 | # get all the minutes for the days NOT including today  | 
            ||
| 565 | for day in days_for_window[:-1]:  | 
            ||
| 566 | minutes = self.env.market_minutes_for_day(day)  | 
            ||
| 567 | |||
| 568 | values_for_day = np.zeros(len(minutes), dtype=np.float64)  | 
            ||
| 569 | |||
| 570 | for idx, minute in enumerate(minutes):  | 
            ||
| 571 | minute_val = self._get_minute_spot_value_future(  | 
            ||
| 572 | asset, column, minute  | 
            ||
| 573 | )  | 
            ||
| 574 | |||
| 575 | values_for_day[idx] = minute_val  | 
            ||
| 576 | |||
| 577 | data_groups.append(values_for_day)  | 
            ||
| 578 | |||
| 579 | # get the minutes for today  | 
            ||
| 580 | last_day_minutes = pd.date_range(  | 
            ||
| 581 | start=self.env.get_open_and_close(end_dt)[0],  | 
            ||
| 582 | end=end_dt,  | 
            ||
| 583 | freq="T"  | 
            ||
| 584 | )  | 
            ||
| 585 | |||
| 586 | values_for_last_day = np.zeros(len(last_day_minutes), dtype=np.float64)  | 
            ||
| 587 | |||
| 588 | for idx, minute in enumerate(last_day_minutes):  | 
            ||
| 589 | minute_val = self._get_minute_spot_value_future(  | 
            ||
| 590 | asset, column, minute  | 
            ||
| 591 | )  | 
            ||
| 592 | |||
| 593 | values_for_last_day[idx] = minute_val  | 
            ||
| 594 | |||
| 595 | data_groups.append(values_for_last_day)  | 
            ||
| 596 | |||
| 597 | for group in data_groups:  | 
            ||
| 598 | if len(group) == 0:  | 
            ||
| 599 | continue  | 
            ||
| 600 | |||
| 601 | if column == 'volume':  | 
            ||
| 602 | data.append(np.sum(group))  | 
            ||
| 603 | elif column == 'open':  | 
            ||
| 604 | data.append(group[0])  | 
            ||
| 605 | elif column == 'close':  | 
            ||
| 606 | data.append(group[-1])  | 
            ||
| 607 | elif column == 'high':  | 
            ||
| 608 | data.append(np.amax(group))  | 
            ||
| 609 | elif column == 'low':  | 
            ||
| 610 | data.append(np.amin(group))  | 
            ||
| 611 | |||
| 612 | return data  | 
            ||
| 613 | |||
| 614 | def _get_history_daily_window_equity(self, asset, days_for_window,  | 
            ||
| 615 | end_dt, field_to_use):  | 
            ||
| 616 | sid = int(asset)  | 
            ||
| 617 | ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0  | 
            ||
| 618 | |||
| 619 | # get the start and end dates for this sid  | 
            ||
| 620 | end_date = self._get_asset_end_date(asset)  | 
            ||
| 621 | |||
| 622 | if ends_at_midnight or (days_for_window[-1] > end_date):  | 
            ||
| 623 | # two cases where we use daily data for the whole range:  | 
            ||
| 624 | # 1) the history window ends at midnight utc.  | 
            ||
| 625 | # 2) the last desired day of the window is after the  | 
            ||
| 626 | # last trading day, use daily data for the whole range.  | 
            ||
| 627 | return self._get_daily_window_for_sid(  | 
            ||
| 628 | asset,  | 
            ||
| 629 | field_to_use,  | 
            ||
| 630 | days_for_window,  | 
            ||
| 631 | extra_slot=False  | 
            ||
| 632 | )  | 
            ||
| 633 | else:  | 
            ||
| 634 | # for the last day of the desired window, use minute  | 
            ||
| 635 | # data and aggregate it.  | 
            ||
| 636 | all_minutes_for_day = self.env.market_minutes_for_day(  | 
            ||
| 637 | pd.Timestamp(end_dt.date()))  | 
            ||
| 638 | |||
| 639 | last_minute_idx = all_minutes_for_day.searchsorted(end_dt)  | 
            ||
| 640 | |||
| 641 | # these are the minutes for the partial day  | 
            ||
| 642 | minutes_for_partial_day =\  | 
            ||
| 643 | all_minutes_for_day[0:(last_minute_idx + 1)]  | 
            ||
| 644 | |||
| 645 | daily_data = self._get_daily_window_for_sid(  | 
            ||
| 646 | sid,  | 
            ||
| 647 | field_to_use,  | 
            ||
| 648 | days_for_window[0:-1]  | 
            ||
| 649 | )  | 
            ||
| 650 | |||
| 651 | minute_data = self._get_minute_window_for_equity(  | 
            ||
| 652 | sid,  | 
            ||
| 653 | field_to_use,  | 
            ||
| 654 | minutes_for_partial_day  | 
            ||
| 655 | )  | 
            ||
| 656 | |||
| 657 | if field_to_use == 'volume':  | 
            ||
| 658 | minute_value = np.sum(minute_data)  | 
            ||
| 659 | elif field_to_use == 'open':  | 
            ||
| 660 | minute_value = minute_data[0]  | 
            ||
| 661 | elif field_to_use == 'close':  | 
            ||
| 662 | minute_value = minute_data[-1]  | 
            ||
| 663 | elif field_to_use == 'high':  | 
            ||
| 664 | minute_value = np.amax(minute_data)  | 
            ||
| 665 | elif field_to_use == 'low':  | 
            ||
| 666 | minute_value = np.amin(minute_data)  | 
            ||
| 667 | |||
| 668 | # append the partial day.  | 
            ||
| 669 | daily_data[-1] = minute_value  | 
            ||
| 670 | |||
| 671 | return daily_data  | 
            ||
| 672 | |||
| 673 | def _get_history_minute_window(self, assets, end_dt, bar_count,  | 
            ||
| 674 | field_to_use):  | 
            ||
| 675 | """  | 
            ||
| 676 | Internal method that returns a dataframe containing history bars  | 
            ||
| 677 | of minute frequency for the given sids.  | 
            ||
| 678 | """  | 
            ||
| 679 | # get all the minutes for this window  | 
            ||
| 680 | minutes_for_window = self.env.market_minute_window(  | 
            ||
| 681 | end_dt, bar_count, step=-1)[::-1]  | 
            ||
| 682 | |||
| 683 | first_trading_day = self.minute_bar_reader.first_trading_day  | 
            ||
| 684 | |||
| 685 | # but then cut it down to only the minutes after  | 
            ||
| 686 | # the first trading day.  | 
            ||
| 687 | modified_minutes_for_window = minutes_for_window[  | 
            ||
| 688 | minutes_for_window.slice_indexer(first_trading_day)]  | 
            ||
| 689 | |||
| 690 | modified_minutes_length = len(modified_minutes_for_window)  | 
            ||
| 691 | |||
| 692 | if modified_minutes_length == 0:  | 
            ||
| 693 |             raise ValueError("Cannot calculate history window that ends" | 
            ||
| 694 | "before 2002-01-02 14:31 UTC!")  | 
            ||
| 695 | |||
| 696 | data = []  | 
            ||
| 697 | bars_to_prepend = 0  | 
            ||
| 698 | nans_to_prepend = None  | 
            ||
| 699 | |||
| 700 | if modified_minutes_length < bar_count:  | 
            ||
| 701 | first_trading_date = first_trading_day.date()  | 
            ||
| 702 | if modified_minutes_for_window[0].date() == first_trading_date:  | 
            ||
| 703 | # the beginning of the window goes before our global trading  | 
            ||
| 704 | # start date  | 
            ||
| 705 | bars_to_prepend = bar_count - modified_minutes_length  | 
            ||
| 706 | nans_to_prepend = np.repeat(np.nan, bars_to_prepend)  | 
            ||
| 707 | |||
| 708 | if len(assets) == 0:  | 
            ||
| 709 | return pd.DataFrame(  | 
            ||
| 710 | None,  | 
            ||
| 711 | index=modified_minutes_for_window,  | 
            ||
| 712 | columns=None  | 
            ||
| 713 | )  | 
            ||
| 714 | |||
| 715 | for asset in assets:  | 
            ||
| 716 | asset_minute_data = self._get_minute_window_for_asset(  | 
            ||
| 717 | asset,  | 
            ||
| 718 | field_to_use,  | 
            ||
| 719 | modified_minutes_for_window  | 
            ||
| 720 | )  | 
            ||
| 721 | |||
| 722 | if bars_to_prepend != 0:  | 
            ||
| 723 | asset_minute_data = np.insert(asset_minute_data, 0,  | 
            ||
| 724 | nans_to_prepend)  | 
            ||
| 725 | |||
| 726 | data.append(asset_minute_data)  | 
            ||
| 727 | |||
| 728 | return pd.DataFrame(  | 
            ||
| 729 | np.array(data).T,  | 
            ||
| 730 | index=minutes_for_window,  | 
            ||
| 731 | columns=map(int, assets)  | 
            ||
| 732 | )  | 
            ||
| 733 | |||
| 734 | def get_history_window(self, assets, end_dt, bar_count, frequency, field,  | 
            ||
| 735 | ffill=True):  | 
            ||
| 736 | """  | 
            ||
| 737 | Public API method that returns a dataframe containing the requested  | 
            ||
| 738 | history window. Data is fully adjusted.  | 
            ||
| 739 | |||
| 740 | Parameters  | 
            ||
| 741 | ---------  | 
            ||
| 742 | assets : list of zipline.data.Asset objects  | 
            ||
| 743 | The assets whose data is desired.  | 
            ||
| 744 | |||
| 745 | bar_count: int  | 
            ||
| 746 | The number of bars desired.  | 
            ||
| 747 | |||
| 748 | frequency: string  | 
            ||
| 749 | "1d" or "1m"  | 
            ||
| 750 | |||
| 751 | field: string  | 
            ||
| 752 | The desired field of the asset.  | 
            ||
| 753 | |||
| 754 | ffill: boolean  | 
            ||
| 755 | Forward-fill missing values. Only has effect if field  | 
            ||
| 756 | is 'price'.  | 
            ||
| 757 | |||
| 758 | Returns  | 
            ||
| 759 | -------  | 
            ||
| 760 | A dataframe containing the requested data.  | 
            ||
| 761 | """  | 
            ||
| 762 | try:  | 
            ||
| 763 | field_to_use = BASE_FIELDS[field]  | 
            ||
| 764 | except KeyError:  | 
            ||
| 765 |             raise ValueError("Invalid history field: " + str(field)) | 
            ||
| 766 | |||
| 767 | # sanity check in case sids were passed in  | 
            ||
| 768 | assets = [(self.env.asset_finder.retrieve_asset(asset) if  | 
            ||
| 769 | isinstance(asset, int) else asset) for asset in assets]  | 
            ||
| 770 | |||
| 771 | if frequency == "1d":  | 
            ||
| 772 | df = self._get_history_daily_window(assets, end_dt, bar_count,  | 
            ||
| 773 | field_to_use)  | 
            ||
| 774 | elif frequency == "1m":  | 
            ||
| 775 | df = self._get_history_minute_window(assets, end_dt, bar_count,  | 
            ||
| 776 | field_to_use)  | 
            ||
| 777 | else:  | 
            ||
| 778 |             raise ValueError("Invalid frequency: {0}".format(frequency)) | 
            ||
| 779 | |||
| 780 | # forward-fill if needed  | 
            ||
| 781 | if field == "price" and ffill:  | 
            ||
| 782 | df.fillna(method='ffill', inplace=True)  | 
            ||
| 783 | |||
| 784 | return df  | 
            ||
| 785 | |||
| 786 | def _get_minute_window_for_asset(self, asset, field, minutes_for_window):  | 
            ||
| 787 | """  | 
            ||
| 788 | Internal method that gets a window of adjusted minute data for an asset  | 
            ||
| 789 | and specified date range. Used to support the history API method for  | 
            ||
| 790 | minute bars.  | 
            ||
| 791 | |||
| 792 | Missing bars are filled with NaN.  | 
            ||
| 793 | |||
| 794 | Parameters  | 
            ||
| 795 | ----------  | 
            ||
| 796 | asset : Asset  | 
            ||
| 797 | The asset whose data is desired.  | 
            ||
| 798 | |||
| 799 | field: string  | 
            ||
| 800 | The specific field to return. "open", "high", "close_price", etc.  | 
            ||
| 801 | |||
| 802 | minutes_for_window: pd.DateTimeIndex  | 
            ||
| 803 | The list of minutes representing the desired window. Each minute  | 
            ||
| 804 | is a pd.Timestamp.  | 
            ||
| 805 | |||
| 806 | Returns  | 
            ||
| 807 | -------  | 
            ||
| 808 | A numpy array with requested values.  | 
            ||
| 809 | """  | 
            ||
| 810 | if isinstance(asset, int):  | 
            ||
| 811 | asset = self.env.asset_finder.retrieve_asset(asset)  | 
            ||
| 812 | |||
| 813 | if isinstance(asset, Future):  | 
            ||
| 814 | return self._get_minute_window_for_future(asset, field,  | 
            ||
| 815 | minutes_for_window)  | 
            ||
| 816 | else:  | 
            ||
| 817 | return self._get_minute_window_for_equity(asset, field,  | 
            ||
| 818 | minutes_for_window)  | 
            ||
| 819 | |||
| 820 | def _get_minute_window_for_future(self, asset, field, minutes_for_window):  | 
            ||
| 821 | # THIS IS TEMPORARY. For now, we are only exposing futures within  | 
            ||
| 822 | # equity trading hours (9:30 am to 4pm, Eastern). The easiest way to  | 
            ||
| 823 | # do this is to simply do a spot lookup for each desired minute.  | 
            ||
| 824 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64)  | 
            ||
| 825 | for idx, minute in enumerate(minutes_for_window):  | 
            ||
| 826 | return_data[idx] = \  | 
            ||
| 827 | self._get_minute_spot_value_future(asset, field, minute)  | 
            ||
| 828 | |||
| 829 | # Note: an improvement could be to find the consecutive runs within  | 
            ||
| 830 | # minutes_for_window, and use them to read the underlying ctable  | 
            ||
| 831 | # more efficiently.  | 
            ||
| 832 | |||
| 833 | # Once futures are on 24-hour clock, then we can just grab all the  | 
            ||
| 834 | # requested minutes in one shot from the ctable.  | 
            ||
| 835 | |||
| 836 | # no adjustments for futures, yay.  | 
            ||
| 837 | return return_data  | 
            ||
| 838 | |||
| 839 | def _get_minute_window_for_equity(self, asset, field, minutes_for_window):  | 
            ||
| 840 | # each sid's minutes are stored in a bcolz file  | 
            ||
| 841 | # the bcolz file has 390 bars per day, starting at 1/2/2002, regardless  | 
            ||
| 842 | # of when the asset started trading and regardless of half days.  | 
            ||
| 843 | # for a half day, the second half is filled with zeroes.  | 
            ||
| 844 | |||
| 845 | # find the position of start_dt in the entire timeline, go back  | 
            ||
| 846 | # bar_count bars, and that's the unadjusted data  | 
            ||
| 847 | raw_data = self._open_minute_file(field, asset)  | 
            ||
| 848 | |||
| 849 | start_idx = max(self._find_position_of_minute(minutes_for_window[0]),  | 
            ||
| 850 | 0)  | 
            ||
| 851 | end_idx = self._find_position_of_minute(minutes_for_window[-1]) + 1  | 
            ||
| 852 | |||
| 853 | if end_idx == 0:  | 
            ||
| 854 | # No data to return for minute window.  | 
            ||
| 855 | return np.full(len(minutes_for_window), np.nan)  | 
            ||
| 856 | |||
| 857 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64)  | 
            ||
| 858 | |||
| 859 | data_to_copy = raw_data[start_idx:end_idx]  | 
            ||
| 860 | |||
| 861 | num_minutes = len(minutes_for_window)  | 
            ||
| 862 | |||
| 863 | # data_to_copy contains all the zeros (from 1pm to 4pm of an early  | 
            ||
| 864 | # close). num_minutes is the number of actual trading minutes. if  | 
            ||
| 865 | # these two have different lengths, that means that we need to trim  | 
            ||
| 866 | # away data due to early closes.  | 
            ||
| 867 | if len(data_to_copy) != num_minutes:  | 
            ||
| 868 | # get a copy of the minutes in Eastern time, since we depend on  | 
            ||
| 869 | # an early close being at 1pm Eastern.  | 
            ||
| 870 |             eastern_minutes = minutes_for_window.tz_convert("US/Eastern") | 
            ||
| 871 | |||
| 872 | # accumulate a list of indices of the last minute of an early  | 
            ||
| 873 | # close day. For example, if data_to_copy starts at 12:55 pm, and  | 
            ||
| 874 | # there are five minutes of real data before 180 zeroes, we would  | 
            ||
| 875 | # put 5 into last_minute_idx_of_early_close_day, because the fifth  | 
            ||
| 876 | # minute is the last "real" minute of the day.  | 
            ||
| 877 | last_minute_idx_of_early_close_day = []  | 
            ||
| 878 | for minute_idx, minute_dt in enumerate(eastern_minutes):  | 
            ||
| 879 | if minute_idx == (num_minutes - 1):  | 
            ||
| 880 | break  | 
            ||
| 881 | |||
| 882 | if minute_dt.hour == 13 and minute_dt.minute == 0:  | 
            ||
| 883 | next_minute = eastern_minutes[minute_idx + 1]  | 
            ||
| 884 | if next_minute.hour != 13:  | 
            ||
| 885 | # minute_dt is the last minute of an early close day  | 
            ||
| 886 | last_minute_idx_of_early_close_day.append(minute_idx)  | 
            ||
| 887 | |||
| 888 | # spin through the list of early close markers, and use them to  | 
            ||
| 889 | # chop off 180 minutes at a time from data_to_copy.  | 
            ||
| 890 | for idx, early_close_minute_idx in \  | 
            ||
| 891 | enumerate(last_minute_idx_of_early_close_day):  | 
            ||
| 892 | early_close_minute_idx -= (180 * idx)  | 
            ||
| 893 | data_to_copy = np.delete(  | 
            ||
| 894 | data_to_copy,  | 
            ||
| 895 | range(  | 
            ||
| 896 | early_close_minute_idx + 1,  | 
            ||
| 897 | early_close_minute_idx + 181  | 
            ||
| 898 | )  | 
            ||
| 899 | )  | 
            ||
| 900 | |||
| 901 | return_data[0:len(data_to_copy)] = data_to_copy  | 
            ||
| 902 | |||
| 903 | self._apply_all_adjustments(  | 
            ||
| 904 | return_data,  | 
            ||
| 905 | asset,  | 
            ||
| 906 | minutes_for_window,  | 
            ||
| 907 | field,  | 
            ||
| 908 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR  | 
            ||
| 909 | )  | 
            ||
| 910 | |||
| 911 | return return_data  | 
            ||
| 912 | |||
| 913 | def _apply_all_adjustments(self, data, asset, dts, field,  | 
            ||
| 914 | price_adj_factor=1.0):  | 
            ||
| 915 | """  | 
            ||
| 916 | Internal method that applies all the necessary adjustments on the  | 
            ||
| 917 | given data array.  | 
            ||
| 918 | |||
| 919 | The adjustments are:  | 
            ||
| 920 | - splits  | 
            ||
| 921 | - if field != "volume":  | 
            ||
| 922 | - mergers  | 
            ||
| 923 | - dividends  | 
            ||
| 924 | - * 0.001  | 
            ||
| 925 | - any zero fields replaced with NaN  | 
            ||
| 926 | - all values rounded to 3 digits after the decimal point.  | 
            ||
| 927 | |||
| 928 | Parameters  | 
            ||
| 929 | ----------  | 
            ||
| 930 | data : np.array  | 
            ||
| 931 | The data to be adjusted.  | 
            ||
| 932 | |||
| 933 | asset: Asset  | 
            ||
| 934 | The asset whose data is being adjusted.  | 
            ||
| 935 | |||
| 936 | dts: pd.DateTimeIndex  | 
            ||
| 937 | The list of minutes or days representing the desired window.  | 
            ||
| 938 | |||
| 939 | field: string  | 
            ||
| 940 | The field whose values are in the data array.  | 
            ||
| 941 | |||
| 942 | price_adj_factor: float  | 
            ||
| 943 | Factor with which to adjust OHLC values.  | 
            ||
| 944 | Returns  | 
            ||
| 945 | -------  | 
            ||
| 946 | None. The data array is modified in place.  | 
            ||
| 947 | """  | 
            ||
| 948 | self._apply_adjustments_to_window(  | 
            ||
| 949 | self._get_adjustment_list(  | 
            ||
| 950 | asset, self._splits_dict, "SPLITS"  | 
            ||
| 951 | ),  | 
            ||
| 952 | data,  | 
            ||
| 953 | dts,  | 
            ||
| 954 | field != 'volume'  | 
            ||
| 955 | )  | 
            ||
| 956 | |||
| 957 | if field != 'volume':  | 
            ||
| 958 | self._apply_adjustments_to_window(  | 
            ||
| 959 | self._get_adjustment_list(  | 
            ||
| 960 | asset, self._mergers_dict, "MERGERS"  | 
            ||
| 961 | ),  | 
            ||
| 962 | data,  | 
            ||
| 963 | dts,  | 
            ||
| 964 | True  | 
            ||
| 965 | )  | 
            ||
| 966 | |||
| 967 | self._apply_adjustments_to_window(  | 
            ||
| 968 | self._get_adjustment_list(  | 
            ||
| 969 | asset, self._dividends_dict, "DIVIDENDS"  | 
            ||
| 970 | ),  | 
            ||
| 971 | data,  | 
            ||
| 972 | dts,  | 
            ||
| 973 | True  | 
            ||
| 974 | )  | 
            ||
| 975 | |||
| 976 | data *= price_adj_factor  | 
            ||
| 977 | |||
| 978 | # if anything is zero, it's a missing bar, so replace it with NaN.  | 
            ||
| 979 | # we only want to do this for non-volume fields, because a missing  | 
            ||
| 980 | # volume should be 0.  | 
            ||
| 981 | data[data == 0] = np.NaN  | 
            ||
| 982 | |||
| 983 | np.around(data, 3, out=data)  | 
            ||
| 984 | |||
| 985 | def _find_position_of_minute(self, minute_dt):  | 
            ||
| 986 | """  | 
            ||
| 987 | Internal method that returns the position of the given minute in the  | 
            ||
| 988 | list of every trading minute since market open on 1/2/2002.  | 
            ||
| 989 | |||
| 990 | IMPORTANT: This method assumes every day is 390 minutes long, even  | 
            ||
| 991 | early closes. Our minute bcolz files are generated like this to  | 
            ||
| 992 | support fast lookup.  | 
            ||
| 993 | |||
| 994 | ex. this method would return 2 for 1/2/2002 9:32 AM Eastern.  | 
            ||
| 995 | |||
| 996 | Parameters  | 
            ||
| 997 | ----------  | 
            ||
| 998 | minute_dt: pd.Timestamp  | 
            ||
| 999 | The minute whose position should be calculated.  | 
            ||
| 1000 | |||
| 1001 | Returns  | 
            ||
| 1002 | -------  | 
            ||
| 1003 | The position of the given minute in the list of all trading minutes  | 
            ||
| 1004 | since market open on 1/2/2002.  | 
            ||
| 1005 | """  | 
            ||
| 1006 | day = minute_dt.date()  | 
            ||
| 1007 | day_idx = self.minute_bar_reader.trading_days.searchsorted(day)  | 
            ||
| 1008 | if day_idx < 0:  | 
            ||
| 1009 | return -1  | 
            ||
| 1010 | |||
| 1011 | day_open = pd.Timestamp(  | 
            ||
| 1012 | datetime(  | 
            ||
| 1013 | year=day.year,  | 
            ||
| 1014 | month=day.month,  | 
            ||
| 1015 | day=day.day,  | 
            ||
| 1016 | hour=9,  | 
            ||
| 1017 | minute=31),  | 
            ||
| 1018 |             tz='US/Eastern').tz_convert('UTC') | 
            ||
| 1019 | |||
| 1020 | minutes_offset = int((minute_dt - day_open).total_seconds()) / 60  | 
            ||
| 1021 | |||
| 1022 | return int((390 * day_idx) + minutes_offset)  | 
            ||
| 1023 | |||
| 1024 | def _get_daily_window_for_sid(self, asset, field, days_in_window,  | 
            ||
| 1025 | extra_slot=True):  | 
            ||
| 1026 | """  | 
            ||
| 1027 | Internal method that gets a window of adjusted daily data for a sid  | 
            ||
| 1028 | and specified date range. Used to support the history API method for  | 
            ||
| 1029 | daily bars.  | 
            ||
| 1030 | |||
| 1031 | Parameters  | 
            ||
| 1032 | ----------  | 
            ||
| 1033 | asset : Asset  | 
            ||
| 1034 | The asset whose data is desired.  | 
            ||
| 1035 | |||
| 1036 | start_dt: pandas.Timestamp  | 
            ||
| 1037 | The start of the desired window of data.  | 
            ||
| 1038 | |||
| 1039 | bar_count: int  | 
            ||
| 1040 | The number of days of data to return.  | 
            ||
| 1041 | |||
| 1042 | field: string  | 
            ||
| 1043 | The specific field to return. "open", "high", "close_price", etc.  | 
            ||
| 1044 | |||
| 1045 | extra_slot: boolean  | 
            ||
| 1046 | Whether to allocate an extra slot in the returned numpy array.  | 
            ||
| 1047 | This extra slot will hold the data for the last partial day. It's  | 
            ||
| 1048 | much better to create it here than to create a copy of the array  | 
            ||
| 1049 | later just to add a slot.  | 
            ||
| 1050 | |||
| 1051 | Returns  | 
            ||
| 1052 | -------  | 
            ||
| 1053 | A numpy array with requested values. Any missing slots filled with  | 
            ||
| 1054 | nan.  | 
            ||
| 1055 | |||
| 1056 | """  | 
            ||
| 1057 | column = US_EQUITY_COLUMNS[field]  | 
            ||
| 1058 | data = self._daily_bar_reader.load_raw_arrays([column],  | 
            ||
| 1059 | days_in_window[0],  | 
            ||
| 1060 | days_in_window[-1],  | 
            ||
| 1061 | [asset])  | 
            ||
| 1062 | |||
| 1063 | bar_count = len(days_in_window)  | 
            ||
| 1064 | |||
| 1065 | # create an np.array of size bar_count  | 
            ||
| 1066 | if extra_slot:  | 
            ||
| 1067 | return_array = np.zeros((bar_count + 1,))  | 
            ||
| 1068 | else:  | 
            ||
| 1069 | return_array = np.zeros((bar_count,))  | 
            ||
| 1070 | |||
| 1071 | return_array[:] = np.NAN  | 
            ||
| 1072 | sid = int(asset)  | 
            ||
| 1073 | |||
| 1074 | return_array[0:bar_count] = data[0].T[0]  | 
            ||
| 1075 | |||
| 1076 | self._apply_all_adjustments(  | 
            ||
| 1077 | return_array,  | 
            ||
| 1078 | sid,  | 
            ||
| 1079 | days_in_window,  | 
            ||
| 1080 | field,  | 
            ||
| 1081 | )  | 
            ||
| 1082 | |||
| 1083 | return return_array  | 
            ||
| 1084 | |||
| 1085 | @staticmethod  | 
            ||
| 1086 | def _apply_adjustments_to_window(adjustments_list, window_data,  | 
            ||
| 1087 | dts_in_window, multiply):  | 
            ||
| 1088 | if len(adjustments_list) == 0:  | 
            ||
| 1089 | return  | 
            ||
| 1090 | |||
| 1091 | # advance idx to the correct spot in the adjustments list, based on  | 
            ||
| 1092 | # when the window starts  | 
            ||
| 1093 | idx = 0  | 
            ||
| 1094 | |||
| 1095 | while idx < len(adjustments_list) and dts_in_window[0] >\  | 
            ||
| 1096 | adjustments_list[idx][0]:  | 
            ||
| 1097 | idx += 1  | 
            ||
| 1098 | |||
| 1099 | # if we've advanced through all the adjustments, then there's nothing  | 
            ||
| 1100 | # to do.  | 
            ||
| 1101 | if idx == len(adjustments_list):  | 
            ||
| 1102 | return  | 
            ||
| 1103 | |||
| 1104 | while idx < len(adjustments_list):  | 
            ||
| 1105 | adjustment_to_apply = adjustments_list[idx]  | 
            ||
| 1106 | |||
| 1107 | if adjustment_to_apply[0] > dts_in_window[-1]:  | 
            ||
| 1108 | break  | 
            ||
| 1109 | |||
| 1110 | range_end = dts_in_window.searchsorted(adjustment_to_apply[0])  | 
            ||
| 1111 | if multiply:  | 
            ||
| 1112 | window_data[0:range_end] *= adjustment_to_apply[1]  | 
            ||
| 1113 | else:  | 
            ||
| 1114 | window_data[0:range_end] /= adjustment_to_apply[1]  | 
            ||
| 1115 | |||
| 1116 | idx += 1  | 
            ||
| 1117 | |||
| 1118 | def _get_adjustment_list(self, asset, adjustments_dict, table_name):  | 
            ||
| 1119 | """  | 
            ||
| 1120 | Internal method that returns a list of adjustments for the given sid.  | 
            ||
| 1121 | |||
| 1122 | Parameters  | 
            ||
| 1123 | ----------  | 
            ||
| 1124 | asset : Asset  | 
            ||
| 1125 | The asset for which to return adjustments.  | 
            ||
| 1126 | |||
| 1127 | adjustments_dict: dict  | 
            ||
| 1128 | A dictionary of sid -> list that is used as a cache.  | 
            ||
| 1129 | |||
| 1130 | table_name: string  | 
            ||
| 1131 | The table that contains this data in the adjustments db.  | 
            ||
| 1132 | |||
| 1133 | Returns  | 
            ||
| 1134 | -------  | 
            ||
| 1135 | adjustments: list  | 
            ||
| 1136 | A list of [multiplier, pd.Timestamp], earliest first  | 
            ||
| 1137 | |||
| 1138 | """  | 
            ||
| 1139 | if self._adjustment_reader is None:  | 
            ||
| 1140 | return []  | 
            ||
| 1141 | |||
| 1142 | sid = int(asset)  | 
            ||
| 1143 | |||
| 1144 | try:  | 
            ||
| 1145 | adjustments = adjustments_dict[sid]  | 
            ||
| 1146 | except KeyError:  | 
            ||
| 1147 | adjustments = adjustments_dict[sid] = self._adjustment_reader.\  | 
            ||
| 1148 | get_adjustments_for_sid(table_name, sid)  | 
            ||
| 1149 | |||
| 1150 | return adjustments  | 
            ||
| 1151 | |||
| 1152 | def get_equity_price_view(self, asset):  | 
            ||
| 1153 | """  | 
            ||
| 1154 | Returns a DataPortalSidView for the given asset. Used to support the  | 
            ||
| 1155 | data[sid(N)] public API. Not needed if DataPortal is used standalone.  | 
            ||
| 1156 | |||
| 1157 | Parameters  | 
            ||
| 1158 | ----------  | 
            ||
| 1159 | asset : Asset  | 
            ||
| 1160 | Asset that is being queried.  | 
            ||
| 1161 | |||
| 1162 | Returns  | 
            ||
| 1163 | -------  | 
            ||
| 1164 | DataPortalSidView: Accessor into the given asset's data.  | 
            ||
| 1165 | """  | 
            ||
| 1166 | try:  | 
            ||
| 1167 | view = self.views[asset]  | 
            ||
| 1168 | except KeyError:  | 
            ||
| 1169 | view = self.views[asset] = DataPortalSidView(asset, self)  | 
            ||
| 1170 | |||
| 1171 | return view  | 
            ||
| 1172 | |||
| 1173 | def _check_is_currently_alive(self, asset, dt):  | 
            ||
| 1174 | if dt is None:  | 
            ||
| 1175 | dt = self.current_day  | 
            ||
| 1176 | |||
| 1177 | sid = int(asset)  | 
            ||
| 1178 | |||
| 1179 | if sid not in self._asset_start_dates:  | 
            ||
| 1180 | self._get_asset_start_date(asset)  | 
            ||
| 1181 | |||
| 1182 | start_date = self._asset_start_dates[sid]  | 
            ||
| 1183 | if self._asset_start_dates[sid] > dt:  | 
            ||
| 1184 | raise NoTradeDataAvailableTooEarly(  | 
            ||
| 1185 | sid=sid,  | 
            ||
| 1186 | dt=dt,  | 
            ||
| 1187 | start_dt=start_date  | 
            ||
| 1188 | )  | 
            ||
| 1189 | |||
| 1190 | end_date = self._asset_end_dates[sid]  | 
            ||
| 1191 | if self._asset_end_dates[sid] < dt:  | 
            ||
| 1192 | raise NoTradeDataAvailableTooLate(  | 
            ||
| 1193 | sid=sid,  | 
            ||
| 1194 | dt=dt,  | 
            ||
| 1195 | end_dt=end_date  | 
            ||
| 1196 | )  | 
            ||
| 1197 | |||
| 1198 | def _get_asset_start_date(self, asset):  | 
            ||
| 1199 | self._ensure_asset_dates(asset)  | 
            ||
| 1200 | return self._asset_start_dates[asset]  | 
            ||
| 1201 | |||
| 1202 | def _get_asset_end_date(self, asset):  | 
            ||
| 1203 | self._ensure_asset_dates(asset)  | 
            ||
| 1204 | return self._asset_end_dates[asset]  | 
            ||
| 1205 | |||
| 1206 | def _ensure_asset_dates(self, asset):  | 
            ||
| 1207 | sid = int(asset)  | 
            ||
| 1208 | |||
| 1209 | if sid not in self._asset_start_dates:  | 
            ||
| 1210 | self._asset_start_dates[sid] = asset.start_date  | 
            ||
| 1211 | self._asset_end_dates[sid] = asset.end_date  | 
            ||
| 1212 | |||
| 1213 | def get_splits(self, sids, dt):  | 
            ||
| 1214 | """  | 
            ||
| 1215 | Returns any splits for the given sids and the given dt.  | 
            ||
| 1216 | |||
| 1217 | Parameters  | 
            ||
| 1218 | ----------  | 
            ||
| 1219 | sids : list  | 
            ||
| 1220 | Sids for which we want splits.  | 
            ||
| 1221 | |||
| 1222 | dt: pd.Timestamp  | 
            ||
| 1223 | The date for which we are checking for splits. Note: this is  | 
            ||
| 1224 | expected to be midnight UTC.  | 
            ||
| 1225 | |||
| 1226 | Returns  | 
            ||
| 1227 | -------  | 
            ||
| 1228 | list: List of splits, where each split is a (sid, ratio) tuple.  | 
            ||
| 1229 | """  | 
            ||
| 1230 | if self._adjustment_reader is None or len(sids) == 0:  | 
            ||
| 1231 |             return {} | 
            ||
| 1232 | |||
| 1233 | # convert dt to # of seconds since epoch, because that's what we use  | 
            ||
| 1234 | # in the adjustments db  | 
            ||
| 1235 | seconds = int(dt.value / 1e9)  | 
            ||
| 1236 | |||
| 1237 | splits = self._adjustment_reader.conn.execute(  | 
            ||
| 1238 | "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?",  | 
            ||
| 1239 | (seconds,)).fetchall()  | 
            ||
| 1240 | |||
| 1241 | sids_set = set(sids)  | 
            ||
| 1242 | splits = [split for split in splits if split[0] in sids_set]  | 
            ||
| 1243 | |||
| 1244 | return splits  | 
            ||
| 1245 | |||
| 1246 | def get_stock_dividends(self, sid, trading_days):  | 
            ||
| 1247 | """  | 
            ||
| 1248 | Returns all the stock dividends for a specific sid that occur  | 
            ||
| 1249 | in the given trading range.  | 
            ||
| 1250 | |||
| 1251 | Parameters  | 
            ||
| 1252 | ----------  | 
            ||
| 1253 | sid: int  | 
            ||
| 1254 | The asset whose stock dividends should be returned.  | 
            ||
| 1255 | |||
| 1256 | trading_days: pd.DatetimeIndex  | 
            ||
| 1257 | The trading range.  | 
            ||
| 1258 | |||
| 1259 | Returns  | 
            ||
| 1260 | -------  | 
            ||
| 1261 | list: A list of objects with all relevant attributes populated.  | 
            ||
| 1262 | All timestamp fields are converted to pd.Timestamps.  | 
            ||
| 1263 | """  | 
            ||
| 1264 | |||
| 1265 | if self._adjustment_reader is None:  | 
            ||
| 1266 | return []  | 
            ||
| 1267 | |||
| 1268 | if len(trading_days) == 0:  | 
            ||
| 1269 | return []  | 
            ||
| 1270 | |||
| 1271 | start_dt = trading_days[0].value / 1e9  | 
            ||
| 1272 | end_dt = trading_days[-1].value / 1e9  | 
            ||
| 1273 | |||
| 1274 | dividends = self._adjustment_reader.conn.execute(  | 
            ||
| 1275 | "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND "  | 
            ||
| 1276 | "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\  | 
            ||
| 1277 | fetchall()  | 
            ||
| 1278 | |||
| 1279 | dividend_info = []  | 
            ||
| 1280 | for dividend_tuple in dividends:  | 
            ||
| 1281 |             dividend_info.append({ | 
            ||
| 1282 | "declared_date": dividend_tuple[1],  | 
            ||
| 1283 | "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"),  | 
            ||
| 1284 | "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"),  | 
            ||
| 1285 | "payment_sid": dividend_tuple[4],  | 
            ||
| 1286 | "ratio": dividend_tuple[5],  | 
            ||
| 1287 | "record_date": pd.Timestamp(dividend_tuple[6], unit="s"),  | 
            ||
| 1288 | "sid": dividend_tuple[7]  | 
            ||
| 1289 | })  | 
            ||
| 1290 | |||
| 1291 | return dividend_info  | 
            ||
| 1292 | |||
| 1293 | def contains(self, asset, field):  | 
            ||
| 1294 | return field in BASE_FIELDS or \  | 
            ||
| 1295 | (field in self._augmented_sources_map and  | 
            ||
| 1296 | asset in self._augmented_sources_map[field])  | 
            ||
| 1297 | |||
| 1298 | def get_fetcher_assets(self):  | 
            ||
| 1299 | """  | 
            ||
| 1300 | Returns a list of assets for the current date, as defined by the  | 
            ||
| 1301 | fetcher data.  | 
            ||
| 1302 | |||
| 1303 | Notes  | 
            ||
| 1304 | -----  | 
            ||
| 1305 | Data is forward-filled. If there is no fetcher data defined for day  | 
            ||
| 1306 | N, we use day N-1's data (if available, otherwise we keep going back).  | 
            ||
| 1307 | |||
| 1308 | Returns  | 
            ||
| 1309 | -------  | 
            ||
| 1310 | list: a list of Asset objects.  | 
            ||
| 1311 | """  | 
            ||
| 1312 | # return a list of assets for the current date, as defined by the  | 
            ||
| 1313 | # fetcher source  | 
            ||
| 1314 | if self._extra_source_df is None:  | 
            ||
| 1315 | return []  | 
            ||
| 1316 | |||
| 1317 | if self.current_day in self._extra_source_df.index:  | 
            ||
| 1318 | date_to_use = self.current_day  | 
            ||
| 1319 | else:  | 
            ||
| 1320 | # current day isn't in the fetcher df, go back the last  | 
            ||
| 1321 | # available day  | 
            ||
| 1322 | idx = self._extra_source_df.index.searchsorted(self.current_day)  | 
            ||
| 1323 | if idx == 0:  | 
            ||
| 1324 | return []  | 
            ||
| 1325 | |||
| 1326 | date_to_use = self._extra_source_df.index[idx - 1]  | 
            ||
| 1327 | |||
| 1328 | asset_list = self._extra_source_df.loc[date_to_use]["sid"]  | 
            ||
| 1329 | |||
| 1330 | # make sure they're actually assets  | 
            ||
| 1331 | asset_list = [asset for asset in asset_list  | 
            ||
| 1332 | if isinstance(asset, Asset)]  | 
            ||
| 1333 | |||
| 1334 | return asset_list  | 
            ||
| 1335 | |||
| 1350 |