Conditions | 4 |
Total Lines | 63 |
Lines | 0 |
Ratio | 0 % |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | from abc import ( |
||
86 | def _write_internal(self, directory, iterator, sid_path_func=None): |
||
87 | first_trading_day = self.first_trading_day |
||
88 | |||
89 | write_metadata(directory, first_trading_day) |
||
90 | |||
91 | first_open = pd.Timestamp( |
||
92 | datetime( |
||
93 | year=first_trading_day.year, |
||
94 | month=first_trading_day.month, |
||
95 | day=first_trading_day.day, |
||
96 | hour=9, |
||
97 | minute=31 |
||
98 | ), tz='US/Eastern').tz_convert('UTC') |
||
99 | |||
100 | for asset_id, df in iterator: |
||
101 | if sid_path_func is None: |
||
102 | path = join(directory, "{0}.bcolz".format(asset_id)) |
||
103 | else: |
||
104 | path = sid_path_func(directory, asset_id) |
||
105 | |||
106 | os.makedirs(path) |
||
107 | |||
108 | minutes = self.full_minutes_for_days(_writer_env, |
||
109 | first_open, df.index[-1]) |
||
110 | minutes_count = len(minutes) |
||
111 | |||
112 | dt_col = np.zeros(minutes_count, dtype=np.uint32) |
||
113 | open_col = np.zeros(minutes_count, dtype=np.uint32) |
||
114 | high_col = np.zeros(minutes_count, dtype=np.uint32) |
||
115 | low_col = np.zeros(minutes_count, dtype=np.uint32) |
||
116 | close_col = np.zeros(minutes_count, dtype=np.uint32) |
||
117 | vol_col = np.zeros(minutes_count, dtype=np.uint32) |
||
118 | |||
119 | for row in df.iterrows(): |
||
120 | dt = row[0] |
||
121 | idx = minutes.searchsorted(dt) |
||
122 | |||
123 | dt_col[idx] = dt.value / 1e9 |
||
124 | open_col[idx] = row[1].loc["open"] |
||
125 | high_col[idx] = row[1].loc["high"] |
||
126 | low_col[idx] = row[1].loc["low"] |
||
127 | close_col[idx] = row[1].loc["close"] |
||
128 | vol_col[idx] = row[1].loc["volume"] |
||
129 | |||
130 | ctable( |
||
131 | columns=[ |
||
132 | open_col, |
||
133 | high_col, |
||
134 | low_col, |
||
135 | close_col, |
||
136 | vol_col, |
||
137 | dt_col |
||
138 | ], |
||
139 | names=[ |
||
140 | "open", |
||
141 | "high", |
||
142 | "low", |
||
143 | "close", |
||
144 | "volume", |
||
145 | "dt" |
||
146 | ], |
||
147 | rootdir=path, |
||
148 | mode='w' |
||
149 | ) |
||
231 |