1
|
|
|
import datetime |
2
|
|
|
|
3
|
|
|
from datashape import istabular |
4
|
|
|
import pandas as pd |
5
|
|
|
from toolz import valmap |
6
|
|
|
|
7
|
|
|
from .core import ( |
8
|
|
|
TS_FIELD_NAME, |
9
|
|
|
SID_FIELD_NAME, |
10
|
|
|
bind_expression_to_resources, |
11
|
|
|
ffill_query_in_range, |
12
|
|
|
) |
13
|
|
|
from zipline.pipeline.data import EarningsCalendar |
14
|
|
|
from zipline.pipeline.loaders.base import PipelineLoader |
15
|
|
|
from zipline.pipeline.loaders.earnings import EarningsCalendarLoader |
16
|
|
|
from zipline.pipeline.loaders.utils import ( |
17
|
|
|
normalize_data_query_time, |
18
|
|
|
normalize_timestamp_to_query_time, |
19
|
|
|
) |
20
|
|
|
from zipline.utils.input_validation import ensure_timezone |
21
|
|
|
from zipline.utils.preprocess import preprocess |
22
|
|
|
|
23
|
|
|
|
24
|
|
|
ANNOUNCEMENT_FIELD_NAME = 'announcement_date' |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
class BlazeEarningsCalendarLoader(PipelineLoader): |
28
|
|
|
"""A pipeline loader for the ``EarningsCalendar`` dataset that loads |
29
|
|
|
data from a blaze expression. |
30
|
|
|
|
31
|
|
|
Parameters |
32
|
|
|
---------- |
33
|
|
|
expr : Expr |
34
|
|
|
The expression representing the data to load. |
35
|
|
|
resources : dict, optional |
36
|
|
|
Mapping from the atomic terms of ``expr`` to actual data resources. |
37
|
|
|
odo_kwargs : dict, optional |
38
|
|
|
Extra keyword arguments to pass to odo when executing the expression. |
39
|
|
|
data_query_time : time, optional |
40
|
|
|
The time to use for the data query cutoff. |
41
|
|
|
data_query_tz : tzinfo or str |
42
|
|
|
The timezeone to use for the data query cutoff. |
43
|
|
|
|
44
|
|
|
Notes |
45
|
|
|
----- |
46
|
|
|
The expression should have a tabular dshape of:: |
47
|
|
|
|
48
|
|
|
Dim * {{ |
49
|
|
|
{SID_FIELD_NAME}: int64, |
50
|
|
|
{TS_FIELD_NAME}: datetime, |
51
|
|
|
{ANNOUNCEMENT_FIELD_NAME}: ?datetime, |
52
|
|
|
}} |
53
|
|
|
|
54
|
|
|
Where each row of the table is a record including the sid to identify the |
55
|
|
|
company, the timestamp where we learned about the announcement, and the |
56
|
|
|
date when the earnings will be announced. |
57
|
|
|
|
58
|
|
|
If the '{TS_FIELD_NAME}' field is not included it is assumed that we |
59
|
|
|
start the backtest with knowledge of all announcements. |
60
|
|
|
""" |
61
|
|
|
__doc__ = __doc__.format( |
62
|
|
|
TS_FIELD_NAME=TS_FIELD_NAME, |
63
|
|
|
SID_FIELD_NAME=SID_FIELD_NAME, |
64
|
|
|
ANNOUNCEMENT_FIELD_NAME=ANNOUNCEMENT_FIELD_NAME, |
65
|
|
|
) |
66
|
|
|
|
67
|
|
|
_expected_fields = frozenset({ |
68
|
|
|
TS_FIELD_NAME, |
69
|
|
|
SID_FIELD_NAME, |
70
|
|
|
ANNOUNCEMENT_FIELD_NAME, |
71
|
|
|
}) |
72
|
|
|
|
73
|
|
|
@preprocess(data_query_tz=ensure_timezone) |
74
|
|
|
def __init__(self, |
75
|
|
|
expr, |
76
|
|
|
resources=None, |
77
|
|
|
odo_kwargs=None, |
78
|
|
|
data_query_time=datetime.time(0), |
79
|
|
|
data_query_tz='utc', |
80
|
|
|
dataset=EarningsCalendar): |
81
|
|
|
dshape = expr.dshape |
82
|
|
|
|
83
|
|
|
if not istabular(dshape): |
84
|
|
|
raise ValueError( |
85
|
|
|
'expression dshape must be tabular, got: %s' % dshape, |
86
|
|
|
) |
87
|
|
|
|
88
|
|
|
expected_fields = self._expected_fields |
89
|
|
|
self._expr = bind_expression_to_resources( |
90
|
|
|
expr[list(expected_fields)], |
91
|
|
|
resources, |
92
|
|
|
) |
93
|
|
|
self._odo_kwargs = odo_kwargs if odo_kwargs is not None else {} |
94
|
|
|
self._dataset = dataset |
95
|
|
|
self._data_query_time = data_query_time |
96
|
|
|
self._data_query_tz = data_query_tz |
97
|
|
|
|
98
|
|
|
def load_adjusted_array(self, columns, dates, assets, mask): |
99
|
|
|
data_query_time = self._data_query_time |
100
|
|
|
data_query_tz = self._data_query_tz |
101
|
|
|
raw = ffill_query_in_range( |
102
|
|
|
self._expr, |
103
|
|
|
normalize_data_query_time( |
104
|
|
|
dates[0], |
105
|
|
|
data_query_time, |
106
|
|
|
data_query_tz, |
107
|
|
|
), |
108
|
|
|
normalize_data_query_time( |
109
|
|
|
dates[-1], |
110
|
|
|
data_query_time, |
111
|
|
|
data_query_tz, |
112
|
|
|
), |
113
|
|
|
self._odo_kwargs, |
114
|
|
|
) |
115
|
|
|
sids = raw.loc[:, SID_FIELD_NAME] |
116
|
|
|
raw.drop( |
117
|
|
|
sids[~sids.isin(assets)].index, |
118
|
|
|
inplace=True |
119
|
|
|
) |
120
|
|
|
normalize_timestamp_to_query_time( |
121
|
|
|
raw, |
122
|
|
|
data_query_time, |
123
|
|
|
data_query_tz, |
124
|
|
|
inplace=True, |
125
|
|
|
ts_field=TS_FIELD_NAME, |
126
|
|
|
) |
127
|
|
|
|
128
|
|
|
gb = raw.groupby(SID_FIELD_NAME) |
129
|
|
|
|
130
|
|
|
def mkseries(idx, raw_loc=raw.loc): |
131
|
|
|
vs = raw_loc[ |
132
|
|
|
idx, [TS_FIELD_NAME, ANNOUNCEMENT_FIELD_NAME] |
133
|
|
|
].values |
134
|
|
|
return pd.Series( |
135
|
|
|
index=pd.DatetimeIndex(vs[:, 0]), |
136
|
|
|
data=vs[:, 1], |
137
|
|
|
) |
138
|
|
|
|
139
|
|
|
return EarningsCalendarLoader( |
140
|
|
|
dates, |
141
|
|
|
valmap(mkseries, gb.groups), |
142
|
|
|
dataset=self._dataset, |
143
|
|
|
).load_adjusted_array(columns, dates, assets, mask) |
144
|
|
|
|