|
1
|
|
|
import datetime |
|
2
|
|
|
|
|
3
|
|
|
import numpy as np |
|
4
|
|
|
import pandas as pd |
|
5
|
|
|
from six import iteritems |
|
6
|
|
|
from six.moves import zip |
|
7
|
|
|
|
|
8
|
|
|
from zipline.utils.numpy_utils import np_NaT |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
|
def next_date_frame(dates, events_by_sid): |
|
12
|
|
|
""" |
|
13
|
|
|
Make a DataFrame representing the simulated next known date for an event. |
|
14
|
|
|
|
|
15
|
|
|
Parameters |
|
16
|
|
|
---------- |
|
17
|
|
|
dates : pd.DatetimeIndex. |
|
18
|
|
|
The index of the returned DataFrame. |
|
19
|
|
|
events_by_sid : dict[int -> pd.Series] |
|
20
|
|
|
Dict mapping sids to a series of dates. Each k:v pair of the series |
|
21
|
|
|
represents the date we learned of the event mapping to the date the |
|
22
|
|
|
event will occur. |
|
23
|
|
|
Returns |
|
24
|
|
|
------- |
|
25
|
|
|
next_events: pd.DataFrame |
|
26
|
|
|
A DataFrame where each column is a security from `events_by_sid` where |
|
27
|
|
|
the values are the dates of the next known event with the knowledge we |
|
28
|
|
|
had on the date of the index. Entries falling after the last date will |
|
29
|
|
|
have `NaT` as the result in the output. |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
See Also |
|
33
|
|
|
-------- |
|
34
|
|
|
previous_date_frame |
|
35
|
|
|
""" |
|
36
|
|
|
cols = { |
|
37
|
|
|
equity: np.full_like(dates, np_NaT) for equity in events_by_sid |
|
38
|
|
|
} |
|
39
|
|
|
raw_dates = dates.values |
|
40
|
|
|
for equity, event_dates in iteritems(events_by_sid): |
|
41
|
|
|
data = cols[equity] |
|
42
|
|
|
if not event_dates.index.is_monotonic_increasing: |
|
43
|
|
|
event_dates = event_dates.sort_index() |
|
44
|
|
|
|
|
45
|
|
|
# Iterate over the raw Series values, since we're comparing against |
|
46
|
|
|
# numpy arrays anyway. |
|
47
|
|
|
iterkv = zip(event_dates.index.values, event_dates.values) |
|
48
|
|
|
for knowledge_date, event_date in iterkv: |
|
49
|
|
|
date_mask = ( |
|
50
|
|
|
(knowledge_date <= raw_dates) & |
|
51
|
|
|
(raw_dates <= event_date) |
|
52
|
|
|
) |
|
53
|
|
|
value_mask = (event_date <= data) | (data == np_NaT) |
|
54
|
|
|
data[date_mask & value_mask] = event_date |
|
55
|
|
|
|
|
56
|
|
|
return pd.DataFrame(index=dates, data=cols) |
|
57
|
|
|
|
|
58
|
|
|
|
|
59
|
|
|
def previous_date_frame(date_index, events_by_sid): |
|
60
|
|
|
""" |
|
61
|
|
|
Make a DataFrame representing simulated next earnings date_index. |
|
62
|
|
|
|
|
63
|
|
|
Parameters |
|
64
|
|
|
---------- |
|
65
|
|
|
date_index : DatetimeIndex. |
|
66
|
|
|
The index of the returned DataFrame. |
|
67
|
|
|
events_by_sid : dict[int -> DatetimeIndex] |
|
68
|
|
|
Dict mapping sids to a series of dates. Each k:v pair of the series |
|
69
|
|
|
represents the date we learned of the event mapping to the date the |
|
70
|
|
|
event will occur. |
|
71
|
|
|
|
|
72
|
|
|
Returns |
|
73
|
|
|
------- |
|
74
|
|
|
previous_events: pd.DataFrame |
|
75
|
|
|
A DataFrame where each column is a security from `events_by_sid` where |
|
76
|
|
|
the values are the dates of the previous event that occured on the date |
|
77
|
|
|
of the index. Entries falling before the first date will have `NaT` as |
|
78
|
|
|
the result in the output. |
|
79
|
|
|
|
|
80
|
|
|
See Also |
|
81
|
|
|
-------- |
|
82
|
|
|
next_date_frame |
|
83
|
|
|
""" |
|
84
|
|
|
sids = list(events_by_sid) |
|
85
|
|
|
out = np.full((len(date_index), len(sids)), np_NaT, dtype='datetime64[ns]') |
|
86
|
|
|
dn = date_index[-1].asm8 |
|
87
|
|
|
for col_idx, sid in enumerate(sids): |
|
88
|
|
|
# events_by_sid[sid] is Series mapping knowledge_date to actual |
|
89
|
|
|
# event_date. We don't care about the knowledge date for |
|
90
|
|
|
# computing previous earnings. |
|
91
|
|
|
values = events_by_sid[sid].values |
|
92
|
|
|
values = values[values <= dn] |
|
93
|
|
|
out[date_index.searchsorted(values), col_idx] = values |
|
94
|
|
|
|
|
95
|
|
|
frame = pd.DataFrame(out, index=date_index, columns=sids) |
|
96
|
|
|
frame.ffill(inplace=True) |
|
97
|
|
|
return frame |
|
98
|
|
|
|
|
99
|
|
|
|
|
100
|
|
|
def normalize_data_query_time(dt, time, tz): |
|
101
|
|
|
"""Apply the correct time and timezone to a date. |
|
102
|
|
|
|
|
103
|
|
|
Parameters |
|
104
|
|
|
---------- |
|
105
|
|
|
dt : pd.Timestamp |
|
106
|
|
|
The original datetime that represents the date. |
|
107
|
|
|
time : datetime.time |
|
108
|
|
|
The time of day to use as the cutoff point for new data. Data points |
|
109
|
|
|
that you learn about after this time will become available to your |
|
110
|
|
|
algorithm on the next trading day. |
|
111
|
|
|
tz : tzinfo |
|
112
|
|
|
The timezone to normalize your dates to before comparing against |
|
113
|
|
|
`time`. |
|
114
|
|
|
|
|
115
|
|
|
Returns |
|
116
|
|
|
------- |
|
117
|
|
|
query_dt : pd.Timestamp |
|
118
|
|
|
The timestamp with the correct time and date in utc. |
|
119
|
|
|
""" |
|
120
|
|
|
# merge the correct date with the time in the given timezone then convert |
|
121
|
|
|
# back to utc |
|
122
|
|
|
return pd.Timestamp( |
|
123
|
|
|
datetime.datetime.combine(dt.date(), time), |
|
124
|
|
|
tz=tz, |
|
125
|
|
|
).tz_convert('utc') |
|
126
|
|
|
|
|
127
|
|
|
|
|
128
|
|
|
def normalize_timestamp_to_query_time(df, |
|
129
|
|
|
time, |
|
130
|
|
|
tz, |
|
131
|
|
|
inplace=False, |
|
132
|
|
|
ts_field='timestamp'): |
|
133
|
|
|
"""Update the timestamp field of a dataframe to normalize dates around |
|
134
|
|
|
some data query time/timezone. |
|
135
|
|
|
|
|
136
|
|
|
Parameters |
|
137
|
|
|
---------- |
|
138
|
|
|
df : pd.DataFrame |
|
139
|
|
|
The dataframe to update. This needs a column named ``ts_field``. |
|
140
|
|
|
time : datetime.time |
|
141
|
|
|
The time of day to use as the cutoff point for new data. Data points |
|
142
|
|
|
that you learn about after this time will become available to your |
|
143
|
|
|
algorithm on the next trading day. |
|
144
|
|
|
tz : tzinfo |
|
145
|
|
|
The timezone to normalize your dates to before comparing against |
|
146
|
|
|
`time`. |
|
147
|
|
|
inplace : bool, optional |
|
148
|
|
|
Update the dataframe in place. |
|
149
|
|
|
ts_field : str, optional |
|
150
|
|
|
The name of the timestamp field in ``df``. |
|
151
|
|
|
|
|
152
|
|
|
Returns |
|
153
|
|
|
------- |
|
154
|
|
|
df : pd.DataFrame |
|
155
|
|
|
The dataframe with the timestamp field normalized. If ``inplace`` is |
|
156
|
|
|
true, then this will be the same object as ``df`` otherwise this will |
|
157
|
|
|
be a copy. |
|
158
|
|
|
""" |
|
159
|
|
|
if not inplace: |
|
160
|
|
|
# don't mutate the dataframe in place |
|
161
|
|
|
df = df.copy() |
|
162
|
|
|
|
|
163
|
|
|
dtidx = pd.DatetimeIndex(df.loc[:, ts_field], tz='utc') |
|
164
|
|
|
dtidx_local_time = dtidx.tz_convert(tz) |
|
165
|
|
|
to_roll_forward = dtidx_local_time.time > time |
|
166
|
|
|
# for all of the times that are greater than our query time add 1 |
|
167
|
|
|
# day and truncate to the date |
|
168
|
|
|
df.loc[to_roll_forward, ts_field] = ( |
|
169
|
|
|
dtidx_local_time[to_roll_forward] + datetime.timedelta(days=1) |
|
170
|
|
|
).normalize().tz_localize(None).tz_localize('utc') # cast back to utc |
|
171
|
|
|
df.loc[~to_roll_forward, ts_field] = dtidx[~to_roll_forward].normalize() |
|
172
|
|
|
return df |
|
173
|
|
|
|