1
|
|
|
# |
2
|
|
|
# Copyright 2015 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
from logbook import Logger, Processor |
16
|
|
|
from pandas.tslib import normalize_date |
17
|
|
|
from zipline.protocol import BarData |
18
|
|
|
from zipline.utils.api_support import ZiplineAPI |
19
|
|
|
|
20
|
|
|
from zipline.gens.sim_engine import ( |
21
|
|
|
BAR, |
22
|
|
|
DAY_START, |
23
|
|
|
DAY_END, |
24
|
|
|
MINUTE_END |
25
|
|
|
) |
26
|
|
|
|
27
|
|
|
log = Logger('Trade Simulation') |
28
|
|
|
|
29
|
|
|
|
30
|
|
|
class AlgorithmSimulator(object): |
31
|
|
|
|
32
|
|
|
EMISSION_TO_PERF_KEY_MAP = { |
33
|
|
|
'minute': 'minute_perf', |
34
|
|
|
'daily': 'daily_perf' |
35
|
|
|
} |
36
|
|
|
|
37
|
|
|
def __init__(self, algo, sim_params, data_portal, clock, benchmark_source): |
38
|
|
|
|
39
|
|
|
# ============== |
40
|
|
|
# Simulation |
41
|
|
|
# Param Setup |
42
|
|
|
# ============== |
43
|
|
|
self.sim_params = sim_params |
44
|
|
|
self.env = algo.trading_environment |
45
|
|
|
self.data_portal = data_portal |
46
|
|
|
|
47
|
|
|
# ============== |
48
|
|
|
# Algo Setup |
49
|
|
|
# ============== |
50
|
|
|
self.algo = algo |
51
|
|
|
self.algo_start = normalize_date(self.sim_params.first_open) |
52
|
|
|
|
53
|
|
|
# ============== |
54
|
|
|
# Snapshot Setup |
55
|
|
|
# ============== |
56
|
|
|
|
57
|
|
|
# The algorithm's data as of our most recent event. |
58
|
|
|
# We want an object that will have empty objects as default |
59
|
|
|
# values on missing keys. |
60
|
|
|
self.current_data = self._create_bar_data() |
61
|
|
|
|
62
|
|
|
# We don't have a datetime for the current snapshot until we |
63
|
|
|
# receive a message. |
64
|
|
|
self.simulation_dt = None |
65
|
|
|
|
66
|
|
|
self.clock = clock |
67
|
|
|
|
68
|
|
|
self.benchmark_source = benchmark_source |
69
|
|
|
|
70
|
|
|
# ============= |
71
|
|
|
# Logging Setup |
72
|
|
|
# ============= |
73
|
|
|
|
74
|
|
|
# Processor function for injecting the algo_dt into |
75
|
|
|
# user prints/logs. |
76
|
|
|
def inject_algo_dt(record): |
77
|
|
|
if 'algo_dt' not in record.extra: |
78
|
|
|
record.extra['algo_dt'] = self.simulation_dt |
79
|
|
|
self.processor = Processor(inject_algo_dt) |
80
|
|
|
|
81
|
|
|
def _create_bar_data(self): |
82
|
|
|
return BarData( |
83
|
|
|
data_portal=self.data_portal, |
84
|
|
|
simulator=self |
85
|
|
|
) |
86
|
|
|
|
87
|
|
|
def transform(self): |
88
|
|
|
""" |
89
|
|
|
Main generator work loop. |
90
|
|
|
""" |
91
|
|
|
algo = self.algo |
92
|
|
|
algo.data_portal = self.data_portal |
93
|
|
|
handle_data = algo.event_manager.handle_data |
94
|
|
|
current_data = self.current_data |
95
|
|
|
|
96
|
|
|
data_portal = self.data_portal |
97
|
|
|
|
98
|
|
|
# can't cache a pointer to algo.perf_tracker because we're not |
99
|
|
|
# guaranteed that the algo doesn't swap out perf trackers during |
100
|
|
|
# its lifetime. |
101
|
|
|
# likewise, we can't cache a pointer to the blotter. |
102
|
|
|
|
103
|
|
|
algo.perf_tracker.position_tracker.data_portal = data_portal |
104
|
|
|
|
105
|
|
|
def every_bar(dt_to_use): |
106
|
|
|
# called every tick (minute or day). |
107
|
|
|
|
108
|
|
|
self.simulation_dt = dt_to_use |
109
|
|
|
algo.on_dt_changed(dt_to_use) |
110
|
|
|
|
111
|
|
|
blotter = algo.blotter |
112
|
|
|
perf_tracker = algo.perf_tracker |
113
|
|
|
|
114
|
|
|
# handle any transactions and commissions coming out new orders |
115
|
|
|
# placed in the last bar |
116
|
|
|
new_transactions, new_commissions = \ |
117
|
|
|
blotter.get_transactions(data_portal) |
118
|
|
|
|
119
|
|
|
for transaction in new_transactions: |
120
|
|
|
perf_tracker.process_transaction(transaction) |
121
|
|
|
|
122
|
|
|
# since this order was modified, record it |
123
|
|
|
order = blotter.orders[transaction.order_id] |
124
|
|
|
perf_tracker.process_order(order) |
125
|
|
|
|
126
|
|
|
if new_commissions: |
127
|
|
|
for commission in new_commissions: |
128
|
|
|
perf_tracker.process_commission(commission) |
129
|
|
|
|
130
|
|
|
handle_data(algo, current_data, dt_to_use) |
131
|
|
|
|
132
|
|
|
# grab any new orders from the blotter, then clear the list. |
133
|
|
|
# this includes cancelled orders. |
134
|
|
|
new_orders = blotter.new_orders |
135
|
|
|
blotter.new_orders = [] |
136
|
|
|
|
137
|
|
|
# if we have any new orders, record them so that we know |
138
|
|
|
# in what perf period they were placed. |
139
|
|
|
if new_orders: |
140
|
|
|
for new_order in new_orders: |
141
|
|
|
perf_tracker.process_order(new_order) |
142
|
|
|
|
143
|
|
|
self.algo.portfolio_needs_update = True |
144
|
|
|
self.algo.account_needs_update = True |
145
|
|
|
self.algo.performance_needs_update = True |
146
|
|
|
|
147
|
|
|
def once_a_day(midnight_dt): |
148
|
|
|
# set all the timestamps |
149
|
|
|
self.simulation_dt = midnight_dt |
150
|
|
|
algo.on_dt_changed(midnight_dt) |
151
|
|
|
|
152
|
|
|
# call before trading start |
153
|
|
|
algo.before_trading_start(current_data) |
154
|
|
|
|
155
|
|
|
perf_tracker = algo.perf_tracker |
156
|
|
|
|
157
|
|
|
# handle any splits that impact any positions or any open orders. |
158
|
|
|
sids_we_care_about = \ |
159
|
|
|
list(set(list(perf_tracker.position_tracker.positions.keys()) + |
160
|
|
|
list(algo.blotter.open_orders.keys()))) |
161
|
|
|
|
162
|
|
|
if len(sids_we_care_about) > 0: |
163
|
|
|
splits = data_portal.get_splits(sids_we_care_about, |
164
|
|
|
midnight_dt) |
165
|
|
|
if len(splits) > 0: |
166
|
|
|
algo.blotter.process_splits(splits) |
167
|
|
|
perf_tracker.position_tracker.handle_splits(splits) |
168
|
|
|
|
169
|
|
|
def handle_benchmark(date): |
170
|
|
|
algo.perf_tracker.all_benchmark_returns[date] = \ |
171
|
|
|
self.benchmark_source.get_value(date) |
172
|
|
|
|
173
|
|
|
with self.processor, ZiplineAPI(self.algo): |
174
|
|
|
for dt, action in self.clock: |
175
|
|
|
if action == BAR: |
176
|
|
|
every_bar(dt) |
177
|
|
|
elif action == DAY_START: |
178
|
|
|
once_a_day(dt) |
179
|
|
|
elif action == DAY_END: |
180
|
|
|
# End of the day. |
181
|
|
|
handle_benchmark(normalize_date(dt)) |
182
|
|
|
yield self._get_daily_message(dt, algo, algo.perf_tracker) |
183
|
|
|
elif action == MINUTE_END: |
184
|
|
|
handle_benchmark(dt) |
185
|
|
|
minute_msg, daily_msg = \ |
186
|
|
|
self._get_minute_message(dt, algo, algo.perf_tracker) |
187
|
|
|
|
188
|
|
|
yield minute_msg |
189
|
|
|
|
190
|
|
|
if daily_msg: |
191
|
|
|
yield daily_msg |
192
|
|
|
|
193
|
|
|
risk_message = algo.perf_tracker.handle_simulation_end() |
194
|
|
|
yield risk_message |
195
|
|
|
|
196
|
|
|
@staticmethod |
197
|
|
|
def _get_daily_message(dt, algo, perf_tracker): |
198
|
|
|
""" |
199
|
|
|
Get a perf message for the given datetime. |
200
|
|
|
""" |
201
|
|
|
perf_message = perf_tracker.handle_market_close_daily(dt) |
202
|
|
|
perf_message['daily_perf']['recorded_vars'] = algo.recorded_vars |
203
|
|
|
return perf_message |
204
|
|
|
|
205
|
|
|
@staticmethod |
206
|
|
|
def _get_minute_message(dt, algo, perf_tracker): |
207
|
|
|
""" |
208
|
|
|
Get a perf message for the given datetime. |
209
|
|
|
""" |
210
|
|
|
rvars = algo.recorded_vars |
211
|
|
|
|
212
|
|
|
minute_message, daily_message = perf_tracker.handle_minute_close(dt) |
213
|
|
|
minute_message['minute_perf']['recorded_vars'] = rvars |
214
|
|
|
|
215
|
|
|
if daily_message: |
216
|
|
|
daily_message["daily_perf"]["recorded_vars"] = rvars |
217
|
|
|
|
218
|
|
|
return minute_message, daily_message |
219
|
|
|
|