Completed
Pull Request — master (#858)
by Eddie
10:07 queued 01:13
created

zipline.finance.risk.information_ratio()   A

Complexity

Conditions 3

Size

Total Lines 22

Duplication

Lines 0
Ratio 0 %
Metric Value
cc 3
dl 0
loc 22
rs 9.2
1
#
2
# Copyright 2014 Quantopian, Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
"""
17
18
Risk Report
19
===========
20
21
    +-----------------+----------------------------------------------------+
22
    | key             | value                                              |
23
    +=================+====================================================+
24
    | trading_days    | The number of trading days between self.start_date |
25
    |                 | and self.end_date                                  |
26
    +-----------------+----------------------------------------------------+
27
    | benchmark_volat\| The volatility of the benchmark between            |
28
    | ility           | self.start_date and self.end_date.                 |
29
    +-----------------+----------------------------------------------------+
30
    | algo_volatility | The volatility of the algo between self.start_date |
31
    |                 | and self.end_date.                                 |
32
    +-----------------+----------------------------------------------------+
33
    | treasury_period\| The return of treasuries over the period. Treasury |
34
    | _return         | maturity is chosen to match the duration of the    |
35
    |                 | test period.                                       |
36
    +-----------------+----------------------------------------------------+
37
    | sharpe          | The sharpe ratio based on the _algorithm_ (rather  |
38
    |                 | than the static portfolio) returns.                |
39
    +-----------------+----------------------------------------------------+
40
    | information     | The information ratio based on the _algorithm_     |
41
    |                 | (rather than the static portfolio) returns.        |
42
    +-----------------+----------------------------------------------------+
43
    | beta            | The _algorithm_ beta to the benchmark.             |
44
    +-----------------+----------------------------------------------------+
45
    | alpha           | The _algorithm_ alpha to the benchmark.            |
46
    +-----------------+----------------------------------------------------+
47
    | excess_return   | The excess return of the algorithm over the        |
48
    |                 | treasuries.                                        |
49
    +-----------------+----------------------------------------------------+
50
    | max_drawdown    | The largest relative peak to relative trough move  |
51
    |                 | for the portfolio returns between self.start_date  |
52
    |                 | and self.end_date.                                 |
53
    +-----------------+----------------------------------------------------+
54
    | max_leverage    | The largest gross leverage between self.start_date |
55
    |                 | and self.end_date                                  |
56
    +-----------------+----------------------------------------------------+
57
58
59
"""
60
61
import logbook
62
import math
63
import numpy as np
64
65
import zipline.utils.math_utils as zp_math
66
67
log = logbook.Logger('Risk')
68
69
70
TREASURY_DURATIONS = [
71
    '1month', '3month', '6month',
72
    '1year', '2year', '3year', '5year',
73
    '7year', '10year', '30year'
74
]
75
76
77
# check if a field in rval is nan, and replace it with
78
# None.
79
def check_entry(key, value):
80
    if key != 'period_label':
81
        return np.isnan(value) or np.isinf(value)
82
    else:
83
        return False
84
85
86
############################
87
# Risk Metric Calculations #
88
############################
89
90
91
def sharpe_ratio(algorithm_volatility, algorithm_return, treasury_return):
92
    """
93
    http://en.wikipedia.org/wiki/Sharpe_ratio
94
95
    Args:
96
        algorithm_volatility (float): Algorithm volatility.
97
        algorithm_return (float): Algorithm return percentage.
98
        treasury_return (float): Treasury return percentage.
99
100
    Returns:
101
        float. The Sharpe ratio.
102
    """
103
    if zp_math.tolerant_equals(algorithm_volatility, 0):
104
        return np.nan
105
106
    return (algorithm_return - treasury_return) / algorithm_volatility
107
108
109
def downside_risk(algorithm_returns, mean_returns, normalization_factor):
110
    rets = algorithm_returns.round(8)
111
    mar = mean_returns.round(8)
112
    mask = rets < mar
113
    downside_diff = rets[mask] - mar[mask]
114
    if len(downside_diff) <= 1:
115
        return 0.0
116
    return np.std(downside_diff, ddof=1) * math.sqrt(normalization_factor)
117
118
119
def sortino_ratio(algorithm_period_return, treasury_period_return, mar):
120
    """
121
    http://en.wikipedia.org/wiki/Sortino_ratio
122
123
    Args:
124
        algorithm_returns (np.array-like):
125
            Returns from algorithm lifetime.
126
        algorithm_period_return (float):
127
            Algorithm return percentage from latest period.
128
        mar (float): Minimum acceptable return.
129
130
    Returns:
131
        float. The Sortino ratio.
132
    """
133
    if zp_math.tolerant_equals(mar, 0):
134
        return 0.0
135
136
    return (algorithm_period_return - treasury_period_return) / mar
137
138
139
def information_ratio(algorithm_returns, benchmark_returns):
140
    """
141
    http://en.wikipedia.org/wiki/Information_ratio
142
143
    Args:
144
        algorithm_returns (np.array-like):
145
            All returns during algorithm lifetime.
146
        benchmark_returns (np.array-like):
147
            All benchmark returns during algo lifetime.
148
149
    Returns:
150
        float. Information ratio.
151
    """
152
    relative_returns = algorithm_returns - benchmark_returns
153
154
    relative_deviation = relative_returns.std(ddof=1)
155
156
    if zp_math.tolerant_equals(relative_deviation, 0) or \
157
       np.isnan(relative_deviation):
158
        return 0.0
159
160
    return np.mean(relative_returns) / relative_deviation
161
162
163
def alpha(algorithm_period_return, treasury_period_return,
164
          benchmark_period_returns, beta):
165
    """
166
    http://en.wikipedia.org/wiki/Alpha_(investment)
167
168
    Args:
169
        algorithm_period_return (float):
170
            Return percentage from algorithm period.
171
        treasury_period_return (float):
172
            Return percentage for treasury period.
173
        benchmark_period_return (float):
174
            Return percentage for benchmark period.
175
        beta (float):
176
            beta value for the same period as all other values
177
178
    Returns:
179
        float. The alpha of the algorithm.
180
    """
181
    return algorithm_period_return - \
182
        (treasury_period_return + beta *
183
         (benchmark_period_returns - treasury_period_return))
184
185
###########################
186
# End Risk Metric Section #
187
###########################
188
189
190
def get_treasury_rate(treasury_curves, treasury_duration, day):
191
    rate = None
192
193
    curve = treasury_curves.ix[day]
194
    # 1month note data begins in 8/2001,
195
    # so we can use 3month instead.
196
    idx = TREASURY_DURATIONS.index(treasury_duration)
197
    for duration in TREASURY_DURATIONS[idx:]:
198
        rate = curve[duration]
199
        if rate is not None:
200
            break
201
202
    return rate
203
204
205
def search_day_distance(end_date, dt, env):
206
    tdd = env.trading_day_distance(dt, end_date)
207
    if tdd is None:
208
        return None
209
    assert tdd >= 0
210
    return tdd
211
212
213
def select_treasury_duration(start_date, end_date):
214
    td = end_date - start_date
215
    if td.days <= 31:
216
        treasury_duration = '1month'
217
    elif td.days <= 93:
218
        treasury_duration = '3month'
219
    elif td.days <= 186:
220
        treasury_duration = '6month'
221
    elif td.days <= 366:
222
        treasury_duration = '1year'
223
    elif td.days <= 365 * 2 + 1:
224
        treasury_duration = '2year'
225
    elif td.days <= 365 * 3 + 1:
226
        treasury_duration = '3year'
227
    elif td.days <= 365 * 5 + 2:
228
        treasury_duration = '5year'
229
    elif td.days <= 365 * 7 + 2:
230
        treasury_duration = '7year'
231
    elif td.days <= 365 * 10 + 2:
232
        treasury_duration = '10year'
233
    else:
234
        treasury_duration = '30year'
235
236
    return treasury_duration
237
238
239
def choose_treasury(select_treasury, treasury_curves, start_date, end_date,
240
                    env, compound=True):
241
    """
242
    Find the latest known interest rate for a given duration within a date
243
    range.
244
245
    If we find one but it's more than a trading day ago from the date we're
246
    looking for, then we log a warning
247
    """
248
    treasury_duration = select_treasury(start_date, end_date)
249
    end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
250
    search_day = None
251
252
    if end_day in treasury_curves.index:
253
        rate = get_treasury_rate(treasury_curves,
254
                                 treasury_duration,
255
                                 end_day)
256
        if rate is not None:
257
            search_day = end_day
258
259
    if not search_day:
260
        # in case end date is not a trading day or there is no treasury
261
        # data, search for the previous day with an interest rate.
262
        search_days = treasury_curves.index
263
264
        # Find rightmost value less than or equal to end_day
265
        i = search_days.searchsorted(end_day)
266
        for prev_day in search_days[i - 1::-1]:
267
            rate = get_treasury_rate(treasury_curves,
268
                                     treasury_duration,
269
                                     prev_day)
270
            if rate is not None:
271
                search_day = prev_day
272
                search_dist = search_day_distance(end_date, prev_day, env)
273
                break
274
275
        if search_day:
276
            if (search_dist is None or search_dist > 1) and \
277
                    search_days[0] <= end_day <= search_days[-1]:
278
                message = "No rate within 1 trading day of end date = \
279
{dt} and term = {term}. Using {search_day}. Check that date doesn't exceed \
280
treasury history range."
281
                message = message.format(dt=end_date,
282
                                         term=treasury_duration,
283
                                         search_day=search_day)
284
                log.warn(message)
285
286
    if search_day:
287
        td = end_date - start_date
288
        if compound:
289
            return rate * (td.days + 1) / 365
290
        else:
291
            return rate
292
293
    message = "No rate for end date = {dt} and term = {term}. Check \
294
that date doesn't exceed treasury history range."
295
    message = message.format(
296
        dt=end_date,
297
        term=treasury_duration
298
    )
299
    raise Exception(message)
300