1
|
|
|
""" |
2
|
|
|
Tests for Algorithms using the Pipeline API. |
3
|
|
|
""" |
4
|
|
|
import os |
5
|
|
|
from unittest import TestCase |
6
|
|
|
from os.path import ( |
7
|
|
|
dirname, |
8
|
|
|
join, |
9
|
|
|
realpath, |
10
|
|
|
) |
11
|
|
|
|
12
|
|
|
from nose_parameterized import parameterized |
13
|
|
|
from numpy import ( |
14
|
|
|
array, |
15
|
|
|
arange, |
16
|
|
|
full_like, |
17
|
|
|
float64, |
18
|
|
|
nan, |
19
|
|
|
uint32, |
20
|
|
|
) |
21
|
|
|
from numpy.testing import assert_almost_equal |
22
|
|
|
from pandas import ( |
23
|
|
|
concat, |
24
|
|
|
DataFrame, |
25
|
|
|
date_range, |
26
|
|
|
DatetimeIndex, |
27
|
|
|
read_csv, |
28
|
|
|
Series, |
29
|
|
|
Timestamp, |
30
|
|
|
) |
31
|
|
|
from six import iteritems, itervalues |
32
|
|
|
from testfixtures import TempDirectory |
33
|
|
|
|
34
|
|
|
from zipline.algorithm import TradingAlgorithm |
35
|
|
|
from zipline.api import ( |
36
|
|
|
attach_pipeline, |
37
|
|
|
pipeline_output, |
38
|
|
|
get_datetime, |
39
|
|
|
) |
40
|
|
|
from zipline.data.data_portal import DataPortal |
41
|
|
|
from zipline.errors import ( |
42
|
|
|
AttachPipelineAfterInitialize, |
43
|
|
|
PipelineOutputDuringInitialize, |
44
|
|
|
NoSuchPipeline, |
45
|
|
|
) |
46
|
|
|
from zipline.data.us_equity_pricing import ( |
47
|
|
|
BcolzDailyBarReader, |
48
|
|
|
DailyBarWriterFromCSVs, |
49
|
|
|
SQLiteAdjustmentWriter, |
50
|
|
|
SQLiteAdjustmentReader, |
51
|
|
|
) |
52
|
|
|
from zipline.finance import trading |
53
|
|
|
from zipline.lib.adjustment import MULTIPLY |
54
|
|
|
from zipline.pipeline import Pipeline |
55
|
|
|
from zipline.pipeline.factors import VWAP |
56
|
|
|
from zipline.pipeline.data import USEquityPricing |
57
|
|
|
from zipline.pipeline.loaders.frame import DataFrameLoader |
58
|
|
|
from zipline.pipeline.loaders.equity_pricing_loader import ( |
59
|
|
|
USEquityPricingLoader, |
60
|
|
|
) |
61
|
|
|
from zipline.utils.test_utils import ( |
62
|
|
|
make_simple_equity_info, |
63
|
|
|
str_to_seconds, |
64
|
|
|
DailyBarWriterFromDataFrames, FakeDataPortal) |
65
|
|
|
from zipline.utils.tradingcalendar import ( |
66
|
|
|
trading_day, |
67
|
|
|
trading_days, |
68
|
|
|
) |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
TEST_RESOURCE_PATH = join( |
72
|
|
|
dirname(dirname(realpath(__file__))), # zipline_repo/tests |
73
|
|
|
'resources', |
74
|
|
|
'pipeline_inputs', |
75
|
|
|
) |
76
|
|
|
|
77
|
|
|
|
78
|
|
|
def rolling_vwap(df, length): |
79
|
|
|
"Simple rolling vwap implementation for testing" |
80
|
|
|
closes = df['close'].values |
81
|
|
|
volumes = df['volume'].values |
82
|
|
|
product = closes * volumes |
83
|
|
|
out = full_like(closes, nan) |
84
|
|
|
for upper_bound in range(length, len(closes) + 1): |
85
|
|
|
bounds = slice(upper_bound - length, upper_bound) |
86
|
|
|
out[upper_bound - 1] = product[bounds].sum() / volumes[bounds].sum() |
87
|
|
|
|
88
|
|
|
return Series(out, index=df.index) |
89
|
|
|
|
90
|
|
|
|
91
|
|
|
class ClosesOnly(TestCase): |
92
|
|
|
|
93
|
|
|
@classmethod |
94
|
|
|
def setUpClass(cls): |
95
|
|
|
cls.tempdir = TempDirectory() |
96
|
|
|
|
97
|
|
|
@classmethod |
98
|
|
|
def tearDownClass(cls): |
99
|
|
|
cls.tempdir.cleanup() |
100
|
|
|
|
101
|
|
|
def setUp(self): |
102
|
|
|
self.env = env = trading.TradingEnvironment() |
103
|
|
|
self.dates = date_range( |
104
|
|
|
'2014-01-01', '2014-02-01', freq=trading_day, tz='UTC' |
105
|
|
|
) |
106
|
|
|
asset_info = DataFrame.from_records([ |
107
|
|
|
{ |
108
|
|
|
'sid': 1, |
109
|
|
|
'symbol': 'A', |
110
|
|
|
'start_date': self.dates[10], |
111
|
|
|
'end_date': self.dates[13], |
112
|
|
|
'exchange': 'TEST', |
113
|
|
|
}, |
114
|
|
|
{ |
115
|
|
|
'sid': 2, |
116
|
|
|
'symbol': 'B', |
117
|
|
|
'start_date': self.dates[11], |
118
|
|
|
'end_date': self.dates[14], |
119
|
|
|
'exchange': 'TEST', |
120
|
|
|
}, |
121
|
|
|
{ |
122
|
|
|
'sid': 3, |
123
|
|
|
'symbol': 'C', |
124
|
|
|
'start_date': self.dates[12], |
125
|
|
|
'end_date': self.dates[15], |
126
|
|
|
'exchange': 'TEST', |
127
|
|
|
}, |
128
|
|
|
]) |
129
|
|
|
self.first_asset_start = min(asset_info.start_date) |
130
|
|
|
self.last_asset_end = max(asset_info.end_date) |
131
|
|
|
env.write_data(equities_df=asset_info) |
132
|
|
|
self.asset_finder = finder = env.asset_finder |
133
|
|
|
|
134
|
|
|
sids = (1, 2, 3) |
135
|
|
|
self.assets = finder.retrieve_all(sids) |
136
|
|
|
|
137
|
|
|
# View of the baseline data. |
138
|
|
|
self.closes = DataFrame( |
139
|
|
|
{sid: arange(1, len(self.dates) + 1) * sid for sid in sids}, |
140
|
|
|
index=self.dates, |
141
|
|
|
dtype=float, |
142
|
|
|
) |
143
|
|
|
|
144
|
|
|
# Create a data portal holding the data in self.closes |
145
|
|
|
data = {} |
146
|
|
|
for sid in sids: |
147
|
|
|
data[sid] = DataFrame({ |
148
|
|
|
"open": self.closes[sid].values, |
149
|
|
|
"high": self.closes[sid].values, |
150
|
|
|
"low": self.closes[sid].values, |
151
|
|
|
"close": self.closes[sid].values, |
152
|
|
|
"volume": self.closes[sid].values, |
153
|
|
|
"day": [day.value for day in self.dates] |
154
|
|
|
}) |
155
|
|
|
|
156
|
|
|
path = os.path.join(self.tempdir.path, "testdaily.bcolz") |
157
|
|
|
|
158
|
|
|
DailyBarWriterFromDataFrames(data).write( |
159
|
|
|
path, |
160
|
|
|
self.dates, |
161
|
|
|
data |
162
|
|
|
) |
163
|
|
|
|
164
|
|
|
daily_bar_reader = BcolzDailyBarReader(path) |
165
|
|
|
|
166
|
|
|
self.data_portal = DataPortal( |
167
|
|
|
self.env, |
168
|
|
|
equity_daily_reader=daily_bar_reader, |
169
|
|
|
) |
170
|
|
|
|
171
|
|
|
# Add a split for 'A' on its second date. |
172
|
|
|
self.split_asset = self.assets[0] |
173
|
|
|
self.split_date = self.split_asset.start_date + trading_day |
174
|
|
|
self.split_ratio = 0.5 |
175
|
|
|
self.adjustments = DataFrame.from_records([ |
176
|
|
|
{ |
177
|
|
|
'sid': self.split_asset.sid, |
178
|
|
|
'value': self.split_ratio, |
179
|
|
|
'kind': MULTIPLY, |
180
|
|
|
'start_date': Timestamp('NaT'), |
181
|
|
|
'end_date': self.split_date, |
182
|
|
|
'apply_date': self.split_date, |
183
|
|
|
} |
184
|
|
|
]) |
185
|
|
|
|
186
|
|
|
# View of the data on/after the split. |
187
|
|
|
self.adj_closes = adj_closes = self.closes.copy() |
188
|
|
|
adj_closes.ix[:self.split_date, self.split_asset] *= self.split_ratio |
189
|
|
|
|
190
|
|
|
self.pipeline_loader = DataFrameLoader( |
191
|
|
|
column=USEquityPricing.close, |
192
|
|
|
baseline=self.closes, |
193
|
|
|
adjustments=self.adjustments, |
194
|
|
|
) |
195
|
|
|
|
196
|
|
|
def expected_close(self, date, asset): |
197
|
|
|
if date < self.split_date: |
198
|
|
|
lookup = self.closes |
199
|
|
|
else: |
200
|
|
|
lookup = self.adj_closes |
201
|
|
|
return lookup.loc[date, asset] |
202
|
|
|
|
203
|
|
|
def exists(self, date, asset): |
204
|
|
|
return asset.start_date <= date <= asset.end_date |
205
|
|
|
|
206
|
|
|
def test_attach_pipeline_after_initialize(self): |
207
|
|
|
""" |
208
|
|
|
Assert that calling attach_pipeline after initialize raises correctly. |
209
|
|
|
""" |
210
|
|
|
def initialize(context): |
211
|
|
|
pass |
212
|
|
|
|
213
|
|
|
def late_attach(context, data): |
214
|
|
|
attach_pipeline(Pipeline(), 'test') |
215
|
|
|
raise AssertionError("Shouldn't make it past attach_pipeline!") |
216
|
|
|
|
217
|
|
|
algo = TradingAlgorithm( |
218
|
|
|
initialize=initialize, |
219
|
|
|
handle_data=late_attach, |
220
|
|
|
data_frequency='daily', |
221
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
222
|
|
|
start=self.first_asset_start - trading_day, |
223
|
|
|
end=self.last_asset_end + trading_day, |
224
|
|
|
env=self.env, |
225
|
|
|
) |
226
|
|
|
|
227
|
|
|
with self.assertRaises(AttachPipelineAfterInitialize): |
228
|
|
|
algo.run(data_portal=self.data_portal) |
229
|
|
|
|
230
|
|
|
def barf(context, data): |
231
|
|
|
raise AssertionError("Shouldn't make it past before_trading_start") |
232
|
|
|
|
233
|
|
|
algo = TradingAlgorithm( |
234
|
|
|
initialize=initialize, |
235
|
|
|
before_trading_start=late_attach, |
236
|
|
|
handle_data=barf, |
237
|
|
|
data_frequency='daily', |
238
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
239
|
|
|
start=self.first_asset_start - trading_day, |
240
|
|
|
end=self.last_asset_end + trading_day, |
241
|
|
|
env=self.env, |
242
|
|
|
) |
243
|
|
|
|
244
|
|
|
with self.assertRaises(AttachPipelineAfterInitialize): |
245
|
|
|
algo.run(data_portal=self.data_portal) |
246
|
|
|
|
247
|
|
|
def test_pipeline_output_after_initialize(self): |
248
|
|
|
""" |
249
|
|
|
Assert that calling pipeline_output after initialize raises correctly. |
250
|
|
|
""" |
251
|
|
|
def initialize(context): |
252
|
|
|
attach_pipeline(Pipeline(), 'test') |
253
|
|
|
pipeline_output('test') |
254
|
|
|
raise AssertionError("Shouldn't make it past pipeline_output()") |
255
|
|
|
|
256
|
|
|
def handle_data(context, data): |
257
|
|
|
raise AssertionError("Shouldn't make it past initialize!") |
258
|
|
|
|
259
|
|
|
def before_trading_start(context, data): |
260
|
|
|
raise AssertionError("Shouldn't make it past initialize!") |
261
|
|
|
|
262
|
|
|
algo = TradingAlgorithm( |
263
|
|
|
initialize=initialize, |
264
|
|
|
handle_data=handle_data, |
265
|
|
|
before_trading_start=before_trading_start, |
266
|
|
|
data_frequency='daily', |
267
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
268
|
|
|
start=self.first_asset_start - trading_day, |
269
|
|
|
end=self.last_asset_end + trading_day, |
270
|
|
|
env=self.env, |
271
|
|
|
) |
272
|
|
|
|
273
|
|
|
with self.assertRaises(PipelineOutputDuringInitialize): |
274
|
|
|
algo.run(data_portal=self.data_portal) |
275
|
|
|
|
276
|
|
|
def test_get_output_nonexistent_pipeline(self): |
277
|
|
|
""" |
278
|
|
|
Assert that calling add_pipeline after initialize raises appropriately. |
279
|
|
|
""" |
280
|
|
|
def initialize(context): |
281
|
|
|
attach_pipeline(Pipeline(), 'test') |
282
|
|
|
|
283
|
|
|
def handle_data(context, data): |
284
|
|
|
raise AssertionError("Shouldn't make it past before_trading_start") |
285
|
|
|
|
286
|
|
|
def before_trading_start(context, data): |
287
|
|
|
pipeline_output('not_test') |
288
|
|
|
raise AssertionError("Shouldn't make it past pipeline_output!") |
289
|
|
|
|
290
|
|
|
algo = TradingAlgorithm( |
291
|
|
|
initialize=initialize, |
292
|
|
|
handle_data=handle_data, |
293
|
|
|
before_trading_start=before_trading_start, |
294
|
|
|
data_frequency='daily', |
295
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
296
|
|
|
start=self.first_asset_start - trading_day, |
297
|
|
|
end=self.last_asset_end + trading_day, |
298
|
|
|
env=self.env, |
299
|
|
|
) |
300
|
|
|
|
301
|
|
|
with self.assertRaises(NoSuchPipeline): |
302
|
|
|
algo.run(data_portal=self.data_portal) |
303
|
|
|
|
304
|
|
|
@parameterized.expand([('default', None), |
305
|
|
|
('day', 1), |
306
|
|
|
('week', 5), |
307
|
|
|
('year', 252), |
308
|
|
|
('all_but_one_day', 'all_but_one_day')]) |
309
|
|
|
def test_assets_appear_on_correct_days(self, test_name, chunksize): |
310
|
|
|
""" |
311
|
|
|
Assert that assets appear at correct times during a backtest, with |
312
|
|
|
correctly-adjusted close price values. |
313
|
|
|
""" |
314
|
|
|
|
315
|
|
|
if chunksize == 'all_but_one_day': |
316
|
|
|
chunksize = ( |
317
|
|
|
self.dates.get_loc(self.last_asset_end) - |
318
|
|
|
self.dates.get_loc(self.first_asset_start) |
319
|
|
|
) - 1 |
320
|
|
|
|
321
|
|
|
def initialize(context): |
322
|
|
|
p = attach_pipeline(Pipeline(), 'test', chunksize=chunksize) |
323
|
|
|
p.add(USEquityPricing.close.latest, 'close') |
324
|
|
|
|
325
|
|
|
def handle_data(context, data): |
326
|
|
|
results = pipeline_output('test') |
327
|
|
|
date = get_datetime().normalize() |
328
|
|
|
for asset in self.assets: |
329
|
|
|
# Assets should appear iff they exist today and yesterday. |
330
|
|
|
exists_today = self.exists(date, asset) |
331
|
|
|
existed_yesterday = self.exists(date - trading_day, asset) |
332
|
|
|
if exists_today and existed_yesterday: |
333
|
|
|
latest = results.loc[asset, 'close'] |
334
|
|
|
self.assertEqual(latest, self.expected_close(date, asset)) |
335
|
|
|
else: |
336
|
|
|
self.assertNotIn(asset, results.index) |
337
|
|
|
|
338
|
|
|
before_trading_start = handle_data |
339
|
|
|
|
340
|
|
|
algo = TradingAlgorithm( |
341
|
|
|
initialize=initialize, |
342
|
|
|
handle_data=handle_data, |
343
|
|
|
before_trading_start=before_trading_start, |
344
|
|
|
data_frequency='daily', |
345
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
346
|
|
|
start=self.first_asset_start, |
347
|
|
|
end=self.last_asset_end, |
348
|
|
|
env=self.env, |
349
|
|
|
) |
350
|
|
|
|
351
|
|
|
# Run for a week in the middle of our data. |
352
|
|
|
algo.run(data_portal=self.data_portal) |
353
|
|
|
|
354
|
|
|
|
355
|
|
|
class MockDailyBarSpotReader(object): |
356
|
|
|
""" |
357
|
|
|
A BcolzDailyBarReader which returns a constant value for spot price. |
358
|
|
|
""" |
359
|
|
|
def spot_price(self, sid, day, column): |
360
|
|
|
return 100.0 |
361
|
|
|
|
362
|
|
|
|
363
|
|
|
class PipelineAlgorithmTestCase(TestCase): |
364
|
|
|
|
365
|
|
|
@classmethod |
366
|
|
|
def setUpClass(cls): |
367
|
|
|
cls.AAPL = 1 |
368
|
|
|
cls.MSFT = 2 |
369
|
|
|
cls.BRK_A = 3 |
370
|
|
|
cls.assets = [cls.AAPL, cls.MSFT, cls.BRK_A] |
371
|
|
|
asset_info = make_simple_equity_info( |
372
|
|
|
cls.assets, |
373
|
|
|
Timestamp('2014'), |
374
|
|
|
Timestamp('2015'), |
375
|
|
|
['AAPL', 'MSFT', 'BRK_A'], |
376
|
|
|
) |
377
|
|
|
cls.env = trading.TradingEnvironment() |
378
|
|
|
cls.env.write_data(equities_df=asset_info) |
379
|
|
|
cls.tempdir = tempdir = TempDirectory() |
380
|
|
|
tempdir.create() |
381
|
|
|
try: |
382
|
|
|
cls.raw_data, cls.bar_reader = cls.create_bar_reader(tempdir) |
383
|
|
|
cls.adj_reader = cls.create_adjustment_reader(tempdir) |
384
|
|
|
cls.pipeline_loader = USEquityPricingLoader( |
385
|
|
|
cls.bar_reader, cls.adj_reader |
386
|
|
|
) |
387
|
|
|
except: |
388
|
|
|
cls.tempdir.cleanup() |
389
|
|
|
raise |
390
|
|
|
|
391
|
|
|
cls.dates = cls.raw_data[cls.AAPL].index.tz_localize('UTC') |
392
|
|
|
cls.AAPL_split_date = Timestamp("2014-06-09", tz='UTC') |
393
|
|
|
|
394
|
|
|
@classmethod |
395
|
|
|
def tearDownClass(cls): |
396
|
|
|
del cls.env |
397
|
|
|
cls.tempdir.cleanup() |
398
|
|
|
|
399
|
|
|
@classmethod |
400
|
|
|
def create_bar_reader(cls, tempdir): |
401
|
|
|
resources = { |
402
|
|
|
cls.AAPL: join(TEST_RESOURCE_PATH, 'AAPL.csv'), |
403
|
|
|
cls.MSFT: join(TEST_RESOURCE_PATH, 'MSFT.csv'), |
404
|
|
|
cls.BRK_A: join(TEST_RESOURCE_PATH, 'BRK-A.csv'), |
405
|
|
|
} |
406
|
|
|
raw_data = { |
407
|
|
|
asset: read_csv(path, parse_dates=['day']).set_index('day') |
408
|
|
|
for asset, path in iteritems(resources) |
409
|
|
|
} |
410
|
|
|
# Add 'price' column as an alias because all kinds of stuff in zipline |
411
|
|
|
# depends on it being present. :/ |
412
|
|
|
for frame in raw_data.values(): |
413
|
|
|
frame['price'] = frame['close'] |
414
|
|
|
|
415
|
|
|
writer = DailyBarWriterFromCSVs(resources) |
416
|
|
|
data_path = tempdir.getpath('testdata.bcolz') |
417
|
|
|
table = writer.write(data_path, trading_days, cls.assets) |
418
|
|
|
return raw_data, BcolzDailyBarReader(table) |
419
|
|
|
|
420
|
|
|
@classmethod |
421
|
|
|
def create_adjustment_reader(cls, tempdir): |
422
|
|
|
dbpath = tempdir.getpath('adjustments.sqlite') |
423
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, cls.env.trading_days, |
424
|
|
|
MockDailyBarSpotReader()) |
425
|
|
|
splits = DataFrame.from_records([ |
426
|
|
|
{ |
427
|
|
|
'effective_date': str_to_seconds('2014-06-09'), |
428
|
|
|
'ratio': (1 / 7.0), |
429
|
|
|
'sid': cls.AAPL, |
430
|
|
|
} |
431
|
|
|
]) |
432
|
|
|
mergers = DataFrame( |
433
|
|
|
{ |
434
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
435
|
|
|
'effective_date': array([], dtype=int), |
436
|
|
|
'ratio': array([], dtype=float), |
437
|
|
|
'sid': array([], dtype=int), |
438
|
|
|
}, |
439
|
|
|
index=DatetimeIndex([], tz='UTC'), |
440
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
441
|
|
|
) |
442
|
|
|
dividends = DataFrame({ |
443
|
|
|
'sid': array([], dtype=uint32), |
444
|
|
|
'amount': array([], dtype=float64), |
445
|
|
|
'record_date': array([], dtype='datetime64[ns]'), |
446
|
|
|
'ex_date': array([], dtype='datetime64[ns]'), |
447
|
|
|
'declared_date': array([], dtype='datetime64[ns]'), |
448
|
|
|
'pay_date': array([], dtype='datetime64[ns]'), |
449
|
|
|
}) |
450
|
|
|
writer.write(splits, mergers, dividends) |
451
|
|
|
return SQLiteAdjustmentReader(dbpath) |
452
|
|
|
|
453
|
|
|
def compute_expected_vwaps(self, window_lengths): |
454
|
|
|
AAPL, MSFT, BRK_A = self.AAPL, self.MSFT, self.BRK_A |
455
|
|
|
|
456
|
|
|
# Our view of the data before AAPL's split on June 9, 2014. |
457
|
|
|
raw = {k: v.copy() for k, v in iteritems(self.raw_data)} |
458
|
|
|
|
459
|
|
|
split_date = self.AAPL_split_date |
460
|
|
|
split_loc = self.dates.get_loc(split_date) |
461
|
|
|
split_ratio = 7.0 |
462
|
|
|
|
463
|
|
|
# Our view of the data after AAPL's split. All prices from before June |
464
|
|
|
# 9 get divided by the split ratio, and volumes get multiplied by the |
465
|
|
|
# split ratio. |
466
|
|
|
adj = {k: v.copy() for k, v in iteritems(self.raw_data)} |
467
|
|
|
for column in 'open', 'high', 'low', 'close': |
468
|
|
|
adj[AAPL].ix[:split_loc, column] /= split_ratio |
469
|
|
|
adj[AAPL].ix[:split_loc, 'volume'] *= split_ratio |
470
|
|
|
|
471
|
|
|
# length -> asset -> expected vwap |
472
|
|
|
vwaps = {length: {} for length in window_lengths} |
473
|
|
|
for length in window_lengths: |
474
|
|
|
for asset in AAPL, MSFT, BRK_A: |
475
|
|
|
raw_vwap = rolling_vwap(raw[asset], length) |
476
|
|
|
adj_vwap = rolling_vwap(adj[asset], length) |
477
|
|
|
# Shift computed results one day forward so that they're |
478
|
|
|
# labelled by the date on which they'll be seen in the |
479
|
|
|
# algorithm. (We can't show the close price for day N until day |
480
|
|
|
# N + 1.) |
481
|
|
|
vwaps[length][asset] = concat( |
482
|
|
|
[ |
483
|
|
|
raw_vwap[:split_loc - 1], |
484
|
|
|
adj_vwap[split_loc - 1:] |
485
|
|
|
] |
486
|
|
|
).shift(1, trading_day) |
487
|
|
|
|
488
|
|
|
# Make sure all the expected vwaps have the same dates. |
489
|
|
|
vwap_dates = vwaps[1][self.AAPL].index |
490
|
|
|
for dict_ in itervalues(vwaps): |
491
|
|
|
# Each value is a dict mapping sid -> expected series. |
492
|
|
|
for series in itervalues(dict_): |
493
|
|
|
self.assertTrue((vwap_dates == series.index).all()) |
494
|
|
|
|
495
|
|
|
# Spot check expectations near the AAPL split. |
496
|
|
|
# length 1 vwap for the morning before the split should be the close |
497
|
|
|
# price of the previous day. |
498
|
|
|
before_split = vwaps[1][AAPL].loc[split_date - trading_day] |
499
|
|
|
assert_almost_equal(before_split, 647.3499, decimal=2) |
500
|
|
|
assert_almost_equal( |
501
|
|
|
before_split, |
502
|
|
|
raw[AAPL].loc[split_date - (2 * trading_day), 'close'], |
503
|
|
|
decimal=2, |
504
|
|
|
) |
505
|
|
|
|
506
|
|
|
# length 1 vwap for the morning of the split should be the close price |
507
|
|
|
# of the previous day, **ADJUSTED FOR THE SPLIT**. |
508
|
|
|
on_split = vwaps[1][AAPL].loc[split_date] |
509
|
|
|
assert_almost_equal(on_split, 645.5700 / split_ratio, decimal=2) |
510
|
|
|
assert_almost_equal( |
511
|
|
|
on_split, |
512
|
|
|
raw[AAPL].loc[split_date - trading_day, 'close'] / split_ratio, |
513
|
|
|
decimal=2, |
514
|
|
|
) |
515
|
|
|
|
516
|
|
|
# length 1 vwap on the day after the split should be the as-traded |
517
|
|
|
# close on the split day. |
518
|
|
|
after_split = vwaps[1][AAPL].loc[split_date + trading_day] |
519
|
|
|
assert_almost_equal(after_split, 93.69999, decimal=2) |
520
|
|
|
assert_almost_equal( |
521
|
|
|
after_split, |
522
|
|
|
raw[AAPL].loc[split_date, 'close'], |
523
|
|
|
decimal=2, |
524
|
|
|
) |
525
|
|
|
|
526
|
|
|
return vwaps |
527
|
|
|
|
528
|
|
|
@parameterized.expand([ |
529
|
|
|
(True,), |
530
|
|
|
(False,), |
531
|
|
|
]) |
532
|
|
|
def test_handle_adjustment(self, set_screen): |
533
|
|
|
AAPL, MSFT, BRK_A = assets = self.AAPL, self.MSFT, self.BRK_A |
534
|
|
|
|
535
|
|
|
window_lengths = [1, 2, 5, 10] |
536
|
|
|
vwaps = self.compute_expected_vwaps(window_lengths) |
537
|
|
|
|
538
|
|
|
def vwap_key(length): |
539
|
|
|
return "vwap_%d" % length |
540
|
|
|
|
541
|
|
|
def initialize(context): |
542
|
|
|
pipeline = Pipeline() |
543
|
|
|
context.vwaps = [] |
544
|
|
|
for length in vwaps: |
545
|
|
|
name = vwap_key(length) |
546
|
|
|
factor = VWAP(window_length=length) |
547
|
|
|
context.vwaps.append(factor) |
548
|
|
|
pipeline.add(factor, name=name) |
549
|
|
|
|
550
|
|
|
filter_ = (USEquityPricing.close.latest > 300) |
551
|
|
|
pipeline.add(filter_, 'filter') |
552
|
|
|
if set_screen: |
553
|
|
|
pipeline.set_screen(filter_) |
554
|
|
|
|
555
|
|
|
attach_pipeline(pipeline, 'test') |
556
|
|
|
|
557
|
|
|
def handle_data(context, data): |
558
|
|
|
today = get_datetime() |
559
|
|
|
results = pipeline_output('test') |
560
|
|
|
expect_over_300 = { |
561
|
|
|
AAPL: today < self.AAPL_split_date, |
562
|
|
|
MSFT: False, |
563
|
|
|
BRK_A: True, |
564
|
|
|
} |
565
|
|
|
for asset in assets: |
566
|
|
|
should_pass_filter = expect_over_300[asset] |
567
|
|
|
if set_screen and not should_pass_filter: |
568
|
|
|
self.assertNotIn(asset, results.index) |
569
|
|
|
continue |
570
|
|
|
|
571
|
|
|
asset_results = results.loc[asset] |
572
|
|
|
self.assertEqual(asset_results['filter'], should_pass_filter) |
573
|
|
|
for length in vwaps: |
574
|
|
|
computed = results.loc[asset, vwap_key(length)] |
575
|
|
|
expected = vwaps[length][asset].loc[today] |
576
|
|
|
# Only having two places of precision here is a bit |
577
|
|
|
# unfortunate. |
578
|
|
|
assert_almost_equal(computed, expected, decimal=2) |
579
|
|
|
|
580
|
|
|
# Do the same checks in before_trading_start |
581
|
|
|
before_trading_start = handle_data |
582
|
|
|
|
583
|
|
|
algo = TradingAlgorithm( |
584
|
|
|
initialize=initialize, |
585
|
|
|
handle_data=handle_data, |
586
|
|
|
before_trading_start=before_trading_start, |
587
|
|
|
data_frequency='daily', |
588
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
589
|
|
|
start=self.dates[max(window_lengths)], |
590
|
|
|
end=self.dates[-1], |
591
|
|
|
env=self.env, |
592
|
|
|
) |
593
|
|
|
|
594
|
|
|
algo.run(data_portal=FakeDataPortal()) |
595
|
|
|
|