Conditions | 1 |
Total Lines | 71 |
Lines | 0 |
Ratio | 0 % |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # |
||
36 | @classmethod |
||
37 | def setUpClass(cls): |
||
38 | cls.env = TradingEnvironment() |
||
39 | cls.tempdir = TempDirectory() |
||
40 | |||
41 | cls.sim_params = factory.create_simulation_parameters() |
||
42 | |||
43 | cls.env.write_data(equities_data={ |
||
44 | 1: { |
||
45 | "start_date": cls.sim_params.trading_days[0], |
||
46 | "end_date": cls.sim_params.trading_days[-1] + timedelta(days=1) |
||
47 | }, |
||
48 | 2: { |
||
49 | "start_date": cls.sim_params.trading_days[0], |
||
50 | "end_date": cls.sim_params.trading_days[-1] + timedelta(days=1) |
||
51 | }, |
||
52 | 3: { |
||
53 | "start_date": cls.sim_params.trading_days[100], |
||
54 | "end_date": cls.sim_params.trading_days[-100] |
||
55 | }, |
||
56 | 4: { |
||
57 | "start_date": cls.sim_params.trading_days[0], |
||
58 | "end_date": cls.sim_params.trading_days[-1] + timedelta(days=1) |
||
59 | } |
||
60 | |||
61 | }) |
||
62 | |||
63 | dbpath = os.path.join(cls.tempdir.path, "adjustments.db") |
||
64 | |||
65 | writer = SQLiteAdjustmentWriter(dbpath, cls.env.trading_days, |
||
66 | MockDailyBarSpotReader()) |
||
67 | splits = mergers = pd.DataFrame( |
||
68 | { |
||
69 | # Hackery to make the dtypes correct on an empty frame. |
||
70 | 'effective_date': np.array([], dtype=int), |
||
71 | 'ratio': np.array([], dtype=float), |
||
72 | 'sid': np.array([], dtype=int), |
||
73 | }, |
||
74 | index=pd.DatetimeIndex([], tz='UTC'), |
||
75 | columns=['effective_date', 'ratio', 'sid'], |
||
76 | ) |
||
77 | dividends = pd.DataFrame({ |
||
78 | 'sid': np.array([], dtype=np.uint32), |
||
79 | 'amount': np.array([], dtype=np.float64), |
||
80 | 'declared_date': np.array([], dtype='datetime64[ns]'), |
||
81 | 'ex_date': np.array([], dtype='datetime64[ns]'), |
||
82 | 'pay_date': np.array([], dtype='datetime64[ns]'), |
||
83 | 'record_date': np.array([], dtype='datetime64[ns]'), |
||
84 | }) |
||
85 | declared_date = cls.sim_params.trading_days[45] |
||
86 | ex_date = cls.sim_params.trading_days[50] |
||
87 | record_date = pay_date = cls.sim_params.trading_days[55] |
||
88 | |||
89 | stock_dividends = pd.DataFrame({ |
||
90 | 'sid': np.array([4], dtype=np.uint32), |
||
91 | 'payment_sid': np.array([5], dtype=np.uint32), |
||
92 | 'ratio': np.array([2], dtype=np.float64), |
||
93 | 'declared_date': np.array([declared_date], dtype='datetime64[ns]'), |
||
94 | 'ex_date': np.array([ex_date], dtype='datetime64[ns]'), |
||
95 | 'record_date': np.array([record_date], dtype='datetime64[ns]'), |
||
96 | 'pay_date': np.array([pay_date], dtype='datetime64[ns]'), |
||
97 | }) |
||
98 | writer.write(splits, mergers, dividends, |
||
99 | stock_dividends=stock_dividends) |
||
100 | |||
101 | cls.data_portal = create_data_portal( |
||
102 | cls.env, |
||
103 | cls.tempdir, |
||
104 | cls.sim_params, |
||
105 | [1, 2, 3, 4], |
||
106 | adjustment_reader=SQLiteAdjustmentReader(dbpath) |
||
107 | ) |
||
215 |