Completed
Pull Request — master (#877)
by Thomas
01:34
created

zipline.finance.risk.sharpe_ratio()   B

Complexity

Conditions 4

Size

Total Lines 23

Duplication

Lines 0
Ratio 0 %
Metric Value
cc 4
dl 0
loc 23
rs 8.7972
1
#
2
# Copyright 2014 Quantopian, Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
"""
17
18
Risk Report
19
===========
20
21
    +-----------------+----------------------------------------------------+
22
    | key             | value                                              |
23
    +=================+====================================================+
24
    | trading_days    | The number of trading days between self.start_date |
25
    |                 | and self.end_date                                  |
26
    +-----------------+----------------------------------------------------+
27
    | benchmark_volat\| The volatility of the benchmark between            |
28
    | ility           | self.start_date and self.end_date.                 |
29
    +-----------------+----------------------------------------------------+
30
    | algo_volatility | The volatility of the algo between self.start_date |
31
    |                 | and self.end_date.                                 |
32
    +-----------------+----------------------------------------------------+
33
    | treasury_period\| The return of treasuries over the period. Treasury |
34
    | _return         | maturity is chosen to match the duration of the    |
35
    |                 | test period.                                       |
36
    +-----------------+----------------------------------------------------+
37
    | sharpe          | The sharpe ratio based on the _algorithm_ (rather  |
38
    |                 | than the static portfolio) returns.                |
39
    +-----------------+----------------------------------------------------+
40
    | information     | The information ratio based on the _algorithm_     |
41
    |                 | (rather than the static portfolio) returns.        |
42
    +-----------------+----------------------------------------------------+
43
    | beta            | The _algorithm_ beta to the benchmark.             |
44
    +-----------------+----------------------------------------------------+
45
    | alpha           | The _algorithm_ alpha to the benchmark.            |
46
    +-----------------+----------------------------------------------------+
47
    | excess_return   | The excess return of the algorithm over the        |
48
    |                 | treasuries.                                        |
49
    +-----------------+----------------------------------------------------+
50
    | max_drawdown    | The largest relative peak to relative trough move  |
51
    |                 | for the portfolio returns between self.start_date  |
52
    |                 | and self.end_date.                                 |
53
    +-----------------+----------------------------------------------------+
54
    | max_leverage    | The largest gross leverage between self.start_date |
55
    |                 | and self.end_date                                  |
56
    +-----------------+----------------------------------------------------+
57
58
59
"""
60
61
import logbook
62
import math
63
import numpy as np
64
import pandas as pd
65
66
import zipline.utils.math_utils as zp_math
67
68
log = logbook.Logger('Risk')
69
70
71
TREASURY_DURATIONS = [
72
    '1month', '3month', '6month',
73
    '1year', '2year', '3year', '5year',
74
    '7year', '10year', '30year'
75
]
76
77
78
# check if a field in rval is nan, and replace it with
79
# None.
80
def check_entry(key, value):
81
    if key != 'period_label':
82
        return np.isnan(value) or np.isinf(value)
83
    else:
84
        return False
85
86
87
############################
88
# Risk Metric Calculations #
89
############################
90
91
92
def sharpe_ratio(algorithm_return, treasury_return):
93
    """
94
    http://en.wikipedia.org/wiki/Sharpe_ratio
95
96
    Args:
97
        algorithm_return (array): Daily algorithm return percentage.
98
        treasury_return (array): Annual treasury return percentage.
99
100
    Returns:
101
        float. The Sharpe ratio.
102
    """
103
    if len(algorithm_return) < 2:
104
        return np.nan
105
106
    # compute daily returns from provided annual treasury yields
107
    if not isinstance(treasury_return, pd.Series) and (treasury_return != 0):
108
        treasury_return = (1 + treasury_return)**(1./252) - 1
109
110
    return_risk_adj = algorithm_return - treasury_return
111
112
    return np.mean(return_risk_adj) / \
113
        np.std(return_risk_adj) * \
114
        np.sqrt(252)
115
116
117
def downside_risk(algorithm_returns, mean_returns, normalization_factor):
118
    rets = algorithm_returns.round(8)
119
    mar = mean_returns.round(8)
120
    mask = rets < mar
121
    downside_diff = rets[mask] - mar[mask]
122
    if len(downside_diff) <= 1:
123
        return 0.0
124
    return np.std(downside_diff, ddof=1) * math.sqrt(normalization_factor)
125
126
127
def sortino_ratio(algorithm_period_return, treasury_period_return, mar):
128
    """
129
    http://en.wikipedia.org/wiki/Sortino_ratio
130
131
    Args:
132
        algorithm_returns (np.array-like):
133
            Returns from algorithm lifetime.
134
        algorithm_period_return (float):
135
            Algorithm return percentage from latest period.
136
        mar (float): Minimum acceptable return.
137
138
    Returns:
139
        float. The Sortino ratio.
140
    """
141
    if zp_math.tolerant_equals(mar, 0):
142
        return 0.0
143
144
    return (algorithm_period_return - treasury_period_return) / mar
145
146
147
def information_ratio(algorithm_returns, benchmark_returns):
148
    """
149
    http://en.wikipedia.org/wiki/Information_ratio
150
151
    Args:
152
        algorithm_returns (np.array-like):
153
            All returns during algorithm lifetime.
154
        benchmark_returns (np.array-like):
155
            All benchmark returns during algo lifetime.
156
157
    Returns:
158
        float. Information ratio.
159
    """
160
    relative_returns = algorithm_returns - benchmark_returns
161
162
    relative_deviation = relative_returns.std(ddof=1)
163
164
    if zp_math.tolerant_equals(relative_deviation, 0) or \
165
       np.isnan(relative_deviation):
166
        return 0.0
167
168
    return np.mean(relative_returns) / relative_deviation
169
170
171
def alpha(algorithm_period_return, treasury_period_return,
172
          benchmark_period_returns, beta):
173
    """
174
    http://en.wikipedia.org/wiki/Alpha_(investment)
175
176
    Args:
177
        algorithm_period_return (float):
178
            Return percentage from algorithm period.
179
        treasury_period_return (float):
180
            Return percentage for treasury period.
181
        benchmark_period_return (float):
182
            Return percentage for benchmark period.
183
        beta (float):
184
            beta value for the same period as all other values
185
186
    Returns:
187
        float. The alpha of the algorithm.
188
    """
189
    return algorithm_period_return - \
190
        (treasury_period_return + beta *
191
         (benchmark_period_returns - treasury_period_return))
192
193
###########################
194
# End Risk Metric Section #
195
###########################
196
197
198
def get_treasury_rate(treasury_curves, treasury_duration, day):
199
    rate = None
200
201
    curve = treasury_curves.ix[day]
202
    # 1month note data begins in 8/2001,
203
    # so we can use 3month instead.
204
    idx = TREASURY_DURATIONS.index(treasury_duration)
205
    for duration in TREASURY_DURATIONS[idx:]:
206
        rate = curve[duration]
207
        if rate is not None:
208
            break
209
210
    return rate
211
212
213
def search_day_distance(end_date, dt, env):
214
    tdd = env.trading_day_distance(dt, end_date)
215
    if tdd is None:
216
        return None
217
    assert tdd >= 0
218
    return tdd
219
220
221
def select_treasury_duration(start_date, end_date):
222
    td = end_date - start_date
223
    if td.days <= 31:
224
        treasury_duration = '1month'
225
    elif td.days <= 93:
226
        treasury_duration = '3month'
227
    elif td.days <= 186:
228
        treasury_duration = '6month'
229
    elif td.days <= 366:
230
        treasury_duration = '1year'
231
    elif td.days <= 365 * 2 + 1:
232
        treasury_duration = '2year'
233
    elif td.days <= 365 * 3 + 1:
234
        treasury_duration = '3year'
235
    elif td.days <= 365 * 5 + 2:
236
        treasury_duration = '5year'
237
    elif td.days <= 365 * 7 + 2:
238
        treasury_duration = '7year'
239
    elif td.days <= 365 * 10 + 2:
240
        treasury_duration = '10year'
241
    else:
242
        treasury_duration = '30year'
243
244
    return treasury_duration
245
246
247
def choose_treasury(select_treasury, treasury_curves, start_date, end_date,
248
                    env, compound=True):
249
    """
250
    Find the latest known interest rate for a given duration within a date
251
    range.
252
253
    If we find one but it's more than a trading day ago from the date we're
254
    looking for, then we log a warning
255
    """
256
    treasury_duration = select_treasury(start_date, end_date)
257
    end_day = end_date.replace(hour=0, minute=0, second=0, microsecond=0)
258
    search_day = None
259
260
    if end_day in treasury_curves.index:
261
        rate = get_treasury_rate(treasury_curves,
262
                                 treasury_duration,
263
                                 end_day)
264
        if rate is not None:
265
            search_day = end_day
266
267
    if not search_day:
268
        # in case end date is not a trading day or there is no treasury
269
        # data, search for the previous day with an interest rate.
270
        search_days = treasury_curves.index
271
272
        # Find rightmost value less than or equal to end_day
273
        i = search_days.searchsorted(end_day)
274
        for prev_day in search_days[i - 1::-1]:
275
            rate = get_treasury_rate(treasury_curves,
276
                                     treasury_duration,
277
                                     prev_day)
278
            if rate is not None:
279
                search_day = prev_day
280
                search_dist = search_day_distance(end_date, prev_day, env)
281
                break
282
283
        if search_day:
284
            if (search_dist is None or search_dist > 1) and \
285
                    search_days[0] <= end_day <= search_days[-1]:
286
                message = "No rate within 1 trading day of end date = \
287
{dt} and term = {term}. Using {search_day}. Check that date doesn't exceed \
288
treasury history range."
289
                message = message.format(dt=end_date,
290
                                         term=treasury_duration,
291
                                         search_day=search_day)
292
                log.warn(message)
293
294
    if search_day:
295
        td = end_date - start_date
296
        if compound:
297
            return rate * (td.days + 1) / 365
298
        else:
299
            return rate
300
301
    message = "No rate for end date = {dt} and term = {term}. Check \
302
that date doesn't exceed treasury history range."
303
    message = message.format(
304
        dt=end_date,
305
        term=treasury_duration
306
    )
307
    raise Exception(message)
308