1
|
|
|
# |
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
import functools |
17
|
|
|
import logbook |
18
|
|
|
import math |
19
|
|
|
import numpy as np |
20
|
|
|
|
21
|
|
|
import zipline.utils.math_utils as zp_math |
22
|
|
|
|
23
|
|
|
import pandas as pd |
24
|
|
|
from pandas.tseries.tools import normalize_date |
25
|
|
|
|
26
|
|
|
from six import iteritems |
27
|
|
|
|
28
|
|
|
from . risk import ( |
29
|
|
|
alpha, |
30
|
|
|
check_entry, |
31
|
|
|
choose_treasury, |
32
|
|
|
downside_risk, |
33
|
|
|
sharpe_ratio, |
34
|
|
|
sortino_ratio, |
35
|
|
|
) |
36
|
|
|
|
37
|
|
|
from zipline.utils.serialization_utils import ( |
38
|
|
|
VERSION_LABEL |
39
|
|
|
) |
40
|
|
|
|
41
|
|
|
log = logbook.Logger('Risk Cumulative') |
42
|
|
|
|
43
|
|
|
|
44
|
|
|
choose_treasury = functools.partial(choose_treasury, lambda *args: '10year', |
45
|
|
|
compound=False) |
46
|
|
|
|
47
|
|
|
|
48
|
|
|
def information_ratio(algo_volatility, algorithm_return, benchmark_return): |
49
|
|
|
""" |
50
|
|
|
http://en.wikipedia.org/wiki/Information_ratio |
51
|
|
|
|
52
|
|
|
Args: |
53
|
|
|
algorithm_returns (np.array-like): |
54
|
|
|
All returns during algorithm lifetime. |
55
|
|
|
benchmark_returns (np.array-like): |
56
|
|
|
All benchmark returns during algo lifetime. |
57
|
|
|
|
58
|
|
|
Returns: |
59
|
|
|
float. Information ratio. |
60
|
|
|
""" |
61
|
|
|
if zp_math.tolerant_equals(algo_volatility, 0): |
62
|
|
|
return np.nan |
63
|
|
|
|
64
|
|
|
# The square of the annualization factor is in the volatility, |
65
|
|
|
# because the volatility is also annualized, |
66
|
|
|
# i.e. the sqrt(annual factor) is in the volatility's numerator. |
67
|
|
|
# So to have the the correct annualization factor for the |
68
|
|
|
# Sharpe value's numerator, which should be the sqrt(annual factor). |
69
|
|
|
# The square of the sqrt of the annual factor, i.e. the annual factor |
70
|
|
|
# itself, is needed in the numerator to factor out the division by |
71
|
|
|
# its square root. |
72
|
|
|
return (algorithm_return - benchmark_return) / algo_volatility |
73
|
|
|
|
74
|
|
|
|
75
|
|
|
class RiskMetricsCumulative(object): |
76
|
|
|
""" |
77
|
|
|
:Usage: |
78
|
|
|
Instantiate RiskMetricsCumulative once. |
79
|
|
|
Call update() method on each dt to update the metrics. |
80
|
|
|
""" |
81
|
|
|
|
82
|
|
|
METRIC_NAMES = ( |
83
|
|
|
'alpha', |
84
|
|
|
'beta', |
85
|
|
|
'sharpe', |
86
|
|
|
'algorithm_volatility', |
87
|
|
|
'benchmark_volatility', |
88
|
|
|
'downside_risk', |
89
|
|
|
'sortino', |
90
|
|
|
'information', |
91
|
|
|
) |
92
|
|
|
|
93
|
|
|
def __init__(self, sim_params, env, |
94
|
|
|
create_first_day_stats=False, |
95
|
|
|
account=None): |
96
|
|
|
self.treasury_curves = env.treasury_curves |
97
|
|
|
self.start_date = sim_params.period_start.replace( |
98
|
|
|
hour=0, minute=0, second=0, microsecond=0 |
99
|
|
|
) |
100
|
|
|
self.end_date = sim_params.period_end.replace( |
101
|
|
|
hour=0, minute=0, second=0, microsecond=0 |
102
|
|
|
) |
103
|
|
|
|
104
|
|
|
self.trading_days = env.days_in_range(self.start_date, self.end_date) |
105
|
|
|
|
106
|
|
|
# Hold on to the trading day before the start, |
107
|
|
|
# used for index of the zero return value when forcing returns |
108
|
|
|
# on the first day. |
109
|
|
|
self.day_before_start = self.start_date - env.trading_days.freq |
110
|
|
|
|
111
|
|
|
last_day = normalize_date(sim_params.period_end) |
112
|
|
|
if last_day not in self.trading_days: |
113
|
|
|
last_day = pd.tseries.index.DatetimeIndex( |
114
|
|
|
[last_day] |
115
|
|
|
) |
116
|
|
|
self.trading_days = self.trading_days.append(last_day) |
117
|
|
|
|
118
|
|
|
self.sim_params = sim_params |
119
|
|
|
self.env = env |
120
|
|
|
|
121
|
|
|
self.create_first_day_stats = create_first_day_stats |
122
|
|
|
|
123
|
|
|
cont_index = self.trading_days |
124
|
|
|
|
125
|
|
|
self.cont_index = cont_index |
126
|
|
|
self.cont_len = len(self.cont_index) |
127
|
|
|
|
128
|
|
|
empty_cont = np.full(self.cont_len, np.nan) |
129
|
|
|
|
130
|
|
|
self.algorithm_returns_cont = empty_cont.copy() |
131
|
|
|
self.benchmark_returns_cont = empty_cont.copy() |
132
|
|
|
self.algorithm_cumulative_leverages_cont = empty_cont.copy() |
133
|
|
|
self.mean_returns_cont = empty_cont.copy() |
134
|
|
|
self.annualized_mean_returns_cont = empty_cont.copy() |
135
|
|
|
self.mean_benchmark_returns_cont = empty_cont.copy() |
136
|
|
|
self.annualized_mean_benchmark_returns_cont = empty_cont.copy() |
137
|
|
|
|
138
|
|
|
# The returns at a given time are read and reset from the respective |
139
|
|
|
# returns container. |
140
|
|
|
self.algorithm_returns = None |
141
|
|
|
self.benchmark_returns = None |
142
|
|
|
self.mean_returns = None |
143
|
|
|
self.annualized_mean_returns = None |
144
|
|
|
self.mean_benchmark_returns = None |
145
|
|
|
self.annualized_mean_benchmark_returns = None |
146
|
|
|
|
147
|
|
|
self.algorithm_cumulative_returns = empty_cont.copy() |
148
|
|
|
self.benchmark_cumulative_returns = empty_cont.copy() |
149
|
|
|
self.algorithm_cumulative_leverages = empty_cont.copy() |
150
|
|
|
self.excess_returns = empty_cont.copy() |
151
|
|
|
|
152
|
|
|
self.latest_dt_loc = 0 |
153
|
|
|
self.latest_dt = cont_index[0] |
154
|
|
|
|
155
|
|
|
self.benchmark_volatility = empty_cont.copy() |
156
|
|
|
self.algorithm_volatility = empty_cont.copy() |
157
|
|
|
self.beta = empty_cont.copy() |
158
|
|
|
self.alpha = empty_cont.copy() |
159
|
|
|
self.sharpe = empty_cont.copy() |
160
|
|
|
self.downside_risk = empty_cont.copy() |
161
|
|
|
self.sortino = empty_cont.copy() |
162
|
|
|
self.information = empty_cont.copy() |
163
|
|
|
|
164
|
|
|
self.drawdowns = empty_cont.copy() |
165
|
|
|
self.max_drawdowns = empty_cont.copy() |
166
|
|
|
self.max_drawdown = 0 |
167
|
|
|
self.max_leverages = empty_cont.copy() |
168
|
|
|
self.max_leverage = 0 |
169
|
|
|
self.current_max = -np.inf |
170
|
|
|
self.daily_treasury = pd.Series(index=self.trading_days) |
171
|
|
|
self.treasury_period_return = np.nan |
172
|
|
|
|
173
|
|
|
self.num_trading_days = 0 |
174
|
|
|
|
175
|
|
|
def update(self, dt, algorithm_returns, benchmark_returns, account): |
176
|
|
|
# Keep track of latest dt for use in to_dict and other methods |
177
|
|
|
# that report current state. |
178
|
|
|
self.latest_dt = dt |
179
|
|
|
dt_loc = self.cont_index.get_loc(dt) |
180
|
|
|
self.latest_dt_loc = dt_loc |
181
|
|
|
|
182
|
|
|
self.algorithm_returns_cont[dt_loc] = algorithm_returns |
183
|
|
|
self.algorithm_returns = self.algorithm_returns_cont[:dt_loc + 1] |
184
|
|
|
|
185
|
|
|
self.num_trading_days = len(self.algorithm_returns) |
186
|
|
|
|
187
|
|
|
if self.create_first_day_stats: |
188
|
|
|
if len(self.algorithm_returns) == 1: |
189
|
|
|
self.algorithm_returns = np.append(0.0, self.algorithm_returns) |
190
|
|
|
|
191
|
|
|
self.algorithm_cumulative_returns[dt_loc] = \ |
192
|
|
|
self.calculate_cumulative_returns(self.algorithm_returns) |
193
|
|
|
|
194
|
|
|
algo_cumulative_returns_to_date = \ |
195
|
|
|
self.algorithm_cumulative_returns[:dt_loc + 1] |
196
|
|
|
|
197
|
|
|
self.mean_returns_cont[dt_loc] = \ |
198
|
|
|
algo_cumulative_returns_to_date[dt_loc] / self.num_trading_days |
199
|
|
|
|
200
|
|
|
self.mean_returns = self.mean_returns_cont[:dt_loc + 1] |
201
|
|
|
|
202
|
|
|
self.annualized_mean_returns_cont[dt_loc] = \ |
203
|
|
|
self.mean_returns_cont[dt_loc] * 252 |
204
|
|
|
|
205
|
|
|
self.annualized_mean_returns = \ |
206
|
|
|
self.annualized_mean_returns_cont[:dt_loc + 1] |
207
|
|
|
|
208
|
|
|
if self.create_first_day_stats: |
209
|
|
|
if len(self.mean_returns) == 1: |
210
|
|
|
self.mean_returns = np.append(0.0, self.mean_returns) |
211
|
|
|
self.annualized_mean_returns = np.append( |
212
|
|
|
0.0, self.annualized_mean_returns) |
213
|
|
|
|
214
|
|
|
self.benchmark_returns_cont[dt_loc] = benchmark_returns |
215
|
|
|
self.benchmark_returns = self.benchmark_returns_cont[:dt_loc + 1] |
216
|
|
|
|
217
|
|
|
if self.create_first_day_stats: |
218
|
|
|
if len(self.benchmark_returns) == 1: |
219
|
|
|
self.benchmark_returns = np.append(0.0, self.benchmark_returns) |
220
|
|
|
|
221
|
|
|
self.benchmark_cumulative_returns[dt_loc] = \ |
222
|
|
|
self.calculate_cumulative_returns(self.benchmark_returns) |
223
|
|
|
|
224
|
|
|
benchmark_cumulative_returns_to_date = \ |
225
|
|
|
self.benchmark_cumulative_returns[:dt_loc + 1] |
226
|
|
|
|
227
|
|
|
self.mean_benchmark_returns_cont[dt_loc] = \ |
228
|
|
|
benchmark_cumulative_returns_to_date[dt_loc] / \ |
229
|
|
|
self.num_trading_days |
230
|
|
|
|
231
|
|
|
self.mean_benchmark_returns = self.mean_benchmark_returns_cont[:dt_loc] |
232
|
|
|
|
233
|
|
|
self.annualized_mean_benchmark_returns_cont[dt_loc] = \ |
234
|
|
|
self.mean_benchmark_returns_cont[dt_loc] * 252 |
235
|
|
|
|
236
|
|
|
self.annualized_mean_benchmark_returns = \ |
237
|
|
|
self.annualized_mean_benchmark_returns_cont[:dt_loc + 1] |
238
|
|
|
|
239
|
|
|
self.algorithm_cumulative_leverages_cont[dt_loc] = account['leverage'] |
240
|
|
|
self.algorithm_cumulative_leverages = \ |
241
|
|
|
self.algorithm_cumulative_leverages_cont[:dt_loc + 1] |
242
|
|
|
|
243
|
|
|
if self.create_first_day_stats: |
244
|
|
|
if len(self.algorithm_cumulative_leverages) == 1: |
245
|
|
|
self.algorithm_cumulative_leverages = np.append( |
246
|
|
|
0.0, |
247
|
|
|
self.algorithm_cumulative_leverages) |
248
|
|
|
|
249
|
|
|
if not len(self.algorithm_returns) and len(self.benchmark_returns): |
250
|
|
|
message = "Mismatch between benchmark_returns ({bm_count}) and \ |
251
|
|
|
algorithm_returns ({algo_count}) in range {start} : {end} on {dt}" |
252
|
|
|
message = message.format( |
253
|
|
|
bm_count=len(self.benchmark_returns), |
254
|
|
|
algo_count=len(self.algorithm_returns), |
255
|
|
|
start=self.start_date, |
256
|
|
|
end=self.end_date, |
257
|
|
|
dt=dt |
258
|
|
|
) |
259
|
|
|
raise Exception(message) |
260
|
|
|
|
261
|
|
|
self.update_current_max() |
262
|
|
|
self.benchmark_volatility[dt_loc] = \ |
263
|
|
|
self.calculate_volatility(self.benchmark_returns) |
264
|
|
|
self.algorithm_volatility[dt_loc] = \ |
265
|
|
|
self.calculate_volatility(self.algorithm_returns) |
266
|
|
|
|
267
|
|
|
# caching the treasury rates for the minutely case is a |
268
|
|
|
# big speedup, because it avoids searching the treasury |
269
|
|
|
# curves on every minute. |
270
|
|
|
# In both minutely and daily, the daily curve is always used. |
271
|
|
|
treasury_end = dt.replace(hour=0, minute=0) |
272
|
|
|
if np.isnan(self.daily_treasury[treasury_end]): |
273
|
|
|
treasury_period_return = choose_treasury( |
274
|
|
|
self.treasury_curves, |
275
|
|
|
self.start_date, |
276
|
|
|
treasury_end, |
277
|
|
|
self.env, |
278
|
|
|
) |
279
|
|
|
self.daily_treasury[treasury_end] = treasury_period_return |
280
|
|
|
self.treasury_period_return = self.daily_treasury[treasury_end] |
281
|
|
|
self.excess_returns[dt_loc] = ( |
282
|
|
|
self.algorithm_cumulative_returns[dt_loc] - |
283
|
|
|
self.treasury_period_return) |
284
|
|
|
self.beta[dt_loc] = self.calculate_beta() |
285
|
|
|
self.alpha[dt_loc] = self.calculate_alpha() |
286
|
|
|
self.sharpe[dt_loc] = self.calculate_sharpe() |
287
|
|
|
self.downside_risk[dt_loc] = \ |
288
|
|
|
self.calculate_downside_risk() |
289
|
|
|
self.sortino[dt_loc] = self.calculate_sortino() |
290
|
|
|
self.information[dt_loc] = self.calculate_information() |
291
|
|
|
self.max_drawdown = self.calculate_max_drawdown() |
292
|
|
|
self.max_drawdowns[dt_loc] = self.max_drawdown |
293
|
|
|
self.max_leverage = self.calculate_max_leverage() |
294
|
|
|
self.max_leverages[dt_loc] = self.max_leverage |
295
|
|
|
|
296
|
|
|
def to_dict(self): |
297
|
|
|
""" |
298
|
|
|
Creates a dictionary representing the state of the risk report. |
299
|
|
|
Returns a dict object of the form: |
300
|
|
|
""" |
301
|
|
|
dt = self.latest_dt |
302
|
|
|
dt_loc = self.latest_dt_loc |
303
|
|
|
period_label = dt.strftime("%Y-%m") |
304
|
|
|
rval = { |
305
|
|
|
'trading_days': self.num_trading_days, |
306
|
|
|
'benchmark_volatility': |
307
|
|
|
self.benchmark_volatility[dt_loc], |
308
|
|
|
'algo_volatility': |
309
|
|
|
self.algorithm_volatility[dt_loc], |
310
|
|
|
'treasury_period_return': self.treasury_period_return, |
311
|
|
|
# Though the two following keys say period return, |
312
|
|
|
# they would be more accurately called the cumulative return. |
313
|
|
|
# However, the keys need to stay the same, for now, for backwards |
314
|
|
|
# compatibility with existing consumers. |
315
|
|
|
'algorithm_period_return': |
316
|
|
|
self.algorithm_cumulative_returns[dt_loc], |
317
|
|
|
'benchmark_period_return': |
318
|
|
|
self.benchmark_cumulative_returns[dt_loc], |
319
|
|
|
'beta': self.beta[dt_loc], |
320
|
|
|
'alpha': self.alpha[dt_loc], |
321
|
|
|
'sharpe': self.sharpe[dt_loc], |
322
|
|
|
'sortino': self.sortino[dt_loc], |
323
|
|
|
'information': self.information[dt_loc], |
324
|
|
|
'excess_return': self.excess_returns[dt_loc], |
325
|
|
|
'max_drawdown': self.max_drawdown, |
326
|
|
|
'max_leverage': self.max_leverage, |
327
|
|
|
'period_label': period_label |
328
|
|
|
} |
329
|
|
|
|
330
|
|
|
return {k: (None if check_entry(k, v) else v) |
331
|
|
|
for k, v in iteritems(rval)} |
332
|
|
|
|
333
|
|
|
def __repr__(self): |
334
|
|
|
statements = [] |
335
|
|
|
for metric in self.METRIC_NAMES: |
336
|
|
|
value = getattr(self, metric)[-1] |
337
|
|
|
if isinstance(value, list): |
338
|
|
|
if len(value) == 0: |
339
|
|
|
value = np.nan |
340
|
|
|
else: |
341
|
|
|
value = value[-1] |
342
|
|
|
statements.append("{m}:{v}".format(m=metric, v=value)) |
343
|
|
|
|
344
|
|
|
return '\n'.join(statements) |
345
|
|
|
|
346
|
|
|
def calculate_cumulative_returns(self, returns): |
347
|
|
|
return (1. + returns).prod() - 1 |
348
|
|
|
|
349
|
|
|
def update_current_max(self): |
350
|
|
|
if len(self.algorithm_cumulative_returns) == 0: |
351
|
|
|
return |
352
|
|
|
current_cumulative_return = \ |
353
|
|
|
self.algorithm_cumulative_returns[self.latest_dt_loc] |
354
|
|
|
if self.current_max < current_cumulative_return: |
355
|
|
|
self.current_max = current_cumulative_return |
356
|
|
|
|
357
|
|
|
def calculate_max_drawdown(self): |
358
|
|
|
if len(self.algorithm_cumulative_returns) == 0: |
359
|
|
|
return self.max_drawdown |
360
|
|
|
|
361
|
|
|
# The drawdown is defined as: (high - low) / high |
362
|
|
|
# The above factors out to: 1.0 - (low / high) |
363
|
|
|
# |
364
|
|
|
# Instead of explicitly always using the low, use the current total |
365
|
|
|
# return value, and test that against the max drawdown, which will |
366
|
|
|
# exceed the previous max_drawdown iff the current return is lower than |
367
|
|
|
# the previous low in the current drawdown window. |
368
|
|
|
cur_drawdown = 1.0 - ( |
369
|
|
|
(1.0 + self.algorithm_cumulative_returns[self.latest_dt_loc]) |
370
|
|
|
/ |
371
|
|
|
(1.0 + self.current_max)) |
372
|
|
|
|
373
|
|
|
self.drawdowns[self.latest_dt_loc] = cur_drawdown |
374
|
|
|
|
375
|
|
|
if self.max_drawdown < cur_drawdown: |
376
|
|
|
return cur_drawdown |
377
|
|
|
else: |
378
|
|
|
return self.max_drawdown |
379
|
|
|
|
380
|
|
|
def calculate_max_leverage(self): |
381
|
|
|
# The leverage is defined as: the gross_exposure/net_liquidation |
382
|
|
|
# gross_exposure = long_exposure + abs(short_exposure) |
383
|
|
|
# net_liquidation = ending_cash + long_exposure + short_exposure |
384
|
|
|
cur_leverage = self.algorithm_cumulative_leverages_cont[ |
385
|
|
|
self.latest_dt_loc] |
386
|
|
|
|
387
|
|
|
return max(cur_leverage, self.max_leverage) |
388
|
|
|
|
389
|
|
|
def calculate_sharpe(self): |
390
|
|
|
""" |
391
|
|
|
http://en.wikipedia.org/wiki/Sharpe_ratio |
392
|
|
|
""" |
393
|
|
|
return sharpe_ratio( |
394
|
|
|
self.algorithm_volatility[self.latest_dt_loc], |
395
|
|
|
self.annualized_mean_returns_cont[self.latest_dt_loc], |
396
|
|
|
self.daily_treasury[self.latest_dt.date()]) |
397
|
|
|
|
398
|
|
|
def calculate_sortino(self): |
399
|
|
|
""" |
400
|
|
|
http://en.wikipedia.org/wiki/Sortino_ratio |
401
|
|
|
""" |
402
|
|
|
return sortino_ratio( |
403
|
|
|
self.annualized_mean_returns_cont[self.latest_dt_loc], |
404
|
|
|
self.daily_treasury[self.latest_dt.date()], |
405
|
|
|
self.downside_risk[self.latest_dt_loc]) |
406
|
|
|
|
407
|
|
|
def calculate_information(self): |
408
|
|
|
""" |
409
|
|
|
http://en.wikipedia.org/wiki/Information_ratio |
410
|
|
|
""" |
411
|
|
|
return information_ratio( |
412
|
|
|
self.algorithm_volatility[self.latest_dt_loc], |
413
|
|
|
self.annualized_mean_returns_cont[self.latest_dt_loc], |
414
|
|
|
self.annualized_mean_benchmark_returns_cont[self.latest_dt_loc]) |
415
|
|
|
|
416
|
|
|
def calculate_alpha(self): |
417
|
|
|
""" |
418
|
|
|
http://en.wikipedia.org/wiki/Alpha_(investment) |
419
|
|
|
""" |
420
|
|
|
return alpha( |
421
|
|
|
self.annualized_mean_returns_cont[self.latest_dt_loc], |
422
|
|
|
self.treasury_period_return, |
423
|
|
|
self.annualized_mean_benchmark_returns_cont[self.latest_dt_loc], |
424
|
|
|
self.beta[self.latest_dt_loc]) |
425
|
|
|
|
426
|
|
|
def calculate_volatility(self, daily_returns): |
427
|
|
|
if len(daily_returns) <= 1: |
428
|
|
|
return 0.0 |
429
|
|
|
return np.std(daily_returns, ddof=1) * math.sqrt(252) |
430
|
|
|
|
431
|
|
|
def calculate_downside_risk(self): |
432
|
|
|
return downside_risk(self.algorithm_returns, |
433
|
|
|
self.mean_returns, |
434
|
|
|
252) |
435
|
|
|
|
436
|
|
|
def calculate_beta(self): |
437
|
|
|
""" |
438
|
|
|
|
439
|
|
|
.. math:: |
440
|
|
|
|
441
|
|
|
\\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)} |
442
|
|
|
|
443
|
|
|
http://en.wikipedia.org/wiki/Beta_(finance) |
444
|
|
|
""" |
445
|
|
|
# it doesn't make much sense to calculate beta for less than two |
446
|
|
|
# values, so return none. |
447
|
|
|
if len(self.algorithm_returns) < 2: |
448
|
|
|
return 0.0 |
449
|
|
|
|
450
|
|
|
returns_matrix = np.vstack([self.algorithm_returns, |
451
|
|
|
self.benchmark_returns]) |
452
|
|
|
C = np.cov(returns_matrix, ddof=1) |
453
|
|
|
algorithm_covariance = C[0][1] |
454
|
|
|
benchmark_variance = C[1][1] |
455
|
|
|
beta = algorithm_covariance / benchmark_variance |
456
|
|
|
|
457
|
|
|
return beta |
458
|
|
|
|
459
|
|
|
def __getstate__(self): |
460
|
|
|
state_dict = {k: v for k, v in iteritems(self.__dict__) |
461
|
|
|
if not k.startswith('_')} |
462
|
|
|
|
463
|
|
|
STATE_VERSION = 3 |
464
|
|
|
state_dict[VERSION_LABEL] = STATE_VERSION |
465
|
|
|
|
466
|
|
|
return state_dict |
467
|
|
|
|
468
|
|
|
def __setstate__(self, state): |
469
|
|
|
|
470
|
|
|
OLDEST_SUPPORTED_STATE = 3 |
471
|
|
|
version = state.pop(VERSION_LABEL) |
472
|
|
|
|
473
|
|
|
if version < OLDEST_SUPPORTED_STATE: |
474
|
|
|
raise BaseException("RiskMetricsCumulative \ |
475
|
|
|
saved state is too old.") |
476
|
|
|
|
477
|
|
|
self.__dict__.update(state) |
478
|
|
|
|