1
|
|
|
# |
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
import datetime |
16
|
|
|
import hashlib |
17
|
|
|
import os |
18
|
|
|
|
19
|
|
|
import numpy as np |
20
|
|
|
import pandas as pd |
21
|
|
|
import pytz |
22
|
|
|
import xlrd |
23
|
|
|
import requests |
24
|
|
|
|
25
|
|
|
from six.moves import map |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
def col_letter_to_index(col_letter): |
29
|
|
|
# Only supports single letter, |
30
|
|
|
# but answer key doesn't need multi-letter, yet. |
31
|
|
|
index = 0 |
32
|
|
|
for i, char in enumerate(reversed(col_letter)): |
33
|
|
|
index += ((ord(char) - 65) + 1) * pow(26, i) |
34
|
|
|
return index |
35
|
|
|
|
36
|
|
|
DIR = os.path.dirname(os.path.realpath(__file__)) |
37
|
|
|
|
38
|
|
|
ANSWER_KEY_CHECKSUMS_PATH = os.path.join(DIR, 'risk-answer-key-checksums') |
39
|
|
|
ANSWER_KEY_CHECKSUMS = open(ANSWER_KEY_CHECKSUMS_PATH, 'r').read().splitlines() |
40
|
|
|
|
41
|
|
|
ANSWER_KEY_FILENAME = 'risk-answer-key.xlsx' |
42
|
|
|
|
43
|
|
|
ANSWER_KEY_PATH = os.path.join(DIR, ANSWER_KEY_FILENAME) |
44
|
|
|
|
45
|
|
|
ANSWER_KEY_BUCKET_NAME = 'zipline-test_data' |
46
|
|
|
|
47
|
|
|
ANSWER_KEY_DL_TEMPLATE = """ |
48
|
|
|
https://s3.amazonaws.com/zipline-test-data/risk/{md5}/risk-answer-key.xlsx |
49
|
|
|
""".strip() |
50
|
|
|
|
51
|
|
|
LATEST_ANSWER_KEY_URL = ANSWER_KEY_DL_TEMPLATE.format( |
52
|
|
|
md5=ANSWER_KEY_CHECKSUMS[-1]) |
53
|
|
|
|
54
|
|
|
|
55
|
|
|
def answer_key_signature(): |
56
|
|
|
with open(ANSWER_KEY_PATH, 'rb') as f: |
57
|
|
|
md5 = hashlib.md5() |
58
|
|
|
buf = f.read(1024) |
59
|
|
|
md5.update(buf) |
60
|
|
|
while buf != b"": |
61
|
|
|
buf = f.read(1024) |
62
|
|
|
md5.update(buf) |
63
|
|
|
return md5.hexdigest() |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
def ensure_latest_answer_key(): |
67
|
|
|
""" |
68
|
|
|
Get the latest answer key from a publically available location. |
69
|
|
|
|
70
|
|
|
Logic for determining what and when to download is as such: |
71
|
|
|
|
72
|
|
|
- If there is no local spreadsheet file, then get the lastest answer key, |
73
|
|
|
as defined by the last row in the checksum file. |
74
|
|
|
- If there is a local spreadsheet file: |
75
|
|
|
-- If the spreadsheet's checksum is in the checksum file: |
76
|
|
|
--- If the spreadsheet's checksum does not match the latest, then grab the |
77
|
|
|
the latest checksum and replace the local checksum file. |
78
|
|
|
--- If the spreadsheet's checksum matches the latest, then skip download, |
79
|
|
|
and use the local spreadsheet as a cached copy. |
80
|
|
|
-- If the spreadsheet's checksum is not in the checksum file, then leave |
81
|
|
|
the local file alone, assuming that the local xls's md5 is not in the list |
82
|
|
|
due to local modifications during development. |
83
|
|
|
|
84
|
|
|
It is possible that md5's could collide, if that is ever case, we should |
85
|
|
|
then find an alternative naming scheme. |
86
|
|
|
|
87
|
|
|
The spreadsheet answer sheet is not kept in SCM, as every edit would |
88
|
|
|
increase the repo size by the file size, since it is treated as a binary. |
89
|
|
|
""" |
90
|
|
|
|
91
|
|
|
answer_key_dl_checksum = None |
92
|
|
|
|
93
|
|
|
local_answer_key_exists = os.path.exists(ANSWER_KEY_PATH) |
94
|
|
|
if local_answer_key_exists: |
95
|
|
|
local_hash = answer_key_signature() |
96
|
|
|
|
97
|
|
|
if local_hash in ANSWER_KEY_CHECKSUMS: |
98
|
|
|
# Assume previously downloaded version. |
99
|
|
|
# Check for latest. |
100
|
|
|
if local_hash != ANSWER_KEY_CHECKSUMS[-1]: |
101
|
|
|
# More recent checksum, download |
102
|
|
|
answer_key_dl_checksum = ANSWER_KEY_CHECKSUMS[-1] |
103
|
|
|
else: |
104
|
|
|
# Assume local copy that is being developed on |
105
|
|
|
answer_key_dl_checksum = None |
106
|
|
|
else: |
107
|
|
|
answer_key_dl_checksum = ANSWER_KEY_CHECKSUMS[-1] |
108
|
|
|
|
109
|
|
|
if answer_key_dl_checksum: |
110
|
|
|
res = requests.get( |
111
|
|
|
ANSWER_KEY_DL_TEMPLATE.format(md5=answer_key_dl_checksum)) |
112
|
|
|
with open(ANSWER_KEY_PATH, 'wb') as f: |
113
|
|
|
f.write(res.content) |
114
|
|
|
|
115
|
|
|
# Get latest answer key on load. |
116
|
|
|
ensure_latest_answer_key() |
117
|
|
|
|
118
|
|
|
|
119
|
|
|
class DataIndex(object): |
120
|
|
|
""" |
121
|
|
|
Coordinates for the spreadsheet, using the values as seen in the notebook. |
122
|
|
|
The python-excel libraries use 0 index, while the spreadsheet in a GUI |
123
|
|
|
uses a 1 index. |
124
|
|
|
""" |
125
|
|
|
def __init__(self, sheet_name, col, row_start, row_end, |
126
|
|
|
value_type='float'): |
127
|
|
|
self.sheet_name = sheet_name |
128
|
|
|
self.col = col |
129
|
|
|
self.row_start = row_start |
130
|
|
|
self.row_end = row_end |
131
|
|
|
self.value_type = value_type |
132
|
|
|
|
133
|
|
|
@property |
134
|
|
|
def col_index(self): |
135
|
|
|
return col_letter_to_index(self.col) - 1 |
136
|
|
|
|
137
|
|
|
@property |
138
|
|
|
def row_start_index(self): |
139
|
|
|
return self.row_start - 1 |
140
|
|
|
|
141
|
|
|
@property |
142
|
|
|
def row_end_index(self): |
143
|
|
|
return self.row_end - 1 |
144
|
|
|
|
145
|
|
|
def __str__(self): |
146
|
|
|
return "'{sheet_name}'!{col}{row_start}:{col}{row_end}".format( |
147
|
|
|
sheet_name=self.sheet_name, |
148
|
|
|
col=self.col, |
149
|
|
|
row_start=self.row_start, |
150
|
|
|
row_end=self.row_end |
151
|
|
|
) |
152
|
|
|
|
153
|
|
|
|
154
|
|
|
class AnswerKey(object): |
155
|
|
|
|
156
|
|
|
INDEXES = { |
157
|
|
|
'RETURNS': DataIndex('Sim Period', 'D', 4, 255), |
158
|
|
|
|
159
|
|
|
'BENCHMARK': { |
160
|
|
|
'Dates': DataIndex('s_p', 'A', 4, 254, value_type='date'), |
161
|
|
|
'Returns': DataIndex('s_p', 'H', 4, 254) |
162
|
|
|
}, |
163
|
|
|
|
164
|
|
|
# Below matches the inconsistent capitalization in spreadsheet |
165
|
|
|
'BENCHMARK_PERIOD_RETURNS': { |
166
|
|
|
'Monthly': DataIndex('s_p', 'R', 8, 19), |
167
|
|
|
'3-Month': DataIndex('s_p', 'S', 10, 19), |
168
|
|
|
'6-month': DataIndex('s_p', 'T', 13, 19), |
169
|
|
|
'year': DataIndex('s_p', 'U', 19, 19), |
170
|
|
|
}, |
171
|
|
|
|
172
|
|
|
'BENCHMARK_PERIOD_VOLATILITY': { |
173
|
|
|
'Monthly': DataIndex('s_p', 'V', 8, 19), |
174
|
|
|
'3-Month': DataIndex('s_p', 'W', 10, 19), |
175
|
|
|
'6-month': DataIndex('s_p', 'X', 13, 19), |
176
|
|
|
'year': DataIndex('s_p', 'Y', 19, 19), |
177
|
|
|
}, |
178
|
|
|
|
179
|
|
|
'ALGORITHM_PERIOD_RETURNS': { |
180
|
|
|
'Monthly': DataIndex('Sim Period', 'Z', 23, 34), |
181
|
|
|
'3-Month': DataIndex('Sim Period', 'AA', 25, 34), |
182
|
|
|
'6-month': DataIndex('Sim Period', 'AB', 28, 34), |
183
|
|
|
'year': DataIndex('Sim Period', 'AC', 34, 34), |
184
|
|
|
}, |
185
|
|
|
|
186
|
|
|
'ALGORITHM_PERIOD_VOLATILITY': { |
187
|
|
|
'Monthly': DataIndex('Sim Period', 'AH', 23, 34), |
188
|
|
|
'3-Month': DataIndex('Sim Period', 'AI', 25, 34), |
189
|
|
|
'6-month': DataIndex('Sim Period', 'AJ', 28, 34), |
190
|
|
|
'year': DataIndex('Sim Period', 'AK', 34, 34), |
191
|
|
|
}, |
192
|
|
|
|
193
|
|
|
'ALGORITHM_PERIOD_SHARPE': { |
194
|
|
|
'Monthly': DataIndex('Sim Period', 'AL', 23, 34), |
195
|
|
|
'3-Month': DataIndex('Sim Period', 'AM', 25, 34), |
196
|
|
|
'6-month': DataIndex('Sim Period', 'AN', 28, 34), |
197
|
|
|
'year': DataIndex('Sim Period', 'AO', 34, 34), |
198
|
|
|
}, |
199
|
|
|
|
200
|
|
|
'ALGORITHM_PERIOD_BETA': { |
201
|
|
|
'Monthly': DataIndex('Sim Period', 'AP', 23, 34), |
202
|
|
|
'3-Month': DataIndex('Sim Period', 'AQ', 25, 34), |
203
|
|
|
'6-month': DataIndex('Sim Period', 'AR', 28, 34), |
204
|
|
|
'year': DataIndex('Sim Period', 'AS', 34, 34), |
205
|
|
|
}, |
206
|
|
|
|
207
|
|
|
'ALGORITHM_PERIOD_ALPHA': { |
208
|
|
|
'Monthly': DataIndex('Sim Period', 'AT', 23, 34), |
209
|
|
|
'3-Month': DataIndex('Sim Period', 'AU', 25, 34), |
210
|
|
|
'6-month': DataIndex('Sim Period', 'AV', 28, 34), |
211
|
|
|
'year': DataIndex('Sim Period', 'AW', 34, 34), |
212
|
|
|
}, |
213
|
|
|
|
214
|
|
|
'ALGORITHM_PERIOD_BENCHMARK_VARIANCE': { |
215
|
|
|
'Monthly': DataIndex('Sim Period', 'BJ', 23, 34), |
216
|
|
|
'3-Month': DataIndex('Sim Period', 'BK', 25, 34), |
217
|
|
|
'6-month': DataIndex('Sim Period', 'BL', 28, 34), |
218
|
|
|
'year': DataIndex('Sim Period', 'BM', 34, 34), |
219
|
|
|
}, |
220
|
|
|
|
221
|
|
|
'ALGORITHM_PERIOD_COVARIANCE': { |
222
|
|
|
'Monthly': DataIndex('Sim Period', 'BF', 23, 34), |
223
|
|
|
'3-Month': DataIndex('Sim Period', 'BG', 25, 34), |
224
|
|
|
'6-month': DataIndex('Sim Period', 'BH', 28, 34), |
225
|
|
|
'year': DataIndex('Sim Period', 'BI', 34, 34), |
226
|
|
|
}, |
227
|
|
|
|
228
|
|
|
'ALGORITHM_PERIOD_DOWNSIDE_RISK': { |
229
|
|
|
'Monthly': DataIndex('Sim Period', 'BN', 23, 34), |
230
|
|
|
'3-Month': DataIndex('Sim Period', 'BO', 25, 34), |
231
|
|
|
'6-month': DataIndex('Sim Period', 'BP', 28, 34), |
232
|
|
|
'year': DataIndex('Sim Period', 'BQ', 34, 34), |
233
|
|
|
}, |
234
|
|
|
|
235
|
|
|
'ALGORITHM_PERIOD_SORTINO': { |
236
|
|
|
'Monthly': DataIndex('Sim Period', 'BR', 23, 34), |
237
|
|
|
'3-Month': DataIndex('Sim Period', 'BS', 25, 34), |
238
|
|
|
'6-month': DataIndex('Sim Period', 'BT', 28, 34), |
239
|
|
|
'year': DataIndex('Sim Period', 'BU', 34, 34), |
240
|
|
|
}, |
241
|
|
|
|
242
|
|
|
'ALGORITHM_RETURN_VALUES': DataIndex( |
243
|
|
|
'Sim Cumulative', 'D', 4, 254), |
244
|
|
|
|
245
|
|
|
'ALGORITHM_CUMULATIVE_VOLATILITY': DataIndex( |
246
|
|
|
'Sim Cumulative', 'P', 4, 254), |
247
|
|
|
|
248
|
|
|
'ALGORITHM_CUMULATIVE_SHARPE': DataIndex( |
249
|
|
|
'Sim Cumulative', 'R', 4, 254), |
250
|
|
|
|
251
|
|
|
'CUMULATIVE_DOWNSIDE_RISK': DataIndex( |
252
|
|
|
'Sim Cumulative', 'U', 4, 254), |
253
|
|
|
|
254
|
|
|
'CUMULATIVE_SORTINO': DataIndex( |
255
|
|
|
'Sim Cumulative', 'V', 4, 254), |
256
|
|
|
|
257
|
|
|
'CUMULATIVE_INFORMATION': DataIndex( |
258
|
|
|
'Sim Cumulative', 'AA', 4, 254), |
259
|
|
|
|
260
|
|
|
'CUMULATIVE_BETA': DataIndex( |
261
|
|
|
'Sim Cumulative', 'AD', 4, 254), |
262
|
|
|
|
263
|
|
|
'CUMULATIVE_ALPHA': DataIndex( |
264
|
|
|
'Sim Cumulative', 'AE', 4, 254), |
265
|
|
|
|
266
|
|
|
'CUMULATIVE_MAX_DRAWDOWN': DataIndex( |
267
|
|
|
'Sim Cumulative', 'AH', 4, 254), |
268
|
|
|
|
269
|
|
|
} |
270
|
|
|
|
271
|
|
|
def __init__(self): |
272
|
|
|
self.workbook = xlrd.open_workbook(ANSWER_KEY_PATH) |
273
|
|
|
|
274
|
|
|
self.sheets = {} |
275
|
|
|
self.sheets['Sim Period'] = self.workbook.sheet_by_name('Sim Period') |
276
|
|
|
self.sheets['Sim Cumulative'] = self.workbook.sheet_by_name( |
277
|
|
|
'Sim Cumulative') |
278
|
|
|
self.sheets['s_p'] = self.workbook.sheet_by_name('s_p') |
279
|
|
|
|
280
|
|
|
for name, index in self.INDEXES.items(): |
281
|
|
|
if isinstance(index, dict): |
282
|
|
|
subvalues = {} |
283
|
|
|
for subkey, subindex in index.items(): |
284
|
|
|
subvalues[subkey] = self.get_values(subindex) |
285
|
|
|
setattr(self, name, subvalues) |
286
|
|
|
else: |
287
|
|
|
setattr(self, name, self.get_values(index)) |
288
|
|
|
|
289
|
|
|
def parse_date_value(self, value): |
290
|
|
|
return xlrd.xldate_as_tuple(value, 0) |
291
|
|
|
|
292
|
|
|
def parse_float_value(self, value): |
293
|
|
|
return value if value != '' else np.nan |
294
|
|
|
|
295
|
|
|
def get_raw_values(self, data_index): |
296
|
|
|
return self.sheets[data_index.sheet_name].col_values( |
297
|
|
|
data_index.col_index, |
298
|
|
|
data_index.row_start_index, |
299
|
|
|
data_index.row_end_index + 1) |
300
|
|
|
|
301
|
|
|
@property |
302
|
|
|
def value_type_to_value_func(self): |
303
|
|
|
return { |
304
|
|
|
'float': self.parse_float_value, |
305
|
|
|
'date': self.parse_date_value, |
306
|
|
|
} |
307
|
|
|
|
308
|
|
|
def get_values(self, data_index): |
309
|
|
|
value_parser = self.value_type_to_value_func[data_index.value_type] |
310
|
|
|
return [value for value in |
311
|
|
|
map(value_parser, self.get_raw_values(data_index))] |
312
|
|
|
|
313
|
|
|
|
314
|
|
|
ANSWER_KEY = AnswerKey() |
315
|
|
|
|
316
|
|
|
BENCHMARK_DATES = ANSWER_KEY.BENCHMARK['Dates'] |
317
|
|
|
BENCHMARK_RETURNS = ANSWER_KEY.BENCHMARK['Returns'] |
318
|
|
|
DATES = [datetime.datetime(*x, tzinfo=pytz.UTC) for x in BENCHMARK_DATES] |
319
|
|
|
BENCHMARK = pd.Series(dict(zip(DATES, BENCHMARK_RETURNS))) |
320
|
|
|
ALGORITHM_RETURNS = pd.Series( |
321
|
|
|
dict(zip(DATES, ANSWER_KEY.ALGORITHM_RETURN_VALUES))) |
322
|
|
|
RETURNS_DATA = pd.DataFrame({'Benchmark Returns': BENCHMARK, |
323
|
|
|
'Algorithm Returns': ALGORITHM_RETURNS}) |
324
|
|
|
RISK_CUMULATIVE = pd.DataFrame({ |
325
|
|
|
'volatility': pd.Series(dict(zip( |
326
|
|
|
DATES, ANSWER_KEY.ALGORITHM_CUMULATIVE_VOLATILITY))), |
327
|
|
|
'sharpe': pd.Series(dict(zip( |
328
|
|
|
DATES, ANSWER_KEY.ALGORITHM_CUMULATIVE_SHARPE))), |
329
|
|
|
'downside_risk': pd.Series(dict(zip( |
330
|
|
|
DATES, ANSWER_KEY.CUMULATIVE_DOWNSIDE_RISK))), |
331
|
|
|
'sortino': pd.Series(dict(zip( |
332
|
|
|
DATES, ANSWER_KEY.CUMULATIVE_SORTINO))), |
333
|
|
|
'information': pd.Series(dict(zip( |
334
|
|
|
DATES, ANSWER_KEY.CUMULATIVE_INFORMATION))), |
335
|
|
|
'alpha': pd.Series(dict(zip( |
336
|
|
|
DATES, ANSWER_KEY.CUMULATIVE_ALPHA))), |
337
|
|
|
'beta': pd.Series(dict(zip( |
338
|
|
|
DATES, ANSWER_KEY.CUMULATIVE_BETA))), |
339
|
|
|
'max_drawdown': pd.Series(dict(zip( |
340
|
|
|
DATES, ANSWER_KEY.CUMULATIVE_MAX_DRAWDOWN))), |
341
|
|
|
}) |
342
|
|
|
|