1
|
|
|
# |
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
import unittest |
17
|
|
|
import datetime |
18
|
|
|
import calendar |
19
|
|
|
import numpy as np |
20
|
|
|
import pytz |
21
|
|
|
|
22
|
|
|
from itertools import chain |
23
|
|
|
from six import itervalues |
24
|
|
|
|
25
|
|
|
import zipline.finance.risk as risk |
26
|
|
|
from zipline.utils import factory |
27
|
|
|
|
28
|
|
|
from zipline.finance.trading import SimulationParameters, TradingEnvironment |
29
|
|
|
|
30
|
|
|
from . import answer_key |
31
|
|
|
from . answer_key import AnswerKey |
32
|
|
|
|
33
|
|
|
ANSWER_KEY = AnswerKey() |
34
|
|
|
|
35
|
|
|
RETURNS = ANSWER_KEY.RETURNS |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class TestRisk(unittest.TestCase): |
39
|
|
|
|
40
|
|
|
@classmethod |
41
|
|
|
def setUpClass(cls): |
42
|
|
|
cls.env = TradingEnvironment() |
43
|
|
|
|
44
|
|
|
@classmethod |
45
|
|
|
def tearDownClass(cls): |
46
|
|
|
del cls.env |
47
|
|
|
|
48
|
|
|
def setUp(self): |
49
|
|
|
|
50
|
|
|
start_date = datetime.datetime( |
51
|
|
|
year=2006, |
52
|
|
|
month=1, |
53
|
|
|
day=1, |
54
|
|
|
hour=0, |
55
|
|
|
minute=0, |
56
|
|
|
tzinfo=pytz.utc) |
57
|
|
|
end_date = datetime.datetime( |
58
|
|
|
year=2006, month=12, day=31, tzinfo=pytz.utc) |
59
|
|
|
|
60
|
|
|
self.sim_params = SimulationParameters( |
61
|
|
|
period_start=start_date, |
62
|
|
|
period_end=end_date, |
63
|
|
|
env=self.env, |
64
|
|
|
) |
65
|
|
|
|
66
|
|
|
self.algo_returns_06 = factory.create_returns_from_list( |
67
|
|
|
RETURNS, |
68
|
|
|
self.sim_params |
69
|
|
|
) |
70
|
|
|
|
71
|
|
|
self.benchmark_returns_06 = \ |
72
|
|
|
answer_key.RETURNS_DATA['Benchmark Returns'] |
73
|
|
|
|
74
|
|
|
self.metrics_06 = risk.RiskReport( |
75
|
|
|
self.algo_returns_06, |
76
|
|
|
self.sim_params, |
77
|
|
|
benchmark_returns=self.benchmark_returns_06, |
78
|
|
|
env=self.env, |
79
|
|
|
) |
80
|
|
|
|
81
|
|
|
start_08 = datetime.datetime( |
82
|
|
|
year=2008, |
83
|
|
|
month=1, |
84
|
|
|
day=1, |
85
|
|
|
hour=0, |
86
|
|
|
minute=0, |
87
|
|
|
tzinfo=pytz.utc) |
88
|
|
|
|
89
|
|
|
end_08 = datetime.datetime( |
90
|
|
|
year=2008, |
91
|
|
|
month=12, |
92
|
|
|
day=31, |
93
|
|
|
tzinfo=pytz.utc |
94
|
|
|
) |
95
|
|
|
self.sim_params08 = SimulationParameters( |
96
|
|
|
period_start=start_08, |
97
|
|
|
period_end=end_08, |
98
|
|
|
env=self.env, |
99
|
|
|
) |
100
|
|
|
|
101
|
|
|
def tearDown(self): |
102
|
|
|
return |
103
|
|
|
|
104
|
|
|
def test_factory(self): |
105
|
|
|
returns = [0.1] * 100 |
106
|
|
|
r_objects = factory.create_returns_from_list(returns, self.sim_params) |
107
|
|
|
self.assertTrue(r_objects.index[-1] <= |
108
|
|
|
datetime.datetime( |
109
|
|
|
year=2006, month=12, day=31, tzinfo=pytz.utc)) |
110
|
|
|
|
111
|
|
|
def test_drawdown(self): |
112
|
|
|
returns = factory.create_returns_from_list( |
113
|
|
|
[1.0, -0.5, 0.8, .17, 1.0, -0.1, -0.45], self.sim_params) |
114
|
|
|
# 200, 100, 180, 210.6, 421.2, 379.8, 208.494 |
115
|
|
|
metrics = risk.RiskMetricsPeriod( |
116
|
|
|
returns.index[0], |
117
|
|
|
returns.index[-1], |
118
|
|
|
returns, |
119
|
|
|
env=self.env, |
120
|
|
|
benchmark_returns=self.env.benchmark_returns, |
121
|
|
|
) |
122
|
|
|
self.assertEqual(metrics.max_drawdown, 0.505) |
123
|
|
|
|
124
|
|
|
def test_benchmark_returns_06(self): |
125
|
|
|
|
126
|
|
|
np.testing.assert_almost_equal( |
127
|
|
|
[x.benchmark_period_returns |
128
|
|
|
for x in self.metrics_06.month_periods], |
129
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_RETURNS['Monthly']) |
130
|
|
|
np.testing.assert_almost_equal( |
131
|
|
|
[x.benchmark_period_returns |
132
|
|
|
for x in self.metrics_06.three_month_periods], |
133
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_RETURNS['3-Month']) |
134
|
|
|
np.testing.assert_almost_equal( |
135
|
|
|
[x.benchmark_period_returns |
136
|
|
|
for x in self.metrics_06.six_month_periods], |
137
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_RETURNS['6-month']) |
138
|
|
|
np.testing.assert_almost_equal( |
139
|
|
|
[x.benchmark_period_returns |
140
|
|
|
for x in self.metrics_06.year_periods], |
141
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_RETURNS['year']) |
142
|
|
|
|
143
|
|
|
def test_trading_days_06(self): |
144
|
|
|
returns = factory.create_returns_from_range(self.sim_params) |
145
|
|
|
metrics = risk.RiskReport(returns, self.sim_params, env=self.env) |
146
|
|
|
self.assertEqual([x.num_trading_days for x in metrics.year_periods], |
147
|
|
|
[251]) |
148
|
|
|
self.assertEqual([x.num_trading_days for x in metrics.month_periods], |
149
|
|
|
[20, 19, 23, 19, 22, 22, 20, 23, 20, 22, 21, 20]) |
150
|
|
|
|
151
|
|
|
def test_benchmark_volatility_06(self): |
152
|
|
|
|
153
|
|
|
np.testing.assert_almost_equal( |
154
|
|
|
[x.benchmark_volatility |
155
|
|
|
for x in self.metrics_06.month_periods], |
156
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_VOLATILITY['Monthly']) |
157
|
|
|
np.testing.assert_almost_equal( |
158
|
|
|
[x.benchmark_volatility |
159
|
|
|
for x in self.metrics_06.three_month_periods], |
160
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_VOLATILITY['3-Month']) |
161
|
|
|
np.testing.assert_almost_equal( |
162
|
|
|
[x.benchmark_volatility |
163
|
|
|
for x in self.metrics_06.six_month_periods], |
164
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_VOLATILITY['6-month']) |
165
|
|
|
np.testing.assert_almost_equal( |
166
|
|
|
[x.benchmark_volatility |
167
|
|
|
for x in self.metrics_06.year_periods], |
168
|
|
|
ANSWER_KEY.BENCHMARK_PERIOD_VOLATILITY['year']) |
169
|
|
|
|
170
|
|
|
def test_algorithm_returns_06(self): |
171
|
|
|
np.testing.assert_almost_equal( |
172
|
|
|
[x.algorithm_period_returns |
173
|
|
|
for x in self.metrics_06.month_periods], |
174
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_RETURNS['Monthly']) |
175
|
|
|
np.testing.assert_almost_equal( |
176
|
|
|
[x.algorithm_period_returns |
177
|
|
|
for x in self.metrics_06.three_month_periods], |
178
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_RETURNS['3-Month']) |
179
|
|
|
np.testing.assert_almost_equal( |
180
|
|
|
[x.algorithm_period_returns |
181
|
|
|
for x in self.metrics_06.six_month_periods], |
182
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_RETURNS['6-month']) |
183
|
|
|
np.testing.assert_almost_equal( |
184
|
|
|
[x.algorithm_period_returns |
185
|
|
|
for x in self.metrics_06.year_periods], |
186
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_RETURNS['year']) |
187
|
|
|
|
188
|
|
|
def test_algorithm_volatility_06(self): |
189
|
|
|
np.testing.assert_almost_equal( |
190
|
|
|
[x.algorithm_volatility |
191
|
|
|
for x in self.metrics_06.month_periods], |
192
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_VOLATILITY['Monthly']) |
193
|
|
|
np.testing.assert_almost_equal( |
194
|
|
|
[x.algorithm_volatility |
195
|
|
|
for x in self.metrics_06.three_month_periods], |
196
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_VOLATILITY['3-Month']) |
197
|
|
|
np.testing.assert_almost_equal( |
198
|
|
|
[x.algorithm_volatility |
199
|
|
|
for x in self.metrics_06.six_month_periods], |
200
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_VOLATILITY['6-month']) |
201
|
|
|
np.testing.assert_almost_equal( |
202
|
|
|
[x.algorithm_volatility |
203
|
|
|
for x in self.metrics_06.year_periods], |
204
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_VOLATILITY['year']) |
205
|
|
|
|
206
|
|
|
def test_algorithm_sharpe_06(self): |
207
|
|
|
np.testing.assert_almost_equal( |
208
|
|
|
[x.sharpe for x in self.metrics_06.month_periods], |
209
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SHARPE['Monthly']) |
210
|
|
|
np.testing.assert_almost_equal( |
211
|
|
|
[x.sharpe for x in self.metrics_06.three_month_periods], |
212
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SHARPE['3-Month']) |
213
|
|
|
np.testing.assert_almost_equal( |
214
|
|
|
[x.sharpe for x in self.metrics_06.six_month_periods], |
215
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SHARPE['6-month']) |
216
|
|
|
np.testing.assert_almost_equal( |
217
|
|
|
[x.sharpe for x in self.metrics_06.year_periods], |
218
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SHARPE['year']) |
219
|
|
|
|
220
|
|
|
def test_algorithm_downside_risk_06(self): |
221
|
|
|
np.testing.assert_almost_equal( |
222
|
|
|
[x.downside_risk for x in self.metrics_06.month_periods], |
223
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_DOWNSIDE_RISK['Monthly'], |
224
|
|
|
decimal=4) |
225
|
|
|
np.testing.assert_almost_equal( |
226
|
|
|
[x.downside_risk for x in self.metrics_06.three_month_periods], |
227
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_DOWNSIDE_RISK['3-Month'], |
228
|
|
|
decimal=4) |
229
|
|
|
np.testing.assert_almost_equal( |
230
|
|
|
[x.downside_risk for x in self.metrics_06.six_month_periods], |
231
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_DOWNSIDE_RISK['6-month'], |
232
|
|
|
decimal=4) |
233
|
|
|
np.testing.assert_almost_equal( |
234
|
|
|
[x.downside_risk for x in self.metrics_06.year_periods], |
235
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_DOWNSIDE_RISK['year'], |
236
|
|
|
decimal=4) |
237
|
|
|
|
238
|
|
|
def test_algorithm_sortino_06(self): |
239
|
|
|
np.testing.assert_almost_equal( |
240
|
|
|
[x.sortino for x in self.metrics_06.month_periods], |
241
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SORTINO['Monthly'], |
242
|
|
|
decimal=3) |
243
|
|
|
|
244
|
|
|
np.testing.assert_almost_equal( |
245
|
|
|
[x.sortino for x in self.metrics_06.three_month_periods], |
246
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SORTINO['3-Month'], |
247
|
|
|
decimal=3) |
248
|
|
|
|
249
|
|
|
np.testing.assert_almost_equal( |
250
|
|
|
[x.sortino for x in self.metrics_06.six_month_periods], |
251
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SORTINO['6-month'], |
252
|
|
|
decimal=3) |
253
|
|
|
|
254
|
|
|
np.testing.assert_almost_equal( |
255
|
|
|
[x.sortino for x in self.metrics_06.year_periods], |
256
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_SORTINO['year'], |
257
|
|
|
decimal=3) |
258
|
|
|
|
259
|
|
|
def test_algorithm_information_06(self): |
260
|
|
|
self.assertEqual([round(x.information, 3) |
261
|
|
|
for x in self.metrics_06.month_periods], |
262
|
|
|
[0.131, |
263
|
|
|
-0.11, |
264
|
|
|
-0.067, |
265
|
|
|
0.136, |
266
|
|
|
0.301, |
267
|
|
|
-0.387, |
268
|
|
|
0.107, |
269
|
|
|
-0.032, |
270
|
|
|
-0.058, |
271
|
|
|
0.069, |
272
|
|
|
0.095, |
273
|
|
|
-0.123]) |
274
|
|
|
self.assertEqual([round(x.information, 3) |
275
|
|
|
for x in self.metrics_06.three_month_periods], |
276
|
|
|
[-0.013, |
277
|
|
|
-0.009, |
278
|
|
|
0.111, |
279
|
|
|
-0.014, |
280
|
|
|
-0.017, |
281
|
|
|
-0.108, |
282
|
|
|
0.011, |
283
|
|
|
-0.004, |
284
|
|
|
0.032, |
285
|
|
|
0.011]) |
286
|
|
|
self.assertEqual([round(x.information, 3) |
287
|
|
|
for x in self.metrics_06.six_month_periods], |
288
|
|
|
[-0.013, |
289
|
|
|
-0.014, |
290
|
|
|
-0.003, |
291
|
|
|
-0.002, |
292
|
|
|
-0.011, |
293
|
|
|
-0.041, |
294
|
|
|
0.011]) |
295
|
|
|
self.assertEqual([round(x.information, 3) |
296
|
|
|
for x in self.metrics_06.year_periods], |
297
|
|
|
[-0.001]) |
298
|
|
|
|
299
|
|
|
def test_algorithm_beta_06(self): |
300
|
|
|
np.testing.assert_almost_equal( |
301
|
|
|
[x.beta for x in self.metrics_06.month_periods], |
302
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BETA['Monthly']) |
303
|
|
|
np.testing.assert_almost_equal( |
304
|
|
|
[x.beta for x in self.metrics_06.three_month_periods], |
305
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BETA['3-Month']) |
306
|
|
|
np.testing.assert_almost_equal( |
307
|
|
|
[x.beta for x in self.metrics_06.six_month_periods], |
308
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BETA['6-month']) |
309
|
|
|
np.testing.assert_almost_equal( |
310
|
|
|
[x.beta for x in self.metrics_06.year_periods], |
311
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BETA['year']) |
312
|
|
|
|
313
|
|
|
def test_algorithm_alpha_06(self): |
314
|
|
|
np.testing.assert_almost_equal( |
315
|
|
|
[x.alpha for x in self.metrics_06.month_periods], |
316
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_ALPHA['Monthly']) |
317
|
|
|
np.testing.assert_almost_equal( |
318
|
|
|
[x.alpha for x in self.metrics_06.three_month_periods], |
319
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_ALPHA['3-Month']) |
320
|
|
|
np.testing.assert_almost_equal( |
321
|
|
|
[x.alpha for x in self.metrics_06.six_month_periods], |
322
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_ALPHA['6-month']) |
323
|
|
|
np.testing.assert_almost_equal( |
324
|
|
|
[x.alpha for x in self.metrics_06.year_periods], |
325
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_ALPHA['year']) |
326
|
|
|
|
327
|
|
|
# FIXME: Covariance is not matching excel precisely enough to run the test. |
328
|
|
|
# Month 4 seems to be the problem. Variance is disabled |
329
|
|
|
# just to avoid distraction - it is much closer than covariance |
330
|
|
|
# and can probably pass with 6 significant digits instead of 7. |
331
|
|
|
# re-enable variance, alpha, and beta tests once this is resolved |
332
|
|
|
def test_algorithm_covariance_06(self): |
333
|
|
|
np.testing.assert_almost_equal( |
334
|
|
|
[x.algorithm_covariance for x in self.metrics_06.month_periods], |
335
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_COVARIANCE['Monthly']) |
336
|
|
|
np.testing.assert_almost_equal( |
337
|
|
|
[x.algorithm_covariance |
338
|
|
|
for x in self.metrics_06.three_month_periods], |
339
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_COVARIANCE['3-Month']) |
340
|
|
|
np.testing.assert_almost_equal( |
341
|
|
|
[x.algorithm_covariance |
342
|
|
|
for x in self.metrics_06.six_month_periods], |
343
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_COVARIANCE['6-month']) |
344
|
|
|
np.testing.assert_almost_equal( |
345
|
|
|
[x.algorithm_covariance |
346
|
|
|
for x in self.metrics_06.year_periods], |
347
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_COVARIANCE['year']) |
348
|
|
|
|
349
|
|
|
def test_benchmark_variance_06(self): |
350
|
|
|
np.testing.assert_almost_equal( |
351
|
|
|
[x.benchmark_variance |
352
|
|
|
for x in self.metrics_06.month_periods], |
353
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BENCHMARK_VARIANCE['Monthly']) |
354
|
|
|
np.testing.assert_almost_equal( |
355
|
|
|
[x.benchmark_variance |
356
|
|
|
for x in self.metrics_06.three_month_periods], |
357
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BENCHMARK_VARIANCE['3-Month']) |
358
|
|
|
np.testing.assert_almost_equal( |
359
|
|
|
[x.benchmark_variance |
360
|
|
|
for x in self.metrics_06.six_month_periods], |
361
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BENCHMARK_VARIANCE['6-month']) |
362
|
|
|
np.testing.assert_almost_equal( |
363
|
|
|
[x.benchmark_variance |
364
|
|
|
for x in self.metrics_06.year_periods], |
365
|
|
|
ANSWER_KEY.ALGORITHM_PERIOD_BENCHMARK_VARIANCE['year']) |
366
|
|
|
|
367
|
|
|
def test_benchmark_returns_08(self): |
368
|
|
|
returns = factory.create_returns_from_range(self.sim_params08) |
369
|
|
|
metrics = risk.RiskReport(returns, self.sim_params08, env=self.env) |
370
|
|
|
|
371
|
|
|
self.assertEqual([round(x.benchmark_period_returns, 3) |
372
|
|
|
for x in metrics.month_periods], |
373
|
|
|
[-0.061, |
374
|
|
|
-0.035, |
375
|
|
|
-0.006, |
376
|
|
|
0.048, |
377
|
|
|
0.011, |
378
|
|
|
-0.086, |
379
|
|
|
-0.01, |
380
|
|
|
0.012, |
381
|
|
|
-0.091, |
382
|
|
|
-0.169, |
383
|
|
|
-0.075, |
384
|
|
|
0.008]) |
385
|
|
|
|
386
|
|
|
self.assertEqual([round(x.benchmark_period_returns, 3) |
387
|
|
|
for x in metrics.three_month_periods], |
388
|
|
|
[-0.099, |
389
|
|
|
0.005, |
390
|
|
|
0.052, |
391
|
|
|
-0.032, |
392
|
|
|
-0.085, |
393
|
|
|
-0.084, |
394
|
|
|
-0.089, |
395
|
|
|
-0.236, |
396
|
|
|
-0.301, |
397
|
|
|
-0.226]) |
398
|
|
|
|
399
|
|
|
self.assertEqual([round(x.benchmark_period_returns, 3) |
400
|
|
|
for x in metrics.six_month_periods], |
401
|
|
|
[-0.128, |
402
|
|
|
-0.081, |
403
|
|
|
-0.036, |
404
|
|
|
-0.118, |
405
|
|
|
-0.301, |
406
|
|
|
-0.36, |
407
|
|
|
-0.294]) |
408
|
|
|
|
409
|
|
|
self.assertEqual([round(x.benchmark_period_returns, 3) |
410
|
|
|
for x in metrics.year_periods], |
411
|
|
|
[-0.385]) |
412
|
|
|
|
413
|
|
|
def test_trading_days_08(self): |
414
|
|
|
returns = factory.create_returns_from_range(self.sim_params08) |
415
|
|
|
metrics = risk.RiskReport(returns, self.sim_params08, env=self.env) |
416
|
|
|
self.assertEqual([x.num_trading_days for x in metrics.year_periods], |
417
|
|
|
[253]) |
418
|
|
|
|
419
|
|
|
self.assertEqual([x.num_trading_days for x in metrics.month_periods], |
420
|
|
|
[21, 20, 20, 22, 21, 21, 22, 21, 21, 23, 19, 22]) |
421
|
|
|
|
422
|
|
|
def test_benchmark_volatility_08(self): |
423
|
|
|
returns = factory.create_returns_from_range(self.sim_params08) |
424
|
|
|
metrics = risk.RiskReport(returns, self.sim_params08, env=self.env) |
425
|
|
|
|
426
|
|
|
self.assertEqual([round(x.benchmark_volatility, 3) |
427
|
|
|
for x in metrics.month_periods], |
428
|
|
|
[0.07, |
429
|
|
|
0.058, |
430
|
|
|
0.082, |
431
|
|
|
0.054, |
432
|
|
|
0.041, |
433
|
|
|
0.057, |
434
|
|
|
0.068, |
435
|
|
|
0.06, |
436
|
|
|
0.157, |
437
|
|
|
0.244, |
438
|
|
|
0.195, |
439
|
|
|
0.145]) |
440
|
|
|
|
441
|
|
|
self.assertEqual([round(x.benchmark_volatility, 3) |
442
|
|
|
for x in metrics.three_month_periods], |
443
|
|
|
[0.12, |
444
|
|
|
0.113, |
445
|
|
|
0.105, |
446
|
|
|
0.09, |
447
|
|
|
0.098, |
448
|
|
|
0.107, |
449
|
|
|
0.179, |
450
|
|
|
0.293, |
451
|
|
|
0.344, |
452
|
|
|
0.34]) |
453
|
|
|
|
454
|
|
|
self.assertEqual([round(x.benchmark_volatility, 3) |
455
|
|
|
for x in metrics.six_month_periods], |
456
|
|
|
[0.15, |
457
|
|
|
0.149, |
458
|
|
|
0.15, |
459
|
|
|
0.2, |
460
|
|
|
0.308, |
461
|
|
|
0.36, |
462
|
|
|
0.383]) |
463
|
|
|
# TODO: ugly, but I can't get the rounded float to match. |
464
|
|
|
# maybe we need a different test that checks the |
465
|
|
|
# difference between the numbers |
466
|
|
|
self.assertEqual([round(x.benchmark_volatility, 3) |
467
|
|
|
for x in metrics.year_periods], |
468
|
|
|
[0.411]) |
469
|
|
|
|
470
|
|
|
def test_treasury_returns_06(self): |
471
|
|
|
returns = factory.create_returns_from_range(self.sim_params) |
472
|
|
|
metrics = risk.RiskReport(returns, self.sim_params, env=self.env) |
473
|
|
|
self.assertEqual([round(x.treasury_period_return, 4) |
474
|
|
|
for x in metrics.month_periods], |
475
|
|
|
[0.0037, |
476
|
|
|
0.0034, |
477
|
|
|
0.0039, |
478
|
|
|
0.0038, |
479
|
|
|
0.0040, |
480
|
|
|
0.0037, |
481
|
|
|
0.0043, |
482
|
|
|
0.0043, |
483
|
|
|
0.0038, |
484
|
|
|
0.0044, |
485
|
|
|
0.0043, |
486
|
|
|
0.004]) |
487
|
|
|
|
488
|
|
|
self.assertEqual([round(x.treasury_period_return, 4) |
489
|
|
|
for x in metrics.three_month_periods], |
490
|
|
|
[0.0114, |
491
|
|
|
0.0116, |
492
|
|
|
0.0122, |
493
|
|
|
0.0125, |
494
|
|
|
0.0129, |
495
|
|
|
0.0127, |
496
|
|
|
0.0123, |
497
|
|
|
0.0128, |
498
|
|
|
0.0125, |
499
|
|
|
0.0127]) |
500
|
|
|
self.assertEqual([round(x.treasury_period_return, 4) |
501
|
|
|
for x in metrics.six_month_periods], |
502
|
|
|
[0.0260, |
503
|
|
|
0.0257, |
504
|
|
|
0.0258, |
505
|
|
|
0.0252, |
506
|
|
|
0.0259, |
507
|
|
|
0.0256, |
508
|
|
|
0.0257]) |
509
|
|
|
|
510
|
|
|
self.assertEqual([round(x.treasury_period_return, 4) |
511
|
|
|
for x in metrics.year_periods], |
512
|
|
|
[0.0500]) |
513
|
|
|
|
514
|
|
|
def test_benchmarkrange(self): |
515
|
|
|
self.check_year_range( |
516
|
|
|
datetime.datetime( |
517
|
|
|
year=2008, month=1, day=1, tzinfo=pytz.utc), |
518
|
|
|
2) |
519
|
|
|
|
520
|
|
|
def test_partial_month(self): |
521
|
|
|
|
522
|
|
|
start = datetime.datetime( |
523
|
|
|
year=1991, |
524
|
|
|
month=1, |
525
|
|
|
day=1, |
526
|
|
|
hour=0, |
527
|
|
|
minute=0, |
528
|
|
|
tzinfo=pytz.utc) |
529
|
|
|
|
530
|
|
|
# 1992 and 1996 were leap years |
531
|
|
|
total_days = 365 * 5 + 2 |
532
|
|
|
end = start + datetime.timedelta(days=total_days) |
533
|
|
|
sim_params90s = SimulationParameters( |
534
|
|
|
period_start=start, |
535
|
|
|
period_end=end, |
536
|
|
|
env=self.env, |
537
|
|
|
) |
538
|
|
|
|
539
|
|
|
returns = factory.create_returns_from_range(sim_params90s) |
540
|
|
|
returns = returns[:-10] # truncate the returns series to end mid-month |
541
|
|
|
metrics = risk.RiskReport(returns, sim_params90s, env=self.env) |
542
|
|
|
total_months = 60 |
543
|
|
|
self.check_metrics(metrics, total_months, start) |
544
|
|
|
|
545
|
|
|
def check_year_range(self, start_date, years): |
546
|
|
|
sim_params = SimulationParameters( |
547
|
|
|
period_start=start_date, |
548
|
|
|
period_end=start_date.replace(year=(start_date.year + years)), |
549
|
|
|
env=self.env, |
550
|
|
|
) |
551
|
|
|
returns = factory.create_returns_from_range(sim_params) |
552
|
|
|
metrics = risk.RiskReport(returns, self.sim_params, env=self.env) |
553
|
|
|
total_months = years * 12 |
554
|
|
|
self.check_metrics(metrics, total_months, start_date) |
555
|
|
|
|
556
|
|
|
def check_metrics(self, metrics, total_months, start_date): |
557
|
|
|
""" |
558
|
|
|
confirm that the right number of riskmetrics were calculated for each |
559
|
|
|
window length. |
560
|
|
|
""" |
561
|
|
|
self.assert_range_length( |
562
|
|
|
metrics.month_periods, |
563
|
|
|
total_months, |
564
|
|
|
1, |
565
|
|
|
start_date |
566
|
|
|
) |
567
|
|
|
|
568
|
|
|
self.assert_range_length( |
569
|
|
|
metrics.three_month_periods, |
570
|
|
|
total_months, |
571
|
|
|
3, |
572
|
|
|
start_date |
573
|
|
|
) |
574
|
|
|
|
575
|
|
|
self.assert_range_length( |
576
|
|
|
metrics.six_month_periods, |
577
|
|
|
total_months, |
578
|
|
|
6, |
579
|
|
|
start_date |
580
|
|
|
) |
581
|
|
|
|
582
|
|
|
self.assert_range_length( |
583
|
|
|
metrics.year_periods, |
584
|
|
|
total_months, |
585
|
|
|
12, |
586
|
|
|
start_date |
587
|
|
|
) |
588
|
|
|
|
589
|
|
|
def assert_last_day(self, period_end): |
590
|
|
|
# 30 days has september, april, june and november |
591
|
|
|
if period_end.month in [9, 4, 6, 11]: |
592
|
|
|
self.assertEqual(period_end.day, 30) |
593
|
|
|
# all the rest have 31, except for february |
594
|
|
|
elif(period_end.month != 2): |
595
|
|
|
self.assertEqual(period_end.day, 31) |
596
|
|
|
else: |
597
|
|
|
if calendar.isleap(period_end.year): |
598
|
|
|
self.assertEqual(period_end.day, 29) |
599
|
|
|
else: |
600
|
|
|
self.assertEqual(period_end.day, 28) |
601
|
|
|
|
602
|
|
|
def assert_month(self, start_month, actual_end_month): |
603
|
|
|
if start_month == 1: |
604
|
|
|
expected_end_month = 12 |
605
|
|
|
else: |
606
|
|
|
expected_end_month = start_month - 1 |
607
|
|
|
|
608
|
|
|
self.assertEqual(expected_end_month, actual_end_month) |
609
|
|
|
|
610
|
|
|
def assert_range_length(self, col, total_months, |
611
|
|
|
period_length, start_date): |
612
|
|
|
if(period_length > total_months): |
613
|
|
|
self.assertEqual(len(col), 0) |
614
|
|
|
else: |
615
|
|
|
self.assertEqual( |
616
|
|
|
len(col), |
617
|
|
|
total_months - (period_length - 1), |
618
|
|
|
"mismatch for total months - \ |
619
|
|
|
expected:{total_months}/actual:{actual}, \ |
620
|
|
|
period:{period_length}, start:{start_date}, \ |
621
|
|
|
calculated end:{end}".format(total_months=total_months, |
622
|
|
|
period_length=period_length, |
623
|
|
|
start_date=start_date, |
624
|
|
|
end=col[-1].end_date, |
625
|
|
|
actual=len(col)) |
626
|
|
|
) |
627
|
|
|
self.assert_month(start_date.month, col[-1].end_date.month) |
628
|
|
|
self.assert_last_day(col[-1].end_date) |
629
|
|
|
|
630
|
|
|
def test_sparse_benchmark(self): |
631
|
|
|
benchmark_returns = self.benchmark_returns_06.copy() |
632
|
|
|
# Set every other day to nan. |
633
|
|
|
benchmark_returns.iloc[::2] = np.nan |
634
|
|
|
|
635
|
|
|
report = risk.RiskReport( |
636
|
|
|
self.algo_returns_06, |
637
|
|
|
self.sim_params, |
638
|
|
|
benchmark_returns=benchmark_returns, |
639
|
|
|
env=self.env, |
640
|
|
|
) |
641
|
|
|
for risk_period in chain.from_iterable(itervalues(report.to_dict())): |
642
|
|
|
self.assertIsNone(risk_period['beta']) |
643
|
|
|
|