| Conditions | 3 |
| Total Lines | 143 |
| Lines | 0 |
| Ratio | 0 % |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
| 1 | # |
||
| 88 | |||
| 89 | self.asset_info = EQUITY_INFO |
||
| 90 | self.writer = SyntheticDailyBarWriter( |
||
| 91 | self.asset_info, |
||
| 92 | self.trading_days, |
||
| 93 | ) |
||
| 94 | |||
| 95 | self.dir_ = TempDirectory() |
||
| 96 | self.dir_.create() |
||
| 97 | self.dest = self.dir_.getpath('daily_equity_pricing.bcolz') |
||
| 98 | |||
| 99 | def tearDown(self): |
||
| 100 | self.dir_.cleanup() |
||
| 101 | |||
| 102 | @property |
||
| 103 | def assets(self): |
||
| 104 | return self.asset_info.index |
||
| 105 | |||
| 106 | def trading_days_between(self, start, end): |
||
| 107 | return self.trading_days[self.trading_days.slice_indexer(start, end)] |
||
| 108 | |||
| 109 | def asset_start(self, asset_id): |
||
| 110 | return self.writer.asset_start(asset_id) |
||
| 111 | |||
| 112 | def asset_end(self, asset_id): |
||
| 113 | return self.writer.asset_end(asset_id) |
||
| 114 | |||
| 115 | def dates_for_asset(self, asset_id): |
||
| 116 | start, end = self.asset_start(asset_id), self.asset_end(asset_id) |
||
| 117 | return self.trading_days_between(start, end) |
||
| 118 | |||
| 119 | def test_write_ohlcv_content(self): |
||
| 120 | result = self.writer.write(self.dest, self.trading_days, self.assets) |
||
| 121 | for column in SyntheticDailyBarWriter.OHLCV: |
||
| 122 | idx = 0 |
||
| 123 | data = result[column][:] |
||
| 124 | multiplier = 1 if column == 'volume' else 1000 |
||
| 125 | for asset_id in self.assets: |
||
| 126 | for date in self.dates_for_asset(asset_id): |
||
| 127 | self.assertEqual( |
||
| 128 | SyntheticDailyBarWriter.expected_value( |
||
| 129 | asset_id, |
||
| 130 | date, |
||
| 131 | column |
||
| 132 | ) * multiplier, |
||
| 133 | data[idx], |
||
| 134 | ) |
||
| 135 | idx += 1 |
||
| 136 | self.assertEqual(idx, len(data)) |
||
| 137 | |||
| 138 | def test_write_day_and_id(self): |
||
| 139 | result = self.writer.write(self.dest, self.trading_days, self.assets) |
||
| 140 | idx = 0 |
||
| 141 | ids = result['id'] |
||
| 142 | days = result['day'] |
||
| 143 | for asset_id in self.assets: |
||
| 144 | for date in self.dates_for_asset(asset_id): |
||
| 145 | self.assertEqual(ids[idx], asset_id) |
||
| 146 | self.assertEqual(date, seconds_to_timestamp(days[idx])) |
||
| 147 | idx += 1 |
||
| 148 | |||
| 149 | def test_write_attrs(self): |
||
| 150 | result = self.writer.write(self.dest, self.trading_days, self.assets) |
||
| 151 | expected_first_row = { |
||
| 152 | '1': 0, |
||
| 153 | '2': 5, # Asset 1 has 5 trading days. |
||
| 154 | '3': 12, # Asset 2 has 7 trading days. |
||
| 155 | '4': 33, # Asset 3 has 21 trading days. |
||
| 156 | '5': 44, # Asset 4 has 11 trading days. |
||
| 157 | '6': 49, # Asset 5 has 5 trading days. |
||
| 158 | } |
||
| 159 | expected_last_row = { |
||
| 160 | '1': 4, |
||
| 161 | '2': 11, |
||
| 162 | '3': 32, |
||
| 163 | '4': 43, |
||
| 164 | '5': 48, |
||
| 165 | '6': 57, # Asset 6 has 9 trading days. |
||
| 166 | } |
||
| 167 | expected_calendar_offset = { |
||
| 168 | '1': 0, # Starts on 6-01, 1st trading day of month. |
||
| 169 | '2': 15, # Starts on 6-22, 16th trading day of month. |
||
| 170 | '3': 1, # Starts on 6-02, 2nd trading day of month. |
||
| 171 | '4': 0, # Starts on 6-01, 1st trading day of month. |
||
| 172 | '5': 9, # Starts on 6-12, 10th trading day of month. |
||
| 173 | '6': 10, # Starts on 6-15, 11th trading day of month. |
||
| 174 | } |
||
| 175 | self.assertEqual(result.attrs['first_row'], expected_first_row) |
||
| 176 | self.assertEqual(result.attrs['last_row'], expected_last_row) |
||
| 177 | self.assertEqual( |
||
| 178 | result.attrs['calendar_offset'], |
||
| 179 | expected_calendar_offset, |
||
| 180 | ) |
||
| 181 | assert_index_equal( |
||
| 182 | self.trading_days, |
||
| 183 | DatetimeIndex(result.attrs['calendar'], tz='UTC'), |
||
| 184 | ) |
||
| 185 | |||
| 186 | def _check_read_results(self, columns, assets, start_date, end_date): |
||
| 187 | table = self.writer.write(self.dest, self.trading_days, self.assets) |
||
| 188 | reader = BcolzDailyBarReader(table) |
||
| 189 | results = reader.load_raw_arrays(columns, start_date, end_date, assets) |
||
| 190 | dates = self.trading_days_between(start_date, end_date) |
||
| 191 | for column, result in zip(columns, results): |
||
| 192 | assert_array_equal( |
||
| 193 | result, |
||
| 194 | self.writer.expected_values_2d( |
||
| 195 | dates, |
||
| 196 | assets, |
||
| 197 | column.name, |
||
| 198 | ) |
||
| 199 | ) |
||
| 200 | |||
| 201 | @parameterized.expand([ |
||
| 202 | ([USEquityPricing.open],), |
||
| 203 | ([USEquityPricing.close, USEquityPricing.volume],), |
||
| 204 | ([USEquityPricing.volume, USEquityPricing.high, USEquityPricing.low],), |
||
| 205 | (USEquityPricing.columns,), |
||
| 206 | ]) |
||
| 207 | def test_read(self, columns): |
||
| 208 | self._check_read_results( |
||
| 209 | columns, |
||
| 210 | self.assets, |
||
| 211 | TEST_QUERY_START, |
||
| 212 | TEST_QUERY_STOP, |
||
| 213 | ) |
||
| 214 | |||
| 215 | def test_start_on_asset_start(self): |
||
| 216 | """ |
||
| 217 | Test loading with queries that starts on the first day of each asset's |
||
| 218 | lifetime. |
||
| 219 | """ |
||
| 220 | columns = [USEquityPricing.high, USEquityPricing.volume] |
||
| 221 | for asset in self.assets: |
||
| 222 | self._check_read_results( |
||
| 223 | columns, |
||
| 224 | self.assets, |
||
| 225 | start_date=self.asset_start(asset), |
||
| 226 | end_date=self.trading_days[-1], |
||
| 227 | ) |
||
| 228 | |||
| 229 | def test_start_on_asset_end(self): |
||
| 230 | """ |
||
| 231 | Test loading with queries that start on the last day of each asset's |
||
| 326 |