1
|
|
|
# |
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
from __future__ import division |
17
|
|
|
|
18
|
|
|
import collections |
19
|
|
|
from datetime import ( |
20
|
|
|
datetime, |
21
|
|
|
timedelta, |
22
|
|
|
) |
23
|
|
|
import logging |
24
|
|
|
import operator |
25
|
|
|
|
26
|
|
|
import unittest |
27
|
|
|
from nose_parameterized import parameterized |
28
|
|
|
import nose.tools as nt |
29
|
|
|
import pytz |
30
|
|
|
import itertools |
31
|
|
|
|
32
|
|
|
import pandas as pd |
33
|
|
|
import numpy as np |
34
|
|
|
from six.moves import range, zip |
35
|
|
|
|
36
|
|
|
import zipline.utils.factory as factory |
37
|
|
|
import zipline.finance.performance as perf |
38
|
|
|
from zipline.finance.performance import position_tracker |
39
|
|
|
from zipline.finance.transaction import Transaction, create_transaction |
40
|
|
|
import zipline.utils.math_utils as zp_math |
41
|
|
|
|
42
|
|
|
from zipline.gens.composites import date_sorted_sources |
43
|
|
|
from zipline.finance.trading import SimulationParameters |
44
|
|
|
from zipline.finance.blotter import Order |
45
|
|
|
from zipline.finance.commission import PerShare, PerTrade, PerDollar |
46
|
|
|
from zipline.finance.trading import TradingEnvironment |
47
|
|
|
from zipline.utils.factory import create_simulation_parameters |
48
|
|
|
from zipline.utils.serialization_utils import ( |
49
|
|
|
loads_with_persistent_ids, dumps_with_persistent_ids |
50
|
|
|
) |
51
|
|
|
import zipline.protocol as zp |
52
|
|
|
from zipline.protocol import Event, DATASOURCE_TYPE |
53
|
|
|
from zipline.sources.data_frame_source import DataPanelSource |
54
|
|
|
|
55
|
|
|
logger = logging.getLogger('Test Perf Tracking') |
56
|
|
|
|
57
|
|
|
onesec = timedelta(seconds=1) |
58
|
|
|
oneday = timedelta(days=1) |
59
|
|
|
tradingday = timedelta(hours=6, minutes=30) |
60
|
|
|
|
61
|
|
|
# nose.tools changed name in python 3 |
62
|
|
|
if not hasattr(nt, 'assert_count_equal'): |
63
|
|
|
nt.assert_count_equal = nt.assert_items_equal |
64
|
|
|
|
65
|
|
|
|
66
|
|
|
def check_perf_period(pp, |
67
|
|
|
gross_leverage, |
68
|
|
|
net_leverage, |
69
|
|
|
long_exposure, |
70
|
|
|
longs_count, |
71
|
|
|
short_exposure, |
72
|
|
|
shorts_count): |
73
|
|
|
|
74
|
|
|
perf_data = pp.to_dict() |
75
|
|
|
np.testing.assert_allclose( |
76
|
|
|
gross_leverage, perf_data['gross_leverage'], rtol=1e-3) |
77
|
|
|
np.testing.assert_allclose( |
78
|
|
|
net_leverage, perf_data['net_leverage'], rtol=1e-3) |
79
|
|
|
np.testing.assert_allclose( |
80
|
|
|
long_exposure, perf_data['long_exposure'], rtol=1e-3) |
81
|
|
|
np.testing.assert_allclose( |
82
|
|
|
longs_count, perf_data['longs_count'], rtol=1e-3) |
83
|
|
|
np.testing.assert_allclose( |
84
|
|
|
short_exposure, perf_data['short_exposure'], rtol=1e-3) |
85
|
|
|
np.testing.assert_allclose( |
86
|
|
|
shorts_count, perf_data['shorts_count'], rtol=1e-3) |
87
|
|
|
|
88
|
|
|
|
89
|
|
|
def check_account(account, |
90
|
|
|
settled_cash, |
91
|
|
|
equity_with_loan, |
92
|
|
|
total_positions_value, |
93
|
|
|
regt_equity, |
94
|
|
|
available_funds, |
95
|
|
|
excess_liquidity, |
96
|
|
|
cushion, |
97
|
|
|
leverage, |
98
|
|
|
net_leverage, |
99
|
|
|
net_liquidation): |
100
|
|
|
# this is a long only portfolio that is only partially invested |
101
|
|
|
# so net and gross leverage are equal. |
102
|
|
|
|
103
|
|
|
np.testing.assert_allclose(settled_cash, |
104
|
|
|
account['settled_cash'], rtol=1e-3) |
105
|
|
|
np.testing.assert_allclose(equity_with_loan, |
106
|
|
|
account['equity_with_loan'], rtol=1e-3) |
107
|
|
|
np.testing.assert_allclose(total_positions_value, |
108
|
|
|
account['total_positions_value'], rtol=1e-3) |
109
|
|
|
np.testing.assert_allclose(regt_equity, |
110
|
|
|
account['regt_equity'], rtol=1e-3) |
111
|
|
|
np.testing.assert_allclose(available_funds, |
112
|
|
|
account['available_funds'], rtol=1e-3) |
113
|
|
|
np.testing.assert_allclose(excess_liquidity, |
114
|
|
|
account['excess_liquidity'], rtol=1e-3) |
115
|
|
|
np.testing.assert_allclose(cushion, |
116
|
|
|
account['cushion'], rtol=1e-3) |
117
|
|
|
np.testing.assert_allclose(leverage, account['leverage'], rtol=1e-3) |
118
|
|
|
np.testing.assert_allclose(net_leverage, |
119
|
|
|
account['net_leverage'], rtol=1e-3) |
120
|
|
|
np.testing.assert_allclose(net_liquidation, |
121
|
|
|
account['net_liquidation'], rtol=1e-3) |
122
|
|
|
|
123
|
|
|
|
124
|
|
|
def create_txn(trade_event, price, amount): |
125
|
|
|
""" |
126
|
|
|
Create a fake transaction to be filled and processed prior to the execution |
127
|
|
|
of a given trade event. |
128
|
|
|
""" |
129
|
|
|
mock_order = Order(trade_event.dt, trade_event.sid, amount, id=None) |
130
|
|
|
return create_transaction(trade_event, mock_order, price, amount) |
131
|
|
|
|
132
|
|
|
|
133
|
|
|
def benchmark_events_in_range(sim_params, env): |
134
|
|
|
return [ |
135
|
|
|
Event({'dt': dt, |
136
|
|
|
'returns': ret, |
137
|
|
|
'type': zp.DATASOURCE_TYPE.BENCHMARK, |
138
|
|
|
# We explicitly rely on the behavior that benchmarks sort before |
139
|
|
|
# any other events. |
140
|
|
|
'source_id': '1Abenchmarks'}) |
141
|
|
|
for dt, ret in env.benchmark_returns.iteritems() |
142
|
|
|
if dt.date() >= sim_params.period_start.date() and |
143
|
|
|
dt.date() <= sim_params.period_end.date() |
144
|
|
|
] |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
def calculate_results(sim_params, |
148
|
|
|
env, |
149
|
|
|
benchmark_events, |
150
|
|
|
trade_events, |
151
|
|
|
dividend_events=None, |
152
|
|
|
splits=None, |
153
|
|
|
txns=None): |
154
|
|
|
""" |
155
|
|
|
Run the given events through a stripped down version of the loop in |
156
|
|
|
AlgorithmSimulator.transform. |
157
|
|
|
|
158
|
|
|
IMPORTANT NOTE FOR TEST WRITERS/READERS: |
159
|
|
|
|
160
|
|
|
This loop has some wonky logic for the order of event processing for |
161
|
|
|
datasource types. This exists mostly to accomodate legacy tests accomodate |
162
|
|
|
existing tests that were making assumptions about how events would be |
163
|
|
|
sorted. |
164
|
|
|
|
165
|
|
|
In particular: |
166
|
|
|
|
167
|
|
|
- Dividends passed for a given date are processed PRIOR to any events |
168
|
|
|
for that date. |
169
|
|
|
- Splits passed for a given date are process AFTER any events for that |
170
|
|
|
date. |
171
|
|
|
|
172
|
|
|
Tests that use this helper should not be considered useful guarantees of |
173
|
|
|
the behavior of AlgorithmSimulator on a stream containing the same events |
174
|
|
|
unless the subgroups have been explicitly re-sorted in this way. |
175
|
|
|
""" |
176
|
|
|
|
177
|
|
|
txns = txns or [] |
178
|
|
|
splits = splits or [] |
179
|
|
|
|
180
|
|
|
perf_tracker = perf.PerformanceTracker(sim_params, env) |
181
|
|
|
|
182
|
|
|
if dividend_events is not None: |
183
|
|
|
dividend_frame = pd.DataFrame( |
184
|
|
|
[ |
185
|
|
|
event.to_series(index=zp.DIVIDEND_FIELDS) |
186
|
|
|
for event in dividend_events |
187
|
|
|
], |
188
|
|
|
) |
189
|
|
|
perf_tracker.update_dividends(dividend_frame) |
190
|
|
|
|
191
|
|
|
# Raw trades |
192
|
|
|
trade_events = sorted(trade_events, key=lambda ev: (ev.dt, ev.source_id)) |
193
|
|
|
|
194
|
|
|
# Add a benchmark event for each date. |
195
|
|
|
trades_plus_bm = date_sorted_sources(trade_events, benchmark_events) |
196
|
|
|
|
197
|
|
|
# Filter out benchmark events that are later than the last trade date. |
198
|
|
|
filtered_trades_plus_bm = (filt_event for filt_event in trades_plus_bm |
199
|
|
|
if filt_event.dt <= trade_events[-1].dt) |
200
|
|
|
|
201
|
|
|
grouped_trades_plus_bm = itertools.groupby(filtered_trades_plus_bm, |
202
|
|
|
lambda x: x.dt) |
203
|
|
|
results = [] |
204
|
|
|
|
205
|
|
|
bm_updated = False |
206
|
|
|
for date, group in grouped_trades_plus_bm: |
207
|
|
|
|
208
|
|
|
for txn in filter(lambda txn: txn.dt == date, txns): |
209
|
|
|
# Process txns for this date. |
210
|
|
|
perf_tracker.process_transaction(txn) |
211
|
|
|
|
212
|
|
|
for event in group: |
213
|
|
|
|
214
|
|
|
if event.type == zp.DATASOURCE_TYPE.TRADE: |
215
|
|
|
perf_tracker.process_trade(event) |
216
|
|
|
elif event.type == zp.DATASOURCE_TYPE.DIVIDEND: |
217
|
|
|
perf_tracker.process_dividend(event) |
218
|
|
|
elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: |
219
|
|
|
perf_tracker.process_benchmark(event) |
220
|
|
|
bm_updated = True |
221
|
|
|
elif event.type == zp.DATASOURCE_TYPE.COMMISSION: |
222
|
|
|
perf_tracker.process_commission(event) |
223
|
|
|
|
224
|
|
|
for split in filter(lambda split: split.dt == date, splits): |
225
|
|
|
# Process splits for this date. |
226
|
|
|
perf_tracker.process_split(split) |
227
|
|
|
|
228
|
|
|
if bm_updated: |
229
|
|
|
msg = perf_tracker.handle_market_close_daily() |
230
|
|
|
msg['account'] = perf_tracker.get_account(True) |
231
|
|
|
results.append(msg) |
232
|
|
|
bm_updated = False |
233
|
|
|
return results |
234
|
|
|
|
235
|
|
|
|
236
|
|
|
def check_perf_tracker_serialization(perf_tracker): |
237
|
|
|
scalar_keys = [ |
238
|
|
|
'emission_rate', |
239
|
|
|
'txn_count', |
240
|
|
|
'market_open', |
241
|
|
|
'last_close', |
242
|
|
|
'_dividend_count', |
243
|
|
|
'period_start', |
244
|
|
|
'day_count', |
245
|
|
|
'capital_base', |
246
|
|
|
'market_close', |
247
|
|
|
'saved_dt', |
248
|
|
|
'period_end', |
249
|
|
|
'total_days', |
250
|
|
|
] |
251
|
|
|
|
252
|
|
|
p_string = dumps_with_persistent_ids(perf_tracker) |
253
|
|
|
|
254
|
|
|
test = loads_with_persistent_ids(p_string, env=perf_tracker.env) |
255
|
|
|
|
256
|
|
|
for k in scalar_keys: |
257
|
|
|
nt.assert_equal(getattr(test, k), getattr(perf_tracker, k), k) |
258
|
|
|
|
259
|
|
|
perf_periods = ( |
260
|
|
|
test.cumulative_performance, |
261
|
|
|
test.todays_performance |
262
|
|
|
) |
263
|
|
|
for period in perf_periods: |
264
|
|
|
nt.assert_true(hasattr(period, '_position_tracker')) |
265
|
|
|
|
266
|
|
|
|
267
|
|
|
class TestSplitPerformance(unittest.TestCase): |
268
|
|
|
def setUp(self): |
269
|
|
|
self.env = TradingEnvironment() |
270
|
|
|
self.env.write_data(equities_identifiers=[1]) |
271
|
|
|
self.sim_params = create_simulation_parameters(num_days=2) |
272
|
|
|
# start with $10,000 |
273
|
|
|
self.sim_params.capital_base = 10e3 |
274
|
|
|
|
275
|
|
|
self.benchmark_events = benchmark_events_in_range(self.sim_params, |
276
|
|
|
self.env) |
277
|
|
|
|
278
|
|
|
def test_split_long_position(self): |
279
|
|
|
events = factory.create_trade_history( |
280
|
|
|
1, |
281
|
|
|
[20, 20], |
282
|
|
|
[100, 100], |
283
|
|
|
oneday, |
284
|
|
|
self.sim_params, |
285
|
|
|
env=self.env |
286
|
|
|
) |
287
|
|
|
|
288
|
|
|
# set up a long position in sid 1 |
289
|
|
|
# 100 shares at $20 apiece = $2000 position |
290
|
|
|
txns = [create_txn(events[0], 20, 100)] |
291
|
|
|
|
292
|
|
|
# set up a split with ratio 3 occurring at the start of the second |
293
|
|
|
# day. |
294
|
|
|
splits = [ |
295
|
|
|
factory.create_split( |
296
|
|
|
1, |
297
|
|
|
3, |
298
|
|
|
events[1].dt, |
299
|
|
|
), |
300
|
|
|
] |
301
|
|
|
|
302
|
|
|
results = calculate_results(self.sim_params, self.env, |
303
|
|
|
self.benchmark_events, |
304
|
|
|
events, txns=txns, splits=splits) |
305
|
|
|
|
306
|
|
|
# should have 33 shares (at $60 apiece) and $20 in cash |
307
|
|
|
self.assertEqual(2, len(results)) |
308
|
|
|
|
309
|
|
|
latest_positions = results[1]['daily_perf']['positions'] |
310
|
|
|
self.assertEqual(1, len(latest_positions)) |
311
|
|
|
|
312
|
|
|
# check the last position to make sure it's been updated |
313
|
|
|
position = latest_positions[0] |
314
|
|
|
|
315
|
|
|
self.assertEqual(1, position['sid']) |
316
|
|
|
self.assertEqual(33, position['amount']) |
317
|
|
|
self.assertEqual(60, position['cost_basis']) |
318
|
|
|
self.assertEqual(60, position['last_sale_price']) |
319
|
|
|
|
320
|
|
|
# since we started with $10000, and we spent $2000 on the |
321
|
|
|
# position, but then got $20 back, we should have $8020 |
322
|
|
|
# (or close to it) in cash. |
323
|
|
|
|
324
|
|
|
# we won't get exactly 8020 because sometimes a split is |
325
|
|
|
# denoted as a ratio like 0.3333, and we lose some digits |
326
|
|
|
# of precision. thus, make sure we're pretty close. |
327
|
|
|
daily_perf = results[1]['daily_perf'] |
328
|
|
|
|
329
|
|
|
self.assertTrue( |
330
|
|
|
zp_math.tolerant_equals(8020, |
331
|
|
|
daily_perf['ending_cash'], 1)) |
332
|
|
|
|
333
|
|
|
# Validate that the account attributes were updated. |
334
|
|
|
account = results[1]['account'] |
335
|
|
|
self.assertEqual(float('inf'), account['day_trades_remaining']) |
336
|
|
|
# this is a long only portfolio that is only partially invested |
337
|
|
|
# so net and gross leverage are equal. |
338
|
|
|
np.testing.assert_allclose(0.198, account['leverage'], rtol=1e-3) |
339
|
|
|
np.testing.assert_allclose(0.198, account['net_leverage'], rtol=1e-3) |
340
|
|
|
np.testing.assert_allclose(8020, account['regt_equity'], rtol=1e-3) |
341
|
|
|
self.assertEqual(float('inf'), account['regt_margin']) |
342
|
|
|
np.testing.assert_allclose(8020, account['available_funds'], rtol=1e-3) |
343
|
|
|
self.assertEqual(0, account['maintenance_margin_requirement']) |
344
|
|
|
np.testing.assert_allclose(10000, |
345
|
|
|
account['equity_with_loan'], rtol=1e-3) |
346
|
|
|
self.assertEqual(float('inf'), account['buying_power']) |
347
|
|
|
self.assertEqual(0, account['initial_margin_requirement']) |
348
|
|
|
np.testing.assert_allclose(8020, account['excess_liquidity'], |
349
|
|
|
rtol=1e-3) |
350
|
|
|
np.testing.assert_allclose(8020, account['settled_cash'], rtol=1e-3) |
351
|
|
|
np.testing.assert_allclose(10000, account['net_liquidation'], |
352
|
|
|
rtol=1e-3) |
353
|
|
|
np.testing.assert_allclose(0.802, account['cushion'], rtol=1e-3) |
354
|
|
|
np.testing.assert_allclose(1980, account['total_positions_value'], |
355
|
|
|
rtol=1e-3) |
356
|
|
|
self.assertEqual(0, account['accrued_interest']) |
357
|
|
|
|
358
|
|
|
for i, result in enumerate(results): |
359
|
|
|
for perf_kind in ('daily_perf', 'cumulative_perf'): |
360
|
|
|
perf_result = result[perf_kind] |
361
|
|
|
# prices aren't changing, so pnl and returns should be 0.0 |
362
|
|
|
self.assertEqual(0.0, perf_result['pnl'], |
363
|
|
|
"day %s %s pnl %s instead of 0.0" % |
364
|
|
|
(i, perf_kind, perf_result['pnl'])) |
365
|
|
|
self.assertEqual(0.0, perf_result['returns'], |
366
|
|
|
"day %s %s returns %s instead of 0.0" % |
367
|
|
|
(i, perf_kind, perf_result['returns'])) |
368
|
|
|
|
369
|
|
|
|
370
|
|
|
class TestCommissionEvents(unittest.TestCase): |
371
|
|
|
|
372
|
|
|
def setUp(self): |
373
|
|
|
self.env = TradingEnvironment() |
374
|
|
|
self.env.write_data( |
375
|
|
|
equities_identifiers=[0, 1, 133] |
376
|
|
|
) |
377
|
|
|
self.sim_params = create_simulation_parameters(num_days=5) |
378
|
|
|
|
379
|
|
|
logger.info("sim_params: %s" % self.sim_params) |
380
|
|
|
|
381
|
|
|
self.sim_params.capital_base = 10e3 |
382
|
|
|
|
383
|
|
|
self.benchmark_events = benchmark_events_in_range(self.sim_params, |
384
|
|
|
self.env) |
385
|
|
|
|
386
|
|
|
def test_commission_event(self): |
387
|
|
|
events = factory.create_trade_history( |
388
|
|
|
1, |
389
|
|
|
[10, 10, 10, 10, 10], |
390
|
|
|
[100, 100, 100, 100, 100], |
391
|
|
|
oneday, |
392
|
|
|
self.sim_params, |
393
|
|
|
env=self.env |
394
|
|
|
) |
395
|
|
|
|
396
|
|
|
# Test commission models and validate result |
397
|
|
|
# Expected commission amounts: |
398
|
|
|
# PerShare commission: 1.00, 1.00, 1.50 = $3.50 |
399
|
|
|
# PerTrade commission: 5.00, 5.00, 5.00 = $15.00 |
400
|
|
|
# PerDollar commission: 1.50, 3.00, 4.50 = $9.00 |
401
|
|
|
# Total commission = $3.50 + $15.00 + $9.00 = $27.50 |
402
|
|
|
|
403
|
|
|
# Create 3 transactions: 50, 100, 150 shares traded @ $20 |
404
|
|
|
transactions = [create_txn(events[0], 20, i) |
405
|
|
|
for i in [50, 100, 150]] |
406
|
|
|
|
407
|
|
|
# Create commission models and validate that produce expected |
408
|
|
|
# commissions. |
409
|
|
|
models = [PerShare(cost=0.01, min_trade_cost=1.00), |
410
|
|
|
PerTrade(cost=5.00), |
411
|
|
|
PerDollar(cost=0.0015)] |
412
|
|
|
expected_results = [3.50, 15.0, 9.0] |
413
|
|
|
|
414
|
|
|
for model, expected in zip(models, expected_results): |
415
|
|
|
total_commission = 0 |
416
|
|
|
for trade in transactions: |
417
|
|
|
total_commission += model.calculate(trade)[1] |
418
|
|
|
self.assertEqual(total_commission, expected) |
419
|
|
|
|
420
|
|
|
# Verify that commission events are handled correctly by |
421
|
|
|
# PerformanceTracker. |
422
|
|
|
cash_adj_dt = events[0].dt |
423
|
|
|
cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) |
424
|
|
|
events.append(cash_adjustment) |
425
|
|
|
|
426
|
|
|
# Insert a purchase order. |
427
|
|
|
txns = [create_txn(events[0], 20, 1)] |
428
|
|
|
results = calculate_results(self.sim_params, |
429
|
|
|
self.env, |
430
|
|
|
self.benchmark_events, |
431
|
|
|
events, |
432
|
|
|
txns=txns) |
433
|
|
|
|
434
|
|
|
# Validate that we lost 320 dollars from our cash pool. |
435
|
|
|
self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], |
436
|
|
|
9680) |
437
|
|
|
# Validate that the cost basis of our position changed. |
438
|
|
|
self.assertEqual(results[-1]['daily_perf']['positions'] |
439
|
|
|
[0]['cost_basis'], 320.0) |
440
|
|
|
# Validate that the account attributes were updated. |
441
|
|
|
account = results[1]['account'] |
442
|
|
|
self.assertEqual(float('inf'), account['day_trades_remaining']) |
443
|
|
|
np.testing.assert_allclose(0.001, account['leverage'], rtol=1e-3, |
444
|
|
|
atol=1e-4) |
445
|
|
|
np.testing.assert_allclose(9680, account['regt_equity'], rtol=1e-3) |
446
|
|
|
self.assertEqual(float('inf'), account['regt_margin']) |
447
|
|
|
np.testing.assert_allclose(9680, account['available_funds'], |
448
|
|
|
rtol=1e-3) |
449
|
|
|
self.assertEqual(0, account['maintenance_margin_requirement']) |
450
|
|
|
np.testing.assert_allclose(9690, |
451
|
|
|
account['equity_with_loan'], rtol=1e-3) |
452
|
|
|
self.assertEqual(float('inf'), account['buying_power']) |
453
|
|
|
self.assertEqual(0, account['initial_margin_requirement']) |
454
|
|
|
np.testing.assert_allclose(9680, account['excess_liquidity'], |
455
|
|
|
rtol=1e-3) |
456
|
|
|
np.testing.assert_allclose(9680, account['settled_cash'], |
457
|
|
|
rtol=1e-3) |
458
|
|
|
np.testing.assert_allclose(9690, account['net_liquidation'], |
459
|
|
|
rtol=1e-3) |
460
|
|
|
np.testing.assert_allclose(0.999, account['cushion'], rtol=1e-3) |
461
|
|
|
np.testing.assert_allclose(10, account['total_positions_value'], |
462
|
|
|
rtol=1e-3) |
463
|
|
|
self.assertEqual(0, account['accrued_interest']) |
464
|
|
|
|
465
|
|
|
def test_commission_zero_position(self): |
466
|
|
|
""" |
467
|
|
|
Ensure no div-by-zero errors. |
468
|
|
|
""" |
469
|
|
|
events = factory.create_trade_history( |
470
|
|
|
1, |
471
|
|
|
[10, 10, 10, 10, 10], |
472
|
|
|
[100, 100, 100, 100, 100], |
473
|
|
|
oneday, |
474
|
|
|
self.sim_params, |
475
|
|
|
env=self.env |
476
|
|
|
) |
477
|
|
|
|
478
|
|
|
# Buy and sell the same sid so that we have a zero position by the |
479
|
|
|
# time of events[3]. |
480
|
|
|
txns = [ |
481
|
|
|
create_txn(events[0], 20, 1), |
482
|
|
|
create_txn(events[1], 20, -1), |
483
|
|
|
] |
484
|
|
|
|
485
|
|
|
# Add a cash adjustment at the time of event[3]. |
486
|
|
|
cash_adj_dt = events[3].dt |
487
|
|
|
cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) |
488
|
|
|
|
489
|
|
|
events.append(cash_adjustment) |
490
|
|
|
|
491
|
|
|
results = calculate_results(self.sim_params, |
492
|
|
|
self.env, |
493
|
|
|
self.benchmark_events, |
494
|
|
|
events, |
495
|
|
|
txns=txns) |
496
|
|
|
# Validate that we lost 300 dollars from our cash pool. |
497
|
|
|
self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], |
498
|
|
|
9700) |
499
|
|
|
|
500
|
|
|
def test_commission_no_position(self): |
501
|
|
|
""" |
502
|
|
|
Ensure no position-not-found or sid-not-found errors. |
503
|
|
|
""" |
504
|
|
|
events = factory.create_trade_history( |
505
|
|
|
1, |
506
|
|
|
[10, 10, 10, 10, 10], |
507
|
|
|
[100, 100, 100, 100, 100], |
508
|
|
|
oneday, |
509
|
|
|
self.sim_params, |
510
|
|
|
env=self.env |
511
|
|
|
) |
512
|
|
|
|
513
|
|
|
# Add a cash adjustment at the time of event[3]. |
514
|
|
|
cash_adj_dt = events[3].dt |
515
|
|
|
cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) |
516
|
|
|
events.append(cash_adjustment) |
517
|
|
|
|
518
|
|
|
results = calculate_results(self.sim_params, |
519
|
|
|
self.env, |
520
|
|
|
self.benchmark_events, |
521
|
|
|
events) |
522
|
|
|
# Validate that we lost 300 dollars from our cash pool. |
523
|
|
|
self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], |
524
|
|
|
9700) |
525
|
|
|
|
526
|
|
|
|
527
|
|
|
class TestDividendPerformance(unittest.TestCase): |
528
|
|
|
|
529
|
|
|
@classmethod |
530
|
|
|
def setUpClass(cls): |
531
|
|
|
cls.env = TradingEnvironment() |
532
|
|
|
cls.env.write_data(equities_identifiers=[1, 2]) |
533
|
|
|
|
534
|
|
|
@classmethod |
535
|
|
|
def tearDownClass(cls): |
536
|
|
|
del cls.env |
537
|
|
|
|
538
|
|
|
def setUp(self): |
539
|
|
|
self.sim_params = create_simulation_parameters(num_days=6) |
540
|
|
|
self.sim_params.capital_base = 10e3 |
541
|
|
|
|
542
|
|
|
self.benchmark_events = benchmark_events_in_range(self.sim_params, |
543
|
|
|
self.env) |
544
|
|
|
|
545
|
|
|
def test_market_hours_calculations(self): |
546
|
|
|
# DST in US/Eastern began on Sunday March 14, 2010 |
547
|
|
|
before = datetime(2010, 3, 12, 14, 31, tzinfo=pytz.utc) |
548
|
|
|
after = factory.get_next_trading_dt( |
549
|
|
|
before, |
550
|
|
|
timedelta(days=1), |
551
|
|
|
self.env, |
552
|
|
|
) |
553
|
|
|
self.assertEqual(after.hour, 13) |
554
|
|
|
|
555
|
|
|
def test_long_position_receives_dividend(self): |
556
|
|
|
# post some trades in the market |
557
|
|
|
events = factory.create_trade_history( |
558
|
|
|
1, |
559
|
|
|
[10, 10, 10, 10, 10], |
560
|
|
|
[100, 100, 100, 100, 100], |
561
|
|
|
oneday, |
562
|
|
|
self.sim_params, |
563
|
|
|
env=self.env |
564
|
|
|
) |
565
|
|
|
dividend = factory.create_dividend( |
566
|
|
|
1, |
567
|
|
|
10.00, |
568
|
|
|
# declared date, when the algorithm finds out about |
569
|
|
|
# the dividend |
570
|
|
|
events[0].dt, |
571
|
|
|
# ex_date, the date before which the algorithm must hold stock |
572
|
|
|
# to receive the dividend |
573
|
|
|
events[1].dt, |
574
|
|
|
# pay date, when the algorithm receives the dividend. |
575
|
|
|
events[2].dt |
576
|
|
|
) |
577
|
|
|
|
578
|
|
|
# Simulate a transaction being filled prior to the ex_date. |
579
|
|
|
txns = [create_txn(events[0], 10.0, 100)] |
580
|
|
|
results = calculate_results( |
581
|
|
|
self.sim_params, |
582
|
|
|
self.env, |
583
|
|
|
self.benchmark_events, |
584
|
|
|
events, |
585
|
|
|
dividend_events=[dividend], |
586
|
|
|
txns=txns, |
587
|
|
|
) |
588
|
|
|
|
589
|
|
|
self.assertEqual(len(results), 5) |
590
|
|
|
cumulative_returns = \ |
591
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
592
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.1, 0.1, 0.1]) |
593
|
|
|
daily_returns = [event['daily_perf']['returns'] |
594
|
|
|
for event in results] |
595
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.10, 0.0, 0.0]) |
596
|
|
|
cash_flows = [event['daily_perf']['capital_used'] |
597
|
|
|
for event in results] |
598
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 1000, 0, 0]) |
599
|
|
|
cumulative_cash_flows = \ |
600
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
601
|
|
|
self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 0, 0]) |
602
|
|
|
cash_pos = \ |
603
|
|
|
[event['cumulative_perf']['ending_cash'] for event in results] |
604
|
|
|
self.assertEqual(cash_pos, [9000, 9000, 10000, 10000, 10000]) |
605
|
|
|
|
606
|
|
|
def test_long_position_receives_stock_dividend(self): |
607
|
|
|
# post some trades in the market |
608
|
|
|
events = [] |
609
|
|
|
for sid in (1, 2): |
610
|
|
|
events.extend( |
611
|
|
|
factory.create_trade_history( |
612
|
|
|
sid, |
613
|
|
|
[10, 10, 10, 10, 10], |
614
|
|
|
[100, 100, 100, 100, 100], |
615
|
|
|
oneday, |
616
|
|
|
self.sim_params, |
617
|
|
|
env=self.env) |
618
|
|
|
) |
619
|
|
|
|
620
|
|
|
dividend = factory.create_stock_dividend( |
621
|
|
|
1, |
622
|
|
|
payment_sid=2, |
623
|
|
|
ratio=2, |
624
|
|
|
# declared date, when the algorithm finds out about |
625
|
|
|
# the dividend |
626
|
|
|
declared_date=events[0].dt, |
627
|
|
|
# ex_date, the date before which the algorithm must hold stock |
628
|
|
|
# to receive the dividend |
629
|
|
|
ex_date=events[1].dt, |
630
|
|
|
# pay date, when the algorithm receives the dividend. |
631
|
|
|
pay_date=events[2].dt |
632
|
|
|
) |
633
|
|
|
|
634
|
|
|
txns = [create_txn(events[0], 10.0, 100)] |
635
|
|
|
|
636
|
|
|
results = calculate_results( |
637
|
|
|
self.sim_params, |
638
|
|
|
self.env, |
639
|
|
|
self.benchmark_events, |
640
|
|
|
events, |
641
|
|
|
dividend_events=[dividend], |
642
|
|
|
txns=txns, |
643
|
|
|
) |
644
|
|
|
|
645
|
|
|
self.assertEqual(len(results), 5) |
646
|
|
|
cumulative_returns = \ |
647
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
648
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.2, 0.2, 0.2]) |
649
|
|
|
daily_returns = [event['daily_perf']['returns'] |
650
|
|
|
for event in results] |
651
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.2, 0.0, 0.0]) |
652
|
|
|
cash_flows = [event['daily_perf']['capital_used'] |
653
|
|
|
for event in results] |
654
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) |
655
|
|
|
cumulative_cash_flows = \ |
656
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
657
|
|
|
self.assertEqual(cumulative_cash_flows, [-1000] * 5) |
658
|
|
|
cash_pos = \ |
659
|
|
|
[event['cumulative_perf']['ending_cash'] for event in results] |
660
|
|
|
self.assertEqual(cash_pos, [9000] * 5) |
661
|
|
|
|
662
|
|
|
def test_long_position_purchased_on_ex_date_receives_no_dividend(self): |
663
|
|
|
# post some trades in the market |
664
|
|
|
events = factory.create_trade_history( |
665
|
|
|
1, |
666
|
|
|
[10, 10, 10, 10, 10], |
667
|
|
|
[100, 100, 100, 100, 100], |
668
|
|
|
oneday, |
669
|
|
|
self.sim_params, |
670
|
|
|
env=self.env |
671
|
|
|
) |
672
|
|
|
|
673
|
|
|
dividend = factory.create_dividend( |
674
|
|
|
1, |
675
|
|
|
10.00, |
676
|
|
|
events[0].dt, # Declared date |
677
|
|
|
events[1].dt, # Exclusion date |
678
|
|
|
events[2].dt # Pay date |
679
|
|
|
) |
680
|
|
|
|
681
|
|
|
# Simulate a transaction being filled on the ex_date. |
682
|
|
|
txns = [create_txn(events[1], 10.0, 100)] |
683
|
|
|
|
684
|
|
|
results = calculate_results( |
685
|
|
|
self.sim_params, |
686
|
|
|
self.env, |
687
|
|
|
self.benchmark_events, |
688
|
|
|
events, |
689
|
|
|
dividend_events=[dividend], |
690
|
|
|
txns=txns, |
691
|
|
|
) |
692
|
|
|
|
693
|
|
|
self.assertEqual(len(results), 5) |
694
|
|
|
cumulative_returns = \ |
695
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
696
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0]) |
697
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
698
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0, 0]) |
699
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
700
|
|
|
self.assertEqual(cash_flows, [0, -1000, 0, 0, 0]) |
701
|
|
|
cumulative_cash_flows = \ |
702
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
703
|
|
|
self.assertEqual(cumulative_cash_flows, |
704
|
|
|
[0, -1000, -1000, -1000, -1000]) |
705
|
|
|
|
706
|
|
|
def test_selling_before_dividend_payment_still_gets_paid(self): |
707
|
|
|
# post some trades in the market |
708
|
|
|
events = factory.create_trade_history( |
709
|
|
|
1, |
710
|
|
|
[10, 10, 10, 10, 10], |
711
|
|
|
[100, 100, 100, 100, 100], |
712
|
|
|
oneday, |
713
|
|
|
self.sim_params, |
714
|
|
|
env=self.env |
715
|
|
|
) |
716
|
|
|
|
717
|
|
|
dividend = factory.create_dividend( |
718
|
|
|
1, |
719
|
|
|
10.00, |
720
|
|
|
events[0].dt, # Declared date |
721
|
|
|
events[1].dt, # Exclusion date |
722
|
|
|
events[3].dt # Pay date |
723
|
|
|
) |
724
|
|
|
|
725
|
|
|
buy_txn = create_txn(events[0], 10.0, 100) |
726
|
|
|
sell_txn = create_txn(events[2], 10.0, -100) |
727
|
|
|
txns = [buy_txn, sell_txn] |
728
|
|
|
|
729
|
|
|
results = calculate_results( |
730
|
|
|
self.sim_params, |
731
|
|
|
self.env, |
732
|
|
|
self.benchmark_events, |
733
|
|
|
events, |
734
|
|
|
dividend_events=[dividend], |
735
|
|
|
txns=txns, |
736
|
|
|
) |
737
|
|
|
|
738
|
|
|
self.assertEqual(len(results), 5) |
739
|
|
|
cumulative_returns = \ |
740
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
741
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0.1, 0.1]) |
742
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
743
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0.1, 0]) |
744
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
745
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 1000, 1000, 0]) |
746
|
|
|
cumulative_cash_flows = \ |
747
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
748
|
|
|
self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 1000, 1000]) |
749
|
|
|
|
750
|
|
|
def test_buy_and_sell_before_ex(self): |
751
|
|
|
# post some trades in the market |
752
|
|
|
events = factory.create_trade_history( |
753
|
|
|
1, |
754
|
|
|
[10, 10, 10, 10, 10, 10], |
755
|
|
|
[100, 100, 100, 100, 100, 100], |
756
|
|
|
oneday, |
757
|
|
|
self.sim_params, |
758
|
|
|
env=self.env |
759
|
|
|
) |
760
|
|
|
|
761
|
|
|
dividend = factory.create_dividend( |
762
|
|
|
1, |
763
|
|
|
10.00, |
764
|
|
|
events[3].dt, |
765
|
|
|
events[4].dt, |
766
|
|
|
events[5].dt |
767
|
|
|
) |
768
|
|
|
|
769
|
|
|
buy_txn = create_txn(events[1], 10.0, 100) |
770
|
|
|
sell_txn = create_txn(events[2], 10.0, -100) |
771
|
|
|
txns = [buy_txn, sell_txn] |
772
|
|
|
|
773
|
|
|
results = calculate_results( |
774
|
|
|
self.sim_params, |
775
|
|
|
self.env, |
776
|
|
|
self.benchmark_events, |
777
|
|
|
events, |
778
|
|
|
dividend_events=[dividend], |
779
|
|
|
txns=txns, |
780
|
|
|
) |
781
|
|
|
|
782
|
|
|
self.assertEqual(len(results), 6) |
783
|
|
|
cumulative_returns = \ |
784
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
785
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0, 0]) |
786
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
787
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0, 0, 0]) |
788
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
789
|
|
|
self.assertEqual(cash_flows, [0, -1000, 1000, 0, 0, 0]) |
790
|
|
|
cumulative_cash_flows = \ |
791
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
792
|
|
|
self.assertEqual(cumulative_cash_flows, [0, -1000, 0, 0, 0, 0]) |
793
|
|
|
|
794
|
|
|
def test_ending_before_pay_date(self): |
795
|
|
|
# post some trades in the market |
796
|
|
|
events = factory.create_trade_history( |
797
|
|
|
1, |
798
|
|
|
[10, 10, 10, 10, 10], |
799
|
|
|
[100, 100, 100, 100, 100], |
800
|
|
|
oneday, |
801
|
|
|
self.sim_params, |
802
|
|
|
env=self.env |
803
|
|
|
) |
804
|
|
|
|
805
|
|
|
pay_date = self.sim_params.first_open |
806
|
|
|
# find pay date that is much later. |
807
|
|
|
for i in range(30): |
808
|
|
|
pay_date = factory.get_next_trading_dt(pay_date, oneday, self.env) |
809
|
|
|
dividend = factory.create_dividend( |
810
|
|
|
1, |
811
|
|
|
10.00, |
812
|
|
|
events[0].dt, |
813
|
|
|
events[0].dt, |
814
|
|
|
pay_date |
815
|
|
|
) |
816
|
|
|
|
817
|
|
|
txns = [create_txn(events[1], 10.0, 100)] |
818
|
|
|
|
819
|
|
|
results = calculate_results( |
820
|
|
|
self.sim_params, |
821
|
|
|
self.env, |
822
|
|
|
self.benchmark_events, |
823
|
|
|
events, |
824
|
|
|
dividend_events=[dividend], |
825
|
|
|
txns=txns, |
826
|
|
|
) |
827
|
|
|
|
828
|
|
|
self.assertEqual(len(results), 5) |
829
|
|
|
cumulative_returns = \ |
830
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
831
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0.0, 0.0]) |
832
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
833
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0, 0]) |
834
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
835
|
|
|
self.assertEqual(cash_flows, [0, -1000, 0, 0, 0]) |
836
|
|
|
cumulative_cash_flows = \ |
837
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
838
|
|
|
self.assertEqual( |
839
|
|
|
cumulative_cash_flows, |
840
|
|
|
[0, -1000, -1000, -1000, -1000] |
841
|
|
|
) |
842
|
|
|
|
843
|
|
|
def test_short_position_pays_dividend(self): |
844
|
|
|
# post some trades in the market |
845
|
|
|
events = factory.create_trade_history( |
846
|
|
|
1, |
847
|
|
|
[10, 10, 10, 10, 10], |
848
|
|
|
[100, 100, 100, 100, 100], |
849
|
|
|
oneday, |
850
|
|
|
self.sim_params, |
851
|
|
|
env=self.env |
852
|
|
|
) |
853
|
|
|
|
854
|
|
|
dividend = factory.create_dividend( |
855
|
|
|
1, |
856
|
|
|
10.00, |
857
|
|
|
# declare at open of test |
858
|
|
|
events[0].dt, |
859
|
|
|
# ex_date same as trade 2 |
860
|
|
|
events[2].dt, |
861
|
|
|
events[3].dt |
862
|
|
|
) |
863
|
|
|
|
864
|
|
|
txns = [create_txn(events[1], 10.0, -100)] |
865
|
|
|
|
866
|
|
|
results = calculate_results( |
867
|
|
|
self.sim_params, |
868
|
|
|
self.env, |
869
|
|
|
self.benchmark_events, |
870
|
|
|
events, |
871
|
|
|
dividend_events=[dividend], |
872
|
|
|
txns=txns, |
873
|
|
|
) |
874
|
|
|
|
875
|
|
|
self.assertEqual(len(results), 5) |
876
|
|
|
cumulative_returns = \ |
877
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
878
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, -0.1, -0.1]) |
879
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
880
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.0, -0.1, 0.0]) |
881
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
882
|
|
|
self.assertEqual(cash_flows, [0, 1000, 0, -1000, 0]) |
883
|
|
|
cumulative_cash_flows = \ |
884
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
885
|
|
|
self.assertEqual(cumulative_cash_flows, [0, 1000, 1000, 0, 0]) |
886
|
|
|
|
887
|
|
|
def test_no_position_receives_no_dividend(self): |
888
|
|
|
# post some trades in the market |
889
|
|
|
events = factory.create_trade_history( |
890
|
|
|
1, |
891
|
|
|
[10, 10, 10, 10, 10], |
892
|
|
|
[100, 100, 100, 100, 100], |
893
|
|
|
oneday, |
894
|
|
|
self.sim_params, |
895
|
|
|
env=self.env |
896
|
|
|
) |
897
|
|
|
|
898
|
|
|
dividend = factory.create_dividend( |
899
|
|
|
1, |
900
|
|
|
10.00, |
901
|
|
|
events[0].dt, |
902
|
|
|
events[1].dt, |
903
|
|
|
events[2].dt |
904
|
|
|
) |
905
|
|
|
|
906
|
|
|
results = calculate_results( |
907
|
|
|
self.sim_params, |
908
|
|
|
self.env, |
909
|
|
|
self.benchmark_events, |
910
|
|
|
events, |
911
|
|
|
dividend_events=[dividend], |
912
|
|
|
) |
913
|
|
|
|
914
|
|
|
self.assertEqual(len(results), 5) |
915
|
|
|
cumulative_returns = \ |
916
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
917
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) |
918
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
919
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) |
920
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
921
|
|
|
self.assertEqual(cash_flows, [0, 0, 0, 0, 0]) |
922
|
|
|
cumulative_cash_flows = \ |
923
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
924
|
|
|
self.assertEqual(cumulative_cash_flows, [0, 0, 0, 0, 0]) |
925
|
|
|
|
926
|
|
|
def test_no_dividend_at_simulation_end(self): |
927
|
|
|
# post some trades in the market |
928
|
|
|
events = factory.create_trade_history( |
929
|
|
|
1, |
930
|
|
|
[10, 10, 10, 10, 10], |
931
|
|
|
[100, 100, 100, 100, 100], |
932
|
|
|
oneday, |
933
|
|
|
self.sim_params, |
934
|
|
|
env=self.env |
935
|
|
|
) |
936
|
|
|
dividend = factory.create_dividend( |
937
|
|
|
1, |
938
|
|
|
10.00, |
939
|
|
|
# declared date, when the algorithm finds out about |
940
|
|
|
# the dividend |
941
|
|
|
events[-3].dt, |
942
|
|
|
# ex_date, the date before which the algorithm must hold stock |
943
|
|
|
# to receive the dividend |
944
|
|
|
events[-2].dt, |
945
|
|
|
# pay date, when the algorithm receives the dividend. |
946
|
|
|
# This pays out on the day after the last event |
947
|
|
|
self.env.next_trading_day(events[-1].dt) |
948
|
|
|
) |
949
|
|
|
|
950
|
|
|
# Set the last day to be the last event |
951
|
|
|
self.sim_params.period_end = events[-1].dt |
952
|
|
|
self.sim_params.update_internal_from_env(self.env) |
953
|
|
|
|
954
|
|
|
# Simulate a transaction being filled prior to the ex_date. |
955
|
|
|
txns = [create_txn(events[0], 10.0, 100)] |
956
|
|
|
results = calculate_results( |
957
|
|
|
self.sim_params, |
958
|
|
|
self.env, |
959
|
|
|
self.benchmark_events, |
960
|
|
|
events, |
961
|
|
|
dividend_events=[dividend], |
962
|
|
|
txns=txns, |
963
|
|
|
) |
964
|
|
|
|
965
|
|
|
self.assertEqual(len(results), 5) |
966
|
|
|
cumulative_returns = \ |
967
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
968
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) |
969
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
970
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) |
971
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
972
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) |
973
|
|
|
cumulative_cash_flows = \ |
974
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
975
|
|
|
self.assertEqual(cumulative_cash_flows, |
976
|
|
|
[-1000, -1000, -1000, -1000, -1000]) |
977
|
|
|
|
978
|
|
|
|
979
|
|
|
class TestDividendPerformanceHolidayStyle(TestDividendPerformance): |
980
|
|
|
|
981
|
|
|
# The holiday tests begins the simulation on the day |
982
|
|
|
# before Thanksgiving, so that the next trading day is |
983
|
|
|
# two days ahead. Any tests that hard code events |
984
|
|
|
# to be start + oneday will fail, since those events will |
985
|
|
|
# be skipped by the simulation. |
986
|
|
|
|
987
|
|
|
def setUp(self): |
988
|
|
|
self.dt = datetime(2003, 11, 30, tzinfo=pytz.utc) |
989
|
|
|
self.end_dt = datetime(2004, 11, 25, tzinfo=pytz.utc) |
990
|
|
|
self.sim_params = SimulationParameters( |
991
|
|
|
self.dt, |
992
|
|
|
self.end_dt, |
993
|
|
|
env=self.env) |
994
|
|
|
|
995
|
|
|
self.sim_params.capital_base = 10e3 |
996
|
|
|
|
997
|
|
|
self.benchmark_events = benchmark_events_in_range(self.sim_params, |
998
|
|
|
self.env) |
999
|
|
|
|
1000
|
|
|
|
1001
|
|
|
class TestPositionPerformance(unittest.TestCase): |
1002
|
|
|
|
1003
|
|
|
@classmethod |
1004
|
|
|
def setUpClass(cls): |
1005
|
|
|
cls.env = TradingEnvironment() |
1006
|
|
|
cls.env.write_data(equities_identifiers=[1, 2]) |
1007
|
|
|
|
1008
|
|
|
@classmethod |
1009
|
|
|
def tearDownClass(cls): |
1010
|
|
|
del cls.env |
1011
|
|
|
|
1012
|
|
|
def setUp(self): |
1013
|
|
|
self.sim_params = create_simulation_parameters(num_days=4) |
1014
|
|
|
|
1015
|
|
|
self.finder = self.env.asset_finder |
1016
|
|
|
self.benchmark_events = benchmark_events_in_range(self.sim_params, |
1017
|
|
|
self.env) |
1018
|
|
|
|
1019
|
|
|
def test_long_short_positions(self): |
1020
|
|
|
""" |
1021
|
|
|
start with $1000 |
1022
|
|
|
buy 100 stock1 shares at $10 |
1023
|
|
|
sell short 100 stock2 shares at $10 |
1024
|
|
|
stock1 then goes down to $9 |
1025
|
|
|
stock2 goes to $11 |
1026
|
|
|
""" |
1027
|
|
|
|
1028
|
|
|
trades_1 = factory.create_trade_history( |
1029
|
|
|
1, |
1030
|
|
|
[10, 10, 10, 9], |
1031
|
|
|
[100, 100, 100, 100], |
1032
|
|
|
onesec, |
1033
|
|
|
self.sim_params, |
1034
|
|
|
env=self.env |
1035
|
|
|
) |
1036
|
|
|
|
1037
|
|
|
trades_2 = factory.create_trade_history( |
1038
|
|
|
2, |
1039
|
|
|
[10, 10, 10, 11], |
1040
|
|
|
[100, 100, 100, 100], |
1041
|
|
|
onesec, |
1042
|
|
|
self.sim_params, |
1043
|
|
|
env=self.env |
1044
|
|
|
) |
1045
|
|
|
|
1046
|
|
|
txn1 = create_txn(trades_1[1], 10.0, 100) |
1047
|
|
|
txn2 = create_txn(trades_2[1], 10.0, -100) |
1048
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1049
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1050
|
|
|
pp.position_tracker = pt |
1051
|
|
|
pt.execute_transaction(txn1) |
1052
|
|
|
pp.handle_execution(txn1) |
1053
|
|
|
pt.execute_transaction(txn2) |
1054
|
|
|
pp.handle_execution(txn2) |
1055
|
|
|
|
1056
|
|
|
for trade in itertools.chain(trades_1[:-2], trades_2[:-2]): |
1057
|
|
|
pt.update_last_sale(trade) |
1058
|
|
|
|
1059
|
|
|
pp.calculate_performance() |
1060
|
|
|
|
1061
|
|
|
check_perf_period( |
1062
|
|
|
pp, |
1063
|
|
|
gross_leverage=2.0, |
1064
|
|
|
net_leverage=0.0, |
1065
|
|
|
long_exposure=1000.0, |
1066
|
|
|
longs_count=1, |
1067
|
|
|
short_exposure=-1000.0, |
1068
|
|
|
shorts_count=1) |
1069
|
|
|
# Validate that the account attributes were updated. |
1070
|
|
|
account = pp.as_account() |
1071
|
|
|
check_account(account, |
1072
|
|
|
settled_cash=1000.0, |
1073
|
|
|
equity_with_loan=1000.0, |
1074
|
|
|
total_positions_value=0.0, |
1075
|
|
|
regt_equity=1000.0, |
1076
|
|
|
available_funds=1000.0, |
1077
|
|
|
excess_liquidity=1000.0, |
1078
|
|
|
cushion=1.0, |
1079
|
|
|
leverage=2.0, |
1080
|
|
|
net_leverage=0.0, |
1081
|
|
|
net_liquidation=1000.0) |
1082
|
|
|
|
1083
|
|
|
# now simulate stock1 going to $9 |
1084
|
|
|
pt.update_last_sale(trades_1[-1]) |
1085
|
|
|
# and stock2 going to $11 |
1086
|
|
|
pt.update_last_sale(trades_2[-1]) |
1087
|
|
|
|
1088
|
|
|
pp.calculate_performance() |
1089
|
|
|
|
1090
|
|
|
# Validate that the account attributes were updated. |
1091
|
|
|
account = pp.as_account() |
1092
|
|
|
|
1093
|
|
|
check_perf_period( |
1094
|
|
|
pp, |
1095
|
|
|
gross_leverage=2.5, |
1096
|
|
|
net_leverage=-0.25, |
1097
|
|
|
long_exposure=900.0, |
1098
|
|
|
longs_count=1, |
1099
|
|
|
short_exposure=-1100.0, |
1100
|
|
|
shorts_count=1) |
1101
|
|
|
|
1102
|
|
|
check_account(account, |
1103
|
|
|
settled_cash=1000.0, |
1104
|
|
|
equity_with_loan=800.0, |
1105
|
|
|
total_positions_value=-200.0, |
1106
|
|
|
regt_equity=1000.0, |
1107
|
|
|
available_funds=1000.0, |
1108
|
|
|
excess_liquidity=1000.0, |
1109
|
|
|
cushion=1.25, |
1110
|
|
|
leverage=2.5, |
1111
|
|
|
net_leverage=-0.25, |
1112
|
|
|
net_liquidation=800.0) |
1113
|
|
|
|
1114
|
|
|
def test_levered_long_position(self): |
1115
|
|
|
""" |
1116
|
|
|
start with $1,000, then buy 1000 shares at $10. |
1117
|
|
|
price goes to $11 |
1118
|
|
|
""" |
1119
|
|
|
# post some trades in the market |
1120
|
|
|
trades = factory.create_trade_history( |
1121
|
|
|
1, |
1122
|
|
|
[10, 10, 10, 11], |
1123
|
|
|
[100, 100, 100, 100], |
1124
|
|
|
onesec, |
1125
|
|
|
self.sim_params, |
1126
|
|
|
env=self.env |
1127
|
|
|
) |
1128
|
|
|
|
1129
|
|
|
txn = create_txn(trades[1], 10.0, 1000) |
1130
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1131
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1132
|
|
|
pp.position_tracker = pt |
1133
|
|
|
|
1134
|
|
|
pt.execute_transaction(txn) |
1135
|
|
|
pp.handle_execution(txn) |
1136
|
|
|
|
1137
|
|
|
for trade in trades[:-2]: |
1138
|
|
|
pt.update_last_sale(trade) |
1139
|
|
|
|
1140
|
|
|
pp.calculate_performance() |
1141
|
|
|
|
1142
|
|
|
check_perf_period( |
1143
|
|
|
pp, |
1144
|
|
|
gross_leverage=10.0, |
1145
|
|
|
net_leverage=10.0, |
1146
|
|
|
long_exposure=10000.0, |
1147
|
|
|
longs_count=1, |
1148
|
|
|
short_exposure=0.0, |
1149
|
|
|
shorts_count=0) |
1150
|
|
|
|
1151
|
|
|
# Validate that the account attributes were updated. |
1152
|
|
|
account = pp.as_account() |
1153
|
|
|
check_account(account, |
1154
|
|
|
settled_cash=-9000.0, |
1155
|
|
|
equity_with_loan=1000.0, |
1156
|
|
|
total_positions_value=10000.0, |
1157
|
|
|
regt_equity=-9000.0, |
1158
|
|
|
available_funds=-9000.0, |
1159
|
|
|
excess_liquidity=-9000.0, |
1160
|
|
|
cushion=-9.0, |
1161
|
|
|
leverage=10.0, |
1162
|
|
|
net_leverage=10.0, |
1163
|
|
|
net_liquidation=1000.0) |
1164
|
|
|
|
1165
|
|
|
# now simulate a price jump to $11 |
1166
|
|
|
pt.update_last_sale(trades[-1]) |
1167
|
|
|
|
1168
|
|
|
pp.calculate_performance() |
1169
|
|
|
|
1170
|
|
|
check_perf_period( |
1171
|
|
|
pp, |
1172
|
|
|
gross_leverage=5.5, |
1173
|
|
|
net_leverage=5.5, |
1174
|
|
|
long_exposure=11000.0, |
1175
|
|
|
longs_count=1, |
1176
|
|
|
short_exposure=0.0, |
1177
|
|
|
shorts_count=0) |
1178
|
|
|
|
1179
|
|
|
# Validate that the account attributes were updated. |
1180
|
|
|
account = pp.as_account() |
1181
|
|
|
|
1182
|
|
|
check_account(account, |
1183
|
|
|
settled_cash=-9000.0, |
1184
|
|
|
equity_with_loan=2000.0, |
1185
|
|
|
total_positions_value=11000.0, |
1186
|
|
|
regt_equity=-9000.0, |
1187
|
|
|
available_funds=-9000.0, |
1188
|
|
|
excess_liquidity=-9000.0, |
1189
|
|
|
cushion=-4.5, |
1190
|
|
|
leverage=5.5, |
1191
|
|
|
net_leverage=5.5, |
1192
|
|
|
net_liquidation=2000.0) |
1193
|
|
|
|
1194
|
|
|
def test_long_position(self): |
1195
|
|
|
""" |
1196
|
|
|
verify that the performance period calculates properly for a |
1197
|
|
|
single buy transaction |
1198
|
|
|
""" |
1199
|
|
|
# post some trades in the market |
1200
|
|
|
trades = factory.create_trade_history( |
1201
|
|
|
1, |
1202
|
|
|
[10, 10, 10, 11], |
1203
|
|
|
[100, 100, 100, 100], |
1204
|
|
|
onesec, |
1205
|
|
|
self.sim_params, |
1206
|
|
|
env=self.env |
1207
|
|
|
) |
1208
|
|
|
|
1209
|
|
|
txn = create_txn(trades[1], 10.0, 100) |
1210
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1211
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1212
|
|
|
pp.position_tracker = pt |
1213
|
|
|
|
1214
|
|
|
pt.execute_transaction(txn) |
1215
|
|
|
pp.handle_execution(txn) |
1216
|
|
|
|
1217
|
|
|
# This verifies that the last sale price is being correctly |
1218
|
|
|
# set in the positions. If this is not the case then returns can |
1219
|
|
|
# incorrectly show as sharply dipping if a transaction arrives |
1220
|
|
|
# before a trade. This is caused by returns being based on holding |
1221
|
|
|
# stocks with a last sale price of 0. |
1222
|
|
|
self.assertEqual(pp.positions[1].last_sale_price, 10.0) |
1223
|
|
|
|
1224
|
|
|
for trade in trades: |
1225
|
|
|
pt.update_last_sale(trade) |
1226
|
|
|
|
1227
|
|
|
pp.calculate_performance() |
1228
|
|
|
|
1229
|
|
|
self.assertEqual( |
1230
|
|
|
pp.period_cash_flow, |
1231
|
|
|
-1 * txn.price * txn.amount, |
1232
|
|
|
"capital used should be equal to the opposite of the transaction \ |
1233
|
|
|
cost of sole txn in test" |
1234
|
|
|
) |
1235
|
|
|
|
1236
|
|
|
self.assertEqual( |
1237
|
|
|
len(pp.positions), |
1238
|
|
|
1, |
1239
|
|
|
"should be just one position") |
1240
|
|
|
|
1241
|
|
|
self.assertEqual( |
1242
|
|
|
pp.positions[1].sid, |
1243
|
|
|
txn.sid, |
1244
|
|
|
"position should be in security with id 1") |
1245
|
|
|
|
1246
|
|
|
self.assertEqual( |
1247
|
|
|
pp.positions[1].amount, |
1248
|
|
|
txn.amount, |
1249
|
|
|
"should have a position of {sharecount} shares".format( |
1250
|
|
|
sharecount=txn.amount |
1251
|
|
|
) |
1252
|
|
|
) |
1253
|
|
|
|
1254
|
|
|
self.assertEqual( |
1255
|
|
|
pp.positions[1].cost_basis, |
1256
|
|
|
txn.price, |
1257
|
|
|
"should have a cost basis of 10" |
1258
|
|
|
) |
1259
|
|
|
|
1260
|
|
|
self.assertEqual( |
1261
|
|
|
pp.positions[1].last_sale_price, |
1262
|
|
|
trades[-1]['price'], |
1263
|
|
|
"last sale should be same as last trade. \ |
1264
|
|
|
expected {exp} actual {act}".format( |
1265
|
|
|
exp=trades[-1]['price'], |
1266
|
|
|
act=pp.positions[1].last_sale_price) |
1267
|
|
|
) |
1268
|
|
|
|
1269
|
|
|
self.assertEqual( |
1270
|
|
|
pp.ending_value, |
1271
|
|
|
1100, |
1272
|
|
|
"ending value should be price of last trade times number of \ |
1273
|
|
|
shares in position" |
1274
|
|
|
) |
1275
|
|
|
|
1276
|
|
|
self.assertEqual(pp.pnl, 100, "gain of 1 on 100 shares should be 100") |
1277
|
|
|
|
1278
|
|
|
check_perf_period( |
1279
|
|
|
pp, |
1280
|
|
|
gross_leverage=1.0, |
1281
|
|
|
net_leverage=1.0, |
1282
|
|
|
long_exposure=1100.0, |
1283
|
|
|
longs_count=1, |
1284
|
|
|
short_exposure=0.0, |
1285
|
|
|
shorts_count=0) |
1286
|
|
|
|
1287
|
|
|
# Validate that the account attributes were updated. |
1288
|
|
|
account = pp.as_account() |
1289
|
|
|
check_account(account, |
1290
|
|
|
settled_cash=0.0, |
1291
|
|
|
equity_with_loan=1100.0, |
1292
|
|
|
total_positions_value=1100.0, |
1293
|
|
|
regt_equity=0.0, |
1294
|
|
|
available_funds=0.0, |
1295
|
|
|
excess_liquidity=0.0, |
1296
|
|
|
cushion=0.0, |
1297
|
|
|
leverage=1.0, |
1298
|
|
|
net_leverage=1.0, |
1299
|
|
|
net_liquidation=1100.0) |
1300
|
|
|
|
1301
|
|
|
def test_short_position(self): |
1302
|
|
|
"""verify that the performance period calculates properly for a \ |
1303
|
|
|
single short-sale transaction""" |
1304
|
|
|
trades = factory.create_trade_history( |
1305
|
|
|
1, |
1306
|
|
|
[10, 10, 10, 11, 10, 9], |
1307
|
|
|
[100, 100, 100, 100, 100, 100], |
1308
|
|
|
onesec, |
1309
|
|
|
self.sim_params, |
1310
|
|
|
env=self.env |
1311
|
|
|
) |
1312
|
|
|
|
1313
|
|
|
trades_1 = trades[:-2] |
1314
|
|
|
|
1315
|
|
|
txn = create_txn(trades[1], 10.0, -100) |
1316
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1317
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1318
|
|
|
pp.position_tracker = pt |
1319
|
|
|
|
1320
|
|
|
pt.execute_transaction(txn) |
1321
|
|
|
pp.handle_execution(txn) |
1322
|
|
|
for trade in trades_1: |
1323
|
|
|
pt.update_last_sale(trade) |
1324
|
|
|
|
1325
|
|
|
pp.calculate_performance() |
1326
|
|
|
|
1327
|
|
|
self.assertEqual( |
1328
|
|
|
pp.period_cash_flow, |
1329
|
|
|
-1 * txn.price * txn.amount, |
1330
|
|
|
"capital used should be equal to the opposite of the transaction\ |
1331
|
|
|
cost of sole txn in test" |
1332
|
|
|
) |
1333
|
|
|
|
1334
|
|
|
self.assertEqual( |
1335
|
|
|
len(pp.positions), |
1336
|
|
|
1, |
1337
|
|
|
"should be just one position") |
1338
|
|
|
|
1339
|
|
|
self.assertEqual( |
1340
|
|
|
pp.positions[1].sid, |
1341
|
|
|
txn.sid, |
1342
|
|
|
"position should be in security from the transaction" |
1343
|
|
|
) |
1344
|
|
|
|
1345
|
|
|
self.assertEqual( |
1346
|
|
|
pp.positions[1].amount, |
1347
|
|
|
-100, |
1348
|
|
|
"should have a position of -100 shares" |
1349
|
|
|
) |
1350
|
|
|
|
1351
|
|
|
self.assertEqual( |
1352
|
|
|
pp.positions[1].cost_basis, |
1353
|
|
|
txn.price, |
1354
|
|
|
"should have a cost basis of 10" |
1355
|
|
|
) |
1356
|
|
|
|
1357
|
|
|
self.assertEqual( |
1358
|
|
|
pp.positions[1].last_sale_price, |
1359
|
|
|
trades_1[-1]['price'], |
1360
|
|
|
"last sale should be price of last trade" |
1361
|
|
|
) |
1362
|
|
|
|
1363
|
|
|
self.assertEqual( |
1364
|
|
|
pp.ending_value, |
1365
|
|
|
-1100, |
1366
|
|
|
"ending value should be price of last trade times number of \ |
1367
|
|
|
shares in position" |
1368
|
|
|
) |
1369
|
|
|
|
1370
|
|
|
self.assertEqual(pp.pnl, -100, "gain of 1 on 100 shares should be 100") |
1371
|
|
|
|
1372
|
|
|
# simulate additional trades, and ensure that the position value |
1373
|
|
|
# reflects the new price |
1374
|
|
|
trades_2 = trades[-2:] |
1375
|
|
|
|
1376
|
|
|
# simulate a rollover to a new period |
1377
|
|
|
pp.rollover() |
1378
|
|
|
|
1379
|
|
|
for trade in trades_2: |
1380
|
|
|
pt.update_last_sale(trade) |
1381
|
|
|
|
1382
|
|
|
pp.calculate_performance() |
1383
|
|
|
|
1384
|
|
|
self.assertEqual( |
1385
|
|
|
pp.period_cash_flow, |
1386
|
|
|
0, |
1387
|
|
|
"capital used should be zero, there were no transactions in \ |
1388
|
|
|
performance period" |
1389
|
|
|
) |
1390
|
|
|
|
1391
|
|
|
self.assertEqual( |
1392
|
|
|
len(pp.positions), |
1393
|
|
|
1, |
1394
|
|
|
"should be just one position" |
1395
|
|
|
) |
1396
|
|
|
|
1397
|
|
|
self.assertEqual( |
1398
|
|
|
pp.positions[1].sid, |
1399
|
|
|
txn.sid, |
1400
|
|
|
"position should be in security from the transaction" |
1401
|
|
|
) |
1402
|
|
|
|
1403
|
|
|
self.assertEqual( |
1404
|
|
|
pp.positions[1].amount, |
1405
|
|
|
-100, |
1406
|
|
|
"should have a position of -100 shares" |
1407
|
|
|
) |
1408
|
|
|
|
1409
|
|
|
self.assertEqual( |
1410
|
|
|
pp.positions[1].cost_basis, |
1411
|
|
|
txn.price, |
1412
|
|
|
"should have a cost basis of 10" |
1413
|
|
|
) |
1414
|
|
|
|
1415
|
|
|
self.assertEqual( |
1416
|
|
|
pp.positions[1].last_sale_price, |
1417
|
|
|
trades_2[-1].price, |
1418
|
|
|
"last sale should be price of last trade" |
1419
|
|
|
) |
1420
|
|
|
|
1421
|
|
|
self.assertEqual( |
1422
|
|
|
pp.ending_value, |
1423
|
|
|
-900, |
1424
|
|
|
"ending value should be price of last trade times number of \ |
1425
|
|
|
shares in position") |
1426
|
|
|
|
1427
|
|
|
self.assertEqual( |
1428
|
|
|
pp.pnl, |
1429
|
|
|
200, |
1430
|
|
|
"drop of 2 on -100 shares should be 200" |
1431
|
|
|
) |
1432
|
|
|
|
1433
|
|
|
# now run a performance period encompassing the entire trade sample. |
1434
|
|
|
ptTotal = perf.PositionTracker(self.env.asset_finder) |
1435
|
|
|
ppTotal = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1436
|
|
|
ppTotal.position_tracker = pt |
1437
|
|
|
|
1438
|
|
|
for trade in trades_1: |
1439
|
|
|
ptTotal.update_last_sale(trade) |
1440
|
|
|
|
1441
|
|
|
ptTotal.execute_transaction(txn) |
1442
|
|
|
ppTotal.handle_execution(txn) |
1443
|
|
|
|
1444
|
|
|
for trade in trades_2: |
1445
|
|
|
ptTotal.update_last_sale(trade) |
1446
|
|
|
|
1447
|
|
|
ppTotal.calculate_performance() |
1448
|
|
|
|
1449
|
|
|
self.assertEqual( |
1450
|
|
|
ppTotal.period_cash_flow, |
1451
|
|
|
-1 * txn.price * txn.amount, |
1452
|
|
|
"capital used should be equal to the opposite of the transaction \ |
1453
|
|
|
cost of sole txn in test" |
1454
|
|
|
) |
1455
|
|
|
|
1456
|
|
|
self.assertEqual( |
1457
|
|
|
len(ppTotal.positions), |
1458
|
|
|
1, |
1459
|
|
|
"should be just one position" |
1460
|
|
|
) |
1461
|
|
|
self.assertEqual( |
1462
|
|
|
ppTotal.positions[1].sid, |
1463
|
|
|
txn.sid, |
1464
|
|
|
"position should be in security from the transaction" |
1465
|
|
|
) |
1466
|
|
|
|
1467
|
|
|
self.assertEqual( |
1468
|
|
|
ppTotal.positions[1].amount, |
1469
|
|
|
-100, |
1470
|
|
|
"should have a position of -100 shares" |
1471
|
|
|
) |
1472
|
|
|
|
1473
|
|
|
self.assertEqual( |
1474
|
|
|
ppTotal.positions[1].cost_basis, |
1475
|
|
|
txn.price, |
1476
|
|
|
"should have a cost basis of 10" |
1477
|
|
|
) |
1478
|
|
|
|
1479
|
|
|
self.assertEqual( |
1480
|
|
|
ppTotal.positions[1].last_sale_price, |
1481
|
|
|
trades_2[-1].price, |
1482
|
|
|
"last sale should be price of last trade" |
1483
|
|
|
) |
1484
|
|
|
|
1485
|
|
|
self.assertEqual( |
1486
|
|
|
ppTotal.ending_value, |
1487
|
|
|
-900, |
1488
|
|
|
"ending value should be price of last trade times number of \ |
1489
|
|
|
shares in position") |
1490
|
|
|
|
1491
|
|
|
self.assertEqual( |
1492
|
|
|
ppTotal.pnl, |
1493
|
|
|
100, |
1494
|
|
|
"drop of 1 on -100 shares should be 100" |
1495
|
|
|
) |
1496
|
|
|
|
1497
|
|
|
check_perf_period( |
1498
|
|
|
pp, |
1499
|
|
|
gross_leverage=0.8181, |
1500
|
|
|
net_leverage=-0.8181, |
1501
|
|
|
long_exposure=0.0, |
1502
|
|
|
longs_count=0, |
1503
|
|
|
short_exposure=-900.0, |
1504
|
|
|
shorts_count=1) |
1505
|
|
|
|
1506
|
|
|
# Validate that the account attributes. |
1507
|
|
|
account = ppTotal.as_account() |
1508
|
|
|
check_account(account, |
1509
|
|
|
settled_cash=2000.0, |
1510
|
|
|
equity_with_loan=1100.0, |
1511
|
|
|
total_positions_value=-900.0, |
1512
|
|
|
regt_equity=2000.0, |
1513
|
|
|
available_funds=2000.0, |
1514
|
|
|
excess_liquidity=2000.0, |
1515
|
|
|
cushion=1.8181, |
1516
|
|
|
leverage=0.8181, |
1517
|
|
|
net_leverage=-0.8181, |
1518
|
|
|
net_liquidation=1100.0) |
1519
|
|
|
|
1520
|
|
|
def test_covering_short(self): |
1521
|
|
|
"""verify performance where short is bought and covered, and shares \ |
1522
|
|
|
trade after cover""" |
1523
|
|
|
|
1524
|
|
|
trades = factory.create_trade_history( |
1525
|
|
|
1, |
1526
|
|
|
[10, 10, 10, 11, 9, 8, 7, 8, 9, 10], |
1527
|
|
|
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100], |
1528
|
|
|
onesec, |
1529
|
|
|
self.sim_params, |
1530
|
|
|
env=self.env |
1531
|
|
|
) |
1532
|
|
|
|
1533
|
|
|
short_txn = create_txn( |
1534
|
|
|
trades[1], |
1535
|
|
|
10.0, |
1536
|
|
|
-100, |
1537
|
|
|
) |
1538
|
|
|
|
1539
|
|
|
cover_txn = create_txn(trades[6], 7.0, 100) |
1540
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1541
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1542
|
|
|
pp.position_tracker = pt |
1543
|
|
|
|
1544
|
|
|
pt.execute_transaction(short_txn) |
1545
|
|
|
pp.handle_execution(short_txn) |
1546
|
|
|
pt.execute_transaction(cover_txn) |
1547
|
|
|
pp.handle_execution(cover_txn) |
1548
|
|
|
|
1549
|
|
|
for trade in trades: |
1550
|
|
|
pt.update_last_sale(trade) |
1551
|
|
|
|
1552
|
|
|
pp.calculate_performance() |
1553
|
|
|
|
1554
|
|
|
short_txn_cost = short_txn.price * short_txn.amount |
1555
|
|
|
cover_txn_cost = cover_txn.price * cover_txn.amount |
1556
|
|
|
|
1557
|
|
|
self.assertEqual( |
1558
|
|
|
pp.period_cash_flow, |
1559
|
|
|
-1 * short_txn_cost - cover_txn_cost, |
1560
|
|
|
"capital used should be equal to the net transaction costs" |
1561
|
|
|
) |
1562
|
|
|
|
1563
|
|
|
self.assertEqual( |
1564
|
|
|
len(pp.positions), |
1565
|
|
|
1, |
1566
|
|
|
"should be just one position" |
1567
|
|
|
) |
1568
|
|
|
|
1569
|
|
|
self.assertEqual( |
1570
|
|
|
pp.positions[1].sid, |
1571
|
|
|
short_txn.sid, |
1572
|
|
|
"position should be in security from the transaction" |
1573
|
|
|
) |
1574
|
|
|
|
1575
|
|
|
self.assertEqual( |
1576
|
|
|
pp.positions[1].amount, |
1577
|
|
|
0, |
1578
|
|
|
"should have a position of -100 shares" |
1579
|
|
|
) |
1580
|
|
|
|
1581
|
|
|
self.assertEqual( |
1582
|
|
|
pp.positions[1].cost_basis, |
1583
|
|
|
0, |
1584
|
|
|
"a covered position should have a cost basis of 0" |
1585
|
|
|
) |
1586
|
|
|
|
1587
|
|
|
self.assertEqual( |
1588
|
|
|
pp.positions[1].last_sale_price, |
1589
|
|
|
trades[-1].price, |
1590
|
|
|
"last sale should be price of last trade" |
1591
|
|
|
) |
1592
|
|
|
|
1593
|
|
|
self.assertEqual( |
1594
|
|
|
pp.ending_value, |
1595
|
|
|
0, |
1596
|
|
|
"ending value should be price of last trade times number of \ |
1597
|
|
|
shares in position" |
1598
|
|
|
) |
1599
|
|
|
|
1600
|
|
|
self.assertEqual( |
1601
|
|
|
pp.pnl, |
1602
|
|
|
300, |
1603
|
|
|
"gain of 1 on 100 shares should be 300" |
1604
|
|
|
) |
1605
|
|
|
|
1606
|
|
|
check_perf_period( |
1607
|
|
|
pp, |
1608
|
|
|
gross_leverage=0.0, |
1609
|
|
|
net_leverage=0.0, |
1610
|
|
|
long_exposure=0.0, |
1611
|
|
|
longs_count=0, |
1612
|
|
|
short_exposure=0.0, |
1613
|
|
|
shorts_count=0) |
1614
|
|
|
|
1615
|
|
|
account = pp.as_account() |
1616
|
|
|
check_account(account, |
1617
|
|
|
settled_cash=1300.0, |
1618
|
|
|
equity_with_loan=1300.0, |
1619
|
|
|
total_positions_value=0.0, |
1620
|
|
|
regt_equity=1300.0, |
1621
|
|
|
available_funds=1300.0, |
1622
|
|
|
excess_liquidity=1300.0, |
1623
|
|
|
cushion=1.0, |
1624
|
|
|
leverage=0.0, |
1625
|
|
|
net_leverage=0.0, |
1626
|
|
|
net_liquidation=1300.0) |
1627
|
|
|
|
1628
|
|
|
def test_cost_basis_calc(self): |
1629
|
|
|
history_args = ( |
1630
|
|
|
1, |
1631
|
|
|
[10, 11, 11, 12], |
1632
|
|
|
[100, 100, 100, 100], |
1633
|
|
|
onesec, |
1634
|
|
|
self.sim_params, |
1635
|
|
|
self.env |
1636
|
|
|
) |
1637
|
|
|
trades = factory.create_trade_history(*history_args) |
1638
|
|
|
transactions = factory.create_txn_history(*history_args) |
1639
|
|
|
|
1640
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1641
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1642
|
|
|
pp.position_tracker = pt |
1643
|
|
|
|
1644
|
|
|
average_cost = 0 |
1645
|
|
|
for i, txn in enumerate(transactions): |
1646
|
|
|
pt.execute_transaction(txn) |
1647
|
|
|
pp.handle_execution(txn) |
1648
|
|
|
average_cost = (average_cost * i + txn.price) / (i + 1) |
1649
|
|
|
self.assertEqual(pp.positions[1].cost_basis, average_cost) |
1650
|
|
|
|
1651
|
|
|
for trade in trades: |
1652
|
|
|
pt.update_last_sale(trade) |
1653
|
|
|
|
1654
|
|
|
pp.calculate_performance() |
1655
|
|
|
|
1656
|
|
|
self.assertEqual( |
1657
|
|
|
pp.positions[1].last_sale_price, |
1658
|
|
|
trades[-1].price, |
1659
|
|
|
"should have a last sale of 12, got {val}".format( |
1660
|
|
|
val=pp.positions[1].last_sale_price) |
1661
|
|
|
) |
1662
|
|
|
|
1663
|
|
|
self.assertEqual( |
1664
|
|
|
pp.positions[1].cost_basis, |
1665
|
|
|
11, |
1666
|
|
|
"should have a cost basis of 11" |
1667
|
|
|
) |
1668
|
|
|
|
1669
|
|
|
self.assertEqual( |
1670
|
|
|
pp.pnl, |
1671
|
|
|
400 |
1672
|
|
|
) |
1673
|
|
|
|
1674
|
|
|
down_tick = factory.create_trade( |
1675
|
|
|
1, |
1676
|
|
|
10.0, |
1677
|
|
|
100, |
1678
|
|
|
trades[-1].dt + onesec) |
1679
|
|
|
|
1680
|
|
|
sale_txn = create_txn( |
1681
|
|
|
down_tick, |
1682
|
|
|
10.0, |
1683
|
|
|
-100) |
1684
|
|
|
|
1685
|
|
|
pp.rollover() |
1686
|
|
|
|
1687
|
|
|
pt.execute_transaction(sale_txn) |
1688
|
|
|
pp.handle_execution(sale_txn) |
1689
|
|
|
pt.update_last_sale(down_tick) |
1690
|
|
|
|
1691
|
|
|
pp.calculate_performance() |
1692
|
|
|
self.assertEqual( |
1693
|
|
|
pp.positions[1].last_sale_price, |
1694
|
|
|
10, |
1695
|
|
|
"should have a last sale of 10, was {val}".format( |
1696
|
|
|
val=pp.positions[1].last_sale_price) |
1697
|
|
|
) |
1698
|
|
|
|
1699
|
|
|
self.assertEqual( |
1700
|
|
|
pp.positions[1].cost_basis, |
1701
|
|
|
11, |
1702
|
|
|
"should have a cost basis of 11" |
1703
|
|
|
) |
1704
|
|
|
|
1705
|
|
|
self.assertEqual(pp.pnl, -800, "this period goes from +400 to -400") |
1706
|
|
|
|
1707
|
|
|
pt3 = perf.PositionTracker(self.env.asset_finder) |
1708
|
|
|
pp3 = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1709
|
|
|
pp3.position_tracker = pt3 |
1710
|
|
|
|
1711
|
|
|
average_cost = 0 |
1712
|
|
|
for i, txn in enumerate(transactions): |
1713
|
|
|
pt3.execute_transaction(txn) |
1714
|
|
|
pp3.handle_execution(txn) |
1715
|
|
|
average_cost = (average_cost * i + txn.price) / (i + 1) |
1716
|
|
|
self.assertEqual(pp3.positions[1].cost_basis, average_cost) |
1717
|
|
|
|
1718
|
|
|
pt3.execute_transaction(sale_txn) |
1719
|
|
|
pp3.handle_execution(sale_txn) |
1720
|
|
|
|
1721
|
|
|
trades.append(down_tick) |
1722
|
|
|
for trade in trades: |
1723
|
|
|
pt3.update_last_sale(trade) |
1724
|
|
|
|
1725
|
|
|
pp3.calculate_performance() |
1726
|
|
|
self.assertEqual( |
1727
|
|
|
pp3.positions[1].last_sale_price, |
1728
|
|
|
10, |
1729
|
|
|
"should have a last sale of 10" |
1730
|
|
|
) |
1731
|
|
|
|
1732
|
|
|
self.assertEqual( |
1733
|
|
|
pp3.positions[1].cost_basis, |
1734
|
|
|
11, |
1735
|
|
|
"should have a cost basis of 11" |
1736
|
|
|
) |
1737
|
|
|
|
1738
|
|
|
self.assertEqual( |
1739
|
|
|
pp3.pnl, |
1740
|
|
|
-400, |
1741
|
|
|
"should be -400 for all trades and transactions in period" |
1742
|
|
|
) |
1743
|
|
|
|
1744
|
|
|
def test_cost_basis_calc_close_pos(self): |
1745
|
|
|
history_args = ( |
1746
|
|
|
1, |
1747
|
|
|
[10, 9, 11, 8, 9, 12, 13, 14], |
1748
|
|
|
[200, -100, -100, 100, -300, 100, 500, 400], |
1749
|
|
|
onesec, |
1750
|
|
|
self.sim_params, |
1751
|
|
|
self.env |
1752
|
|
|
) |
1753
|
|
|
cost_bases = [10, 10, 0, 8, 9, 9, 13, 13.5] |
1754
|
|
|
|
1755
|
|
|
trades = factory.create_trade_history(*history_args) |
1756
|
|
|
transactions = factory.create_txn_history(*history_args) |
1757
|
|
|
|
1758
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
1759
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) |
1760
|
|
|
pp.position_tracker = pt |
1761
|
|
|
|
1762
|
|
|
for txn, cb in zip(transactions, cost_bases): |
1763
|
|
|
pt.execute_transaction(txn) |
1764
|
|
|
pp.handle_execution(txn) |
1765
|
|
|
self.assertEqual(pp.positions[1].cost_basis, cb) |
1766
|
|
|
|
1767
|
|
|
for trade in trades: |
1768
|
|
|
pt.update_last_sale(trade) |
1769
|
|
|
|
1770
|
|
|
pp.calculate_performance() |
1771
|
|
|
|
1772
|
|
|
self.assertEqual(pp.positions[1].cost_basis, cost_bases[-1]) |
1773
|
|
|
|
1774
|
|
|
|
1775
|
|
|
class TestPerformanceTracker(unittest.TestCase): |
1776
|
|
|
|
1777
|
|
|
@classmethod |
1778
|
|
|
def setUpClass(cls): |
1779
|
|
|
cls.env = TradingEnvironment() |
1780
|
|
|
cls.env.write_data(equities_identifiers=[1, 2, 133, 134]) |
1781
|
|
|
|
1782
|
|
|
@classmethod |
1783
|
|
|
def tearDownClass(cls): |
1784
|
|
|
del cls.env |
1785
|
|
|
|
1786
|
|
|
NumDaysToDelete = collections.namedtuple( |
1787
|
|
|
'NumDaysToDelete', ('start', 'middle', 'end')) |
1788
|
|
|
|
1789
|
|
|
@parameterized.expand([ |
1790
|
|
|
("Don't delete any events", |
1791
|
|
|
NumDaysToDelete(start=0, middle=0, end=0)), |
1792
|
|
|
("Delete first day of events", |
1793
|
|
|
NumDaysToDelete(start=1, middle=0, end=0)), |
1794
|
|
|
("Delete first two days of events", |
1795
|
|
|
NumDaysToDelete(start=2, middle=0, end=0)), |
1796
|
|
|
("Delete one day of events from the middle", |
1797
|
|
|
NumDaysToDelete(start=0, middle=1, end=0)), |
1798
|
|
|
("Delete two events from the middle", |
1799
|
|
|
NumDaysToDelete(start=0, middle=2, end=0)), |
1800
|
|
|
("Delete last day of events", |
1801
|
|
|
NumDaysToDelete(start=0, middle=0, end=1)), |
1802
|
|
|
("Delete last two days of events", |
1803
|
|
|
NumDaysToDelete(start=0, middle=0, end=2)), |
1804
|
|
|
("Delete all but one event.", |
1805
|
|
|
NumDaysToDelete(start=2, middle=1, end=2)), |
1806
|
|
|
]) |
1807
|
|
|
def test_tracker(self, parameter_comment, days_to_delete): |
1808
|
|
|
""" |
1809
|
|
|
@days_to_delete - configures which days in the data set we should |
1810
|
|
|
remove, used for ensuring that we still return performance messages |
1811
|
|
|
even when there is no data. |
1812
|
|
|
""" |
1813
|
|
|
# This date range covers Columbus day, |
1814
|
|
|
# however Columbus day is not a market holiday |
1815
|
|
|
# |
1816
|
|
|
# October 2008 |
1817
|
|
|
# Su Mo Tu We Th Fr Sa |
1818
|
|
|
# 1 2 3 4 |
1819
|
|
|
# 5 6 7 8 9 10 11 |
1820
|
|
|
# 12 13 14 15 16 17 18 |
1821
|
|
|
# 19 20 21 22 23 24 25 |
1822
|
|
|
# 26 27 28 29 30 31 |
1823
|
|
|
start_dt = datetime(year=2008, |
1824
|
|
|
month=10, |
1825
|
|
|
day=9, |
1826
|
|
|
tzinfo=pytz.utc) |
1827
|
|
|
end_dt = datetime(year=2008, |
1828
|
|
|
month=10, |
1829
|
|
|
day=16, |
1830
|
|
|
tzinfo=pytz.utc) |
1831
|
|
|
|
1832
|
|
|
trade_count = 6 |
1833
|
|
|
sid = 133 |
1834
|
|
|
price = 10.1 |
1835
|
|
|
price_list = [price] * trade_count |
1836
|
|
|
volume = [100] * trade_count |
1837
|
|
|
trade_time_increment = timedelta(days=1) |
1838
|
|
|
|
1839
|
|
|
sim_params = SimulationParameters( |
1840
|
|
|
period_start=start_dt, |
1841
|
|
|
period_end=end_dt, |
1842
|
|
|
env=self.env, |
1843
|
|
|
) |
1844
|
|
|
|
1845
|
|
|
benchmark_events = benchmark_events_in_range(sim_params, self.env) |
1846
|
|
|
|
1847
|
|
|
trade_history = factory.create_trade_history( |
1848
|
|
|
sid, |
1849
|
|
|
price_list, |
1850
|
|
|
volume, |
1851
|
|
|
trade_time_increment, |
1852
|
|
|
sim_params, |
1853
|
|
|
source_id="factory1", |
1854
|
|
|
env=self.env |
1855
|
|
|
) |
1856
|
|
|
|
1857
|
|
|
sid2 = 134 |
1858
|
|
|
price2 = 12.12 |
1859
|
|
|
price2_list = [price2] * trade_count |
1860
|
|
|
trade_history2 = factory.create_trade_history( |
1861
|
|
|
sid2, |
1862
|
|
|
price2_list, |
1863
|
|
|
volume, |
1864
|
|
|
trade_time_increment, |
1865
|
|
|
sim_params, |
1866
|
|
|
source_id="factory2", |
1867
|
|
|
env=self.env |
1868
|
|
|
) |
1869
|
|
|
# 'middle' start of 3 depends on number of days == 7 |
1870
|
|
|
middle = 3 |
1871
|
|
|
|
1872
|
|
|
# First delete from middle |
1873
|
|
|
if days_to_delete.middle: |
1874
|
|
|
del trade_history[middle:(middle + days_to_delete.middle)] |
1875
|
|
|
del trade_history2[middle:(middle + days_to_delete.middle)] |
1876
|
|
|
|
1877
|
|
|
# Delete start |
1878
|
|
|
if days_to_delete.start: |
1879
|
|
|
del trade_history[:days_to_delete.start] |
1880
|
|
|
del trade_history2[:days_to_delete.start] |
1881
|
|
|
|
1882
|
|
|
# Delete from end |
1883
|
|
|
if days_to_delete.end: |
1884
|
|
|
del trade_history[-days_to_delete.end:] |
1885
|
|
|
del trade_history2[-days_to_delete.end:] |
1886
|
|
|
|
1887
|
|
|
sim_params.capital_base = 1000.0 |
1888
|
|
|
sim_params.frame_index = [ |
1889
|
|
|
'sid', |
1890
|
|
|
'volume', |
1891
|
|
|
'dt', |
1892
|
|
|
'price', |
1893
|
|
|
'changed'] |
1894
|
|
|
perf_tracker = perf.PerformanceTracker( |
1895
|
|
|
sim_params, self.env |
1896
|
|
|
) |
1897
|
|
|
|
1898
|
|
|
events = date_sorted_sources(trade_history, trade_history2) |
1899
|
|
|
|
1900
|
|
|
events = [event for event in |
1901
|
|
|
self.trades_with_txns(events, trade_history[0].dt)] |
1902
|
|
|
|
1903
|
|
|
# Extract events with transactions to use for verification. |
1904
|
|
|
txns = [event for event in |
1905
|
|
|
events if event.type == zp.DATASOURCE_TYPE.TRANSACTION] |
1906
|
|
|
|
1907
|
|
|
orders = [event for event in |
1908
|
|
|
events if event.type == zp.DATASOURCE_TYPE.ORDER] |
1909
|
|
|
|
1910
|
|
|
all_events = date_sorted_sources(events, benchmark_events) |
1911
|
|
|
|
1912
|
|
|
filtered_events = [filt_event for filt_event |
1913
|
|
|
in all_events if filt_event.dt <= end_dt] |
1914
|
|
|
filtered_events.sort(key=lambda x: x.dt) |
1915
|
|
|
grouped_events = itertools.groupby(filtered_events, lambda x: x.dt) |
1916
|
|
|
perf_messages = [] |
1917
|
|
|
|
1918
|
|
|
for date, group in grouped_events: |
1919
|
|
|
for event in group: |
1920
|
|
|
if event.type == zp.DATASOURCE_TYPE.TRADE: |
1921
|
|
|
perf_tracker.process_trade(event) |
1922
|
|
|
elif event.type == zp.DATASOURCE_TYPE.ORDER: |
1923
|
|
|
perf_tracker.process_order(event) |
1924
|
|
|
elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: |
1925
|
|
|
perf_tracker.process_benchmark(event) |
1926
|
|
|
elif event.type == zp.DATASOURCE_TYPE.TRANSACTION: |
1927
|
|
|
perf_tracker.process_transaction(event) |
1928
|
|
|
msg = perf_tracker.handle_market_close_daily() |
1929
|
|
|
perf_messages.append(msg) |
1930
|
|
|
|
1931
|
|
|
self.assertEqual(perf_tracker.txn_count, len(txns)) |
1932
|
|
|
self.assertEqual(perf_tracker.txn_count, len(orders)) |
1933
|
|
|
|
1934
|
|
|
positions = perf_tracker.cumulative_performance.positions |
1935
|
|
|
if len(txns) == 0: |
1936
|
|
|
self.assertNotIn(sid, positions) |
1937
|
|
|
else: |
1938
|
|
|
expected_size = len(txns) / 2 * -25 |
1939
|
|
|
cumulative_pos = positions[sid] |
1940
|
|
|
self.assertEqual(cumulative_pos.amount, expected_size) |
1941
|
|
|
|
1942
|
|
|
self.assertEqual(len(perf_messages), |
1943
|
|
|
sim_params.days_in_period) |
1944
|
|
|
|
1945
|
|
|
check_perf_tracker_serialization(perf_tracker) |
1946
|
|
|
|
1947
|
|
|
def trades_with_txns(self, events, no_txn_dt): |
1948
|
|
|
for event in events: |
1949
|
|
|
|
1950
|
|
|
# create a transaction for all but |
1951
|
|
|
# first trade in each sid, to simulate None transaction |
1952
|
|
|
if event.dt != no_txn_dt: |
1953
|
|
|
order = Order( |
1954
|
|
|
sid=event.sid, |
1955
|
|
|
amount=-25, |
1956
|
|
|
dt=event.dt |
1957
|
|
|
) |
1958
|
|
|
order.source_id = 'MockOrderSource' |
1959
|
|
|
yield order |
1960
|
|
|
yield event |
1961
|
|
|
txn = Transaction( |
1962
|
|
|
sid=event.sid, |
1963
|
|
|
amount=-25, |
1964
|
|
|
dt=event.dt, |
1965
|
|
|
price=10.0, |
1966
|
|
|
commission=0.50, |
1967
|
|
|
order_id=order.id |
1968
|
|
|
) |
1969
|
|
|
txn.source_id = 'MockTransactionSource' |
1970
|
|
|
yield txn |
1971
|
|
|
else: |
1972
|
|
|
yield event |
1973
|
|
|
|
1974
|
|
|
def test_minute_tracker(self): |
1975
|
|
|
""" Tests minute performance tracking.""" |
1976
|
|
|
start_dt = self.env.exchange_dt_in_utc(datetime(2013, 3, 1, 9, 31)) |
1977
|
|
|
end_dt = self.env.exchange_dt_in_utc(datetime(2013, 3, 1, 16, 0)) |
1978
|
|
|
|
1979
|
|
|
foosid = 1 |
1980
|
|
|
barsid = 2 |
1981
|
|
|
|
1982
|
|
|
sim_params = SimulationParameters( |
1983
|
|
|
period_start=start_dt, |
1984
|
|
|
period_end=end_dt, |
1985
|
|
|
emission_rate='minute', |
1986
|
|
|
env=self.env, |
1987
|
|
|
) |
1988
|
|
|
tracker = perf.PerformanceTracker(sim_params, env=self.env) |
1989
|
|
|
|
1990
|
|
|
foo_event_1 = factory.create_trade(foosid, 10.0, 20, start_dt) |
1991
|
|
|
order_event_1 = Order(sid=foo_event_1.sid, |
1992
|
|
|
amount=-25, |
1993
|
|
|
dt=foo_event_1.dt) |
1994
|
|
|
bar_event_1 = factory.create_trade(barsid, 100.0, 200, start_dt) |
1995
|
|
|
txn_event_1 = Transaction(sid=foo_event_1.sid, |
1996
|
|
|
amount=-25, |
1997
|
|
|
dt=foo_event_1.dt, |
1998
|
|
|
price=10.0, |
1999
|
|
|
commission=0.50, |
2000
|
|
|
order_id=order_event_1.id) |
2001
|
|
|
benchmark_event_1 = Event({ |
2002
|
|
|
'dt': start_dt, |
2003
|
|
|
'returns': 0.01, |
2004
|
|
|
'type': zp.DATASOURCE_TYPE.BENCHMARK |
2005
|
|
|
}) |
2006
|
|
|
|
2007
|
|
|
foo_event_2 = factory.create_trade( |
2008
|
|
|
foosid, 11.0, 20, start_dt + timedelta(minutes=1)) |
2009
|
|
|
bar_event_2 = factory.create_trade( |
2010
|
|
|
barsid, 11.0, 20, start_dt + timedelta(minutes=1)) |
2011
|
|
|
benchmark_event_2 = Event({ |
2012
|
|
|
'dt': start_dt + timedelta(minutes=1), |
2013
|
|
|
'returns': 0.02, |
2014
|
|
|
'type': zp.DATASOURCE_TYPE.BENCHMARK |
2015
|
|
|
}) |
2016
|
|
|
|
2017
|
|
|
events = [ |
2018
|
|
|
foo_event_1, |
2019
|
|
|
order_event_1, |
2020
|
|
|
benchmark_event_1, |
2021
|
|
|
txn_event_1, |
2022
|
|
|
bar_event_1, |
2023
|
|
|
foo_event_2, |
2024
|
|
|
benchmark_event_2, |
2025
|
|
|
bar_event_2, |
2026
|
|
|
] |
2027
|
|
|
|
2028
|
|
|
grouped_events = itertools.groupby( |
2029
|
|
|
events, operator.attrgetter('dt')) |
2030
|
|
|
|
2031
|
|
|
messages = {} |
2032
|
|
|
for date, group in grouped_events: |
2033
|
|
|
tracker.set_date(date) |
2034
|
|
|
for event in group: |
2035
|
|
|
if event.type == zp.DATASOURCE_TYPE.TRADE: |
2036
|
|
|
tracker.process_trade(event) |
2037
|
|
|
elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: |
2038
|
|
|
tracker.process_benchmark(event) |
2039
|
|
|
elif event.type == zp.DATASOURCE_TYPE.ORDER: |
2040
|
|
|
tracker.process_order(event) |
2041
|
|
|
elif event.type == zp.DATASOURCE_TYPE.TRANSACTION: |
2042
|
|
|
tracker.process_transaction(event) |
2043
|
|
|
msg, _ = tracker.handle_minute_close(date) |
2044
|
|
|
messages[date] = msg |
2045
|
|
|
|
2046
|
|
|
self.assertEquals(2, len(messages)) |
2047
|
|
|
|
2048
|
|
|
msg_1 = messages[foo_event_1.dt] |
2049
|
|
|
msg_2 = messages[foo_event_2.dt] |
2050
|
|
|
|
2051
|
|
|
self.assertEquals(1, len(msg_1['minute_perf']['transactions']), |
2052
|
|
|
"The first message should contain one " |
2053
|
|
|
"transaction.") |
2054
|
|
|
# Check that transactions aren't emitted for previous events. |
2055
|
|
|
self.assertEquals(0, len(msg_2['minute_perf']['transactions']), |
2056
|
|
|
"The second message should have no " |
2057
|
|
|
"transactions.") |
2058
|
|
|
|
2059
|
|
|
self.assertEquals(1, len(msg_1['minute_perf']['orders']), |
2060
|
|
|
"The first message should contain one orders.") |
2061
|
|
|
# Check that orders aren't emitted for previous events. |
2062
|
|
|
self.assertEquals(0, len(msg_2['minute_perf']['orders']), |
2063
|
|
|
"The second message should have no orders.") |
2064
|
|
|
|
2065
|
|
|
# Ensure that period_close moves through time. |
2066
|
|
|
# Also, ensure that the period_closes are the expected dts. |
2067
|
|
|
self.assertEquals(foo_event_1.dt, |
2068
|
|
|
msg_1['minute_perf']['period_close']) |
2069
|
|
|
self.assertEquals(foo_event_2.dt, |
2070
|
|
|
msg_2['minute_perf']['period_close']) |
2071
|
|
|
|
2072
|
|
|
# In this test event1 transactions arrive on the first bar. |
2073
|
|
|
# This leads to no returns as the price is constant. |
2074
|
|
|
# Sharpe ratio cannot be computed and is None. |
2075
|
|
|
# In the second bar we can start establishing a sharpe ratio. |
2076
|
|
|
self.assertIsNone(msg_1['cumulative_risk_metrics']['sharpe']) |
2077
|
|
|
self.assertIsNotNone(msg_2['cumulative_risk_metrics']['sharpe']) |
2078
|
|
|
|
2079
|
|
|
check_perf_tracker_serialization(tracker) |
2080
|
|
|
|
2081
|
|
|
def test_close_position_event(self): |
2082
|
|
|
pt = perf.PositionTracker(asset_finder=self.env.asset_finder) |
2083
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
2084
|
|
|
pos1 = perf.Position(1, amount=np.float64(120.0), |
2085
|
|
|
last_sale_date=dt, last_sale_price=3.4) |
2086
|
|
|
pos2 = perf.Position(2, amount=np.float64(-100.0), |
2087
|
|
|
last_sale_date=dt, last_sale_price=3.4) |
2088
|
|
|
pt.update_positions({1: pos1, 2: pos2}) |
2089
|
|
|
|
2090
|
|
|
event_type = DATASOURCE_TYPE.CLOSE_POSITION |
2091
|
|
|
index = [dt + timedelta(days=1)] |
2092
|
|
|
pan = pd.Panel({1: pd.DataFrame({'price': 1, 'volume': 0, |
2093
|
|
|
'type': event_type}, index=index), |
2094
|
|
|
2: pd.DataFrame({'price': 1, 'volume': 0, |
2095
|
|
|
'type': event_type}, index=index), |
2096
|
|
|
3: pd.DataFrame({'price': 1, 'volume': 0, |
2097
|
|
|
'type': event_type}, index=index)}) |
2098
|
|
|
|
2099
|
|
|
source = DataPanelSource(pan) |
2100
|
|
|
for i, event in enumerate(source): |
2101
|
|
|
txn = pt.maybe_create_close_position_transaction(event) |
2102
|
|
|
if event.sid == 1: |
2103
|
|
|
# Test owned long |
2104
|
|
|
self.assertEqual(-120, txn.amount) |
2105
|
|
|
elif event.sid == 2: |
2106
|
|
|
# Test owned short |
2107
|
|
|
self.assertEqual(100, txn.amount) |
2108
|
|
|
elif event.sid == 3: |
2109
|
|
|
# Test not-owned SID |
2110
|
|
|
self.assertIsNone(txn) |
2111
|
|
|
|
2112
|
|
|
def test_handle_sid_removed_from_universe(self): |
2113
|
|
|
# post some trades in the market |
2114
|
|
|
sim_params = create_simulation_parameters(num_days=5) |
2115
|
|
|
events = factory.create_trade_history( |
2116
|
|
|
1, |
2117
|
|
|
[10, 10, 10, 10, 10], |
2118
|
|
|
[100, 100, 100, 100, 100], |
2119
|
|
|
oneday, |
2120
|
|
|
sim_params, |
2121
|
|
|
env=self.env |
2122
|
|
|
) |
2123
|
|
|
|
2124
|
|
|
# Create a tracker and a dividend |
2125
|
|
|
perf_tracker = perf.PerformanceTracker(sim_params, env=self.env) |
2126
|
|
|
dividend = factory.create_dividend( |
2127
|
|
|
1, |
2128
|
|
|
10.00, |
2129
|
|
|
# declared date, when the algorithm finds out about |
2130
|
|
|
# the dividend |
2131
|
|
|
events[0].dt, |
2132
|
|
|
# ex_date, the date before which the algorithm must hold stock |
2133
|
|
|
# to receive the dividend |
2134
|
|
|
events[1].dt, |
2135
|
|
|
# pay date, when the algorithm receives the dividend. |
2136
|
|
|
events[2].dt |
2137
|
|
|
) |
2138
|
|
|
dividend_frame = pd.DataFrame( |
2139
|
|
|
[dividend.to_series(index=zp.DIVIDEND_FIELDS)], |
2140
|
|
|
) |
2141
|
|
|
perf_tracker.update_dividends(dividend_frame) |
2142
|
|
|
|
2143
|
|
|
# Ensure that the dividend is in the tracker |
2144
|
|
|
self.assertIn(1, perf_tracker.dividend_frame['sid'].values) |
2145
|
|
|
|
2146
|
|
|
# Inform the tracker that sid 1 has been removed from the universe |
2147
|
|
|
perf_tracker.handle_sid_removed_from_universe(1) |
2148
|
|
|
|
2149
|
|
|
# Ensure that the dividend for sid 1 has been removed from dividend |
2150
|
|
|
# frame |
2151
|
|
|
self.assertNotIn(1, perf_tracker.dividend_frame['sid'].values) |
2152
|
|
|
|
2153
|
|
|
def test_serialization(self): |
2154
|
|
|
start_dt = datetime(year=2008, |
2155
|
|
|
month=10, |
2156
|
|
|
day=9, |
2157
|
|
|
tzinfo=pytz.utc) |
2158
|
|
|
end_dt = datetime(year=2008, |
2159
|
|
|
month=10, |
2160
|
|
|
day=16, |
2161
|
|
|
tzinfo=pytz.utc) |
2162
|
|
|
|
2163
|
|
|
sim_params = SimulationParameters( |
2164
|
|
|
period_start=start_dt, |
2165
|
|
|
period_end=end_dt, |
2166
|
|
|
env=self.env, |
2167
|
|
|
) |
2168
|
|
|
|
2169
|
|
|
perf_tracker = perf.PerformanceTracker( |
2170
|
|
|
sim_params, env=self.env |
2171
|
|
|
) |
2172
|
|
|
check_perf_tracker_serialization(perf_tracker) |
2173
|
|
|
|
2174
|
|
|
|
2175
|
|
|
class TestPosition(unittest.TestCase): |
2176
|
|
|
def setUp(self): |
2177
|
|
|
pass |
2178
|
|
|
|
2179
|
|
|
def test_serialization(self): |
2180
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
2181
|
|
|
pos = perf.Position(10, amount=np.float64(120.0), last_sale_date=dt, |
2182
|
|
|
last_sale_price=3.4) |
2183
|
|
|
|
2184
|
|
|
p_string = dumps_with_persistent_ids(pos) |
2185
|
|
|
|
2186
|
|
|
test = loads_with_persistent_ids(p_string, env=None) |
2187
|
|
|
nt.assert_dict_equal(test.__dict__, pos.__dict__) |
2188
|
|
|
|
2189
|
|
|
|
2190
|
|
|
class TestPositionTracker(unittest.TestCase): |
2191
|
|
|
|
2192
|
|
|
@classmethod |
2193
|
|
|
def setUpClass(cls): |
2194
|
|
|
cls.env = TradingEnvironment() |
2195
|
|
|
futures_metadata = {3: {'contract_multiplier': 1000}, |
2196
|
|
|
4: {'contract_multiplier': 1000}} |
2197
|
|
|
cls.env.write_data(equities_identifiers=[1, 2], |
2198
|
|
|
futures_data=futures_metadata) |
2199
|
|
|
|
2200
|
|
|
@classmethod |
2201
|
|
|
def tearDownClass(cls): |
2202
|
|
|
del cls.env |
2203
|
|
|
|
2204
|
|
|
def test_empty_positions(self): |
2205
|
|
|
""" |
2206
|
|
|
make sure all the empty position stats return a numeric 0 |
2207
|
|
|
|
2208
|
|
|
Originally this bug was due to np.dot([], []) returning |
2209
|
|
|
np.bool_(False) |
2210
|
|
|
""" |
2211
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
2212
|
|
|
pos_stats = position_tracker.calc_position_stats(pt) |
2213
|
|
|
|
2214
|
|
|
stats = [ |
2215
|
|
|
'net_value', |
2216
|
|
|
'net_exposure', |
2217
|
|
|
'gross_value', |
2218
|
|
|
'gross_exposure', |
2219
|
|
|
'short_value', |
2220
|
|
|
'short_exposure', |
2221
|
|
|
'shorts_count', |
2222
|
|
|
'long_value', |
2223
|
|
|
'long_exposure', |
2224
|
|
|
'longs_count', |
2225
|
|
|
] |
2226
|
|
|
for name in stats: |
2227
|
|
|
val = getattr(pos_stats, name) |
2228
|
|
|
self.assertEquals(val, 0) |
2229
|
|
|
self.assertNotIsInstance(val, (bool, np.bool_)) |
2230
|
|
|
|
2231
|
|
|
def test_update_last_sale(self): |
2232
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
2233
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
2234
|
|
|
pos1 = perf.Position(1, amount=np.float64(100.0), |
2235
|
|
|
last_sale_date=dt, last_sale_price=10) |
2236
|
|
|
pos3 = perf.Position(3, amount=np.float64(100.0), |
2237
|
|
|
last_sale_date=dt, last_sale_price=10) |
2238
|
|
|
pt.update_positions({1: pos1, 3: pos3}) |
2239
|
|
|
|
2240
|
|
|
event1 = Event({'sid': 1, |
2241
|
|
|
'price': 11, |
2242
|
|
|
'dt': dt}) |
2243
|
|
|
event3 = Event({'sid': 3, |
2244
|
|
|
'price': 11, |
2245
|
|
|
'dt': dt}) |
2246
|
|
|
|
2247
|
|
|
# Check cash-adjustment return value |
2248
|
|
|
self.assertEqual(0, pt.update_last_sale(event1)) |
2249
|
|
|
self.assertEqual(100000, pt.update_last_sale(event3)) |
2250
|
|
|
|
2251
|
|
|
def test_position_values_and_exposures(self): |
2252
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
2253
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
2254
|
|
|
pos1 = perf.Position(1, amount=np.float64(10.0), |
2255
|
|
|
last_sale_date=dt, last_sale_price=10) |
2256
|
|
|
pos2 = perf.Position(2, amount=np.float64(-20.0), |
2257
|
|
|
last_sale_date=dt, last_sale_price=10) |
2258
|
|
|
pos3 = perf.Position(3, amount=np.float64(30.0), |
2259
|
|
|
last_sale_date=dt, last_sale_price=10) |
2260
|
|
|
pos4 = perf.Position(4, amount=np.float64(-40.0), |
2261
|
|
|
last_sale_date=dt, last_sale_price=10) |
2262
|
|
|
pt.update_positions({1: pos1, 2: pos2, 3: pos3, 4: pos4}) |
2263
|
|
|
|
2264
|
|
|
# Test long-only methods |
2265
|
|
|
|
2266
|
|
|
pos_stats = position_tracker.calc_position_stats(pt) |
2267
|
|
|
self.assertEqual(100, pos_stats.long_value) |
2268
|
|
|
self.assertEqual(100 + 300000, pos_stats.long_exposure) |
2269
|
|
|
self.assertEqual(2, pos_stats.longs_count) |
2270
|
|
|
|
2271
|
|
|
# Test short-only methods |
2272
|
|
|
self.assertEqual(-200, pos_stats.short_value) |
2273
|
|
|
self.assertEqual(-200 - 400000, pos_stats.short_exposure) |
2274
|
|
|
self.assertEqual(2, pos_stats.shorts_count) |
2275
|
|
|
|
2276
|
|
|
# Test gross and net values |
2277
|
|
|
self.assertEqual(100 + 200, pos_stats.gross_value) |
2278
|
|
|
self.assertEqual(100 - 200, pos_stats.net_value) |
2279
|
|
|
|
2280
|
|
|
# Test gross and net exposures |
2281
|
|
|
self.assertEqual(100 + 200 + 300000 + 400000, pos_stats.gross_exposure) |
2282
|
|
|
self.assertEqual(100 - 200 + 300000 - 400000, pos_stats.net_exposure) |
2283
|
|
|
|
2284
|
|
|
def test_serialization(self): |
2285
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
2286
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
2287
|
|
|
pos1 = perf.Position(1, amount=np.float64(120.0), |
2288
|
|
|
last_sale_date=dt, last_sale_price=3.4) |
2289
|
|
|
pos3 = perf.Position(3, amount=np.float64(100.0), |
2290
|
|
|
last_sale_date=dt, last_sale_price=3.4) |
2291
|
|
|
|
2292
|
|
|
pt.update_positions({1: pos1, 3: pos3}) |
2293
|
|
|
p_string = dumps_with_persistent_ids(pt) |
2294
|
|
|
test = loads_with_persistent_ids(p_string, env=self.env) |
2295
|
|
|
nt.assert_count_equal(test.positions.keys(), pt.positions.keys()) |
2296
|
|
|
for sid in pt.positions: |
2297
|
|
|
nt.assert_dict_equal(test.positions[sid].__dict__, |
2298
|
|
|
pt.positions[sid].__dict__) |
2299
|
|
|
|
2300
|
|
|
|
2301
|
|
|
class TestPerformancePeriod(unittest.TestCase): |
2302
|
|
|
|
2303
|
|
|
def test_serialization(self): |
2304
|
|
|
env = TradingEnvironment() |
2305
|
|
|
pt = perf.PositionTracker(env.asset_finder) |
2306
|
|
|
pp = perf.PerformancePeriod(100, env.asset_finder) |
2307
|
|
|
pp.position_tracker = pt |
2308
|
|
|
|
2309
|
|
|
p_string = dumps_with_persistent_ids(pp) |
2310
|
|
|
test = loads_with_persistent_ids(p_string, env=env) |
2311
|
|
|
|
2312
|
|
|
correct = pp.__dict__.copy() |
2313
|
|
|
del correct['_position_tracker'] |
2314
|
|
|
|
2315
|
|
|
nt.assert_count_equal(test.__dict__.keys(), correct.keys()) |
2316
|
|
|
|
2317
|
|
|
equal_keys = list(correct.keys()) |
2318
|
|
|
equal_keys.remove('_account_store') |
2319
|
|
|
equal_keys.remove('_portfolio_store') |
2320
|
|
|
|
2321
|
|
|
for k in equal_keys: |
2322
|
|
|
nt.assert_equal(test.__dict__[k], correct[k]) |
2323
|
|
|
|