1
|
|
|
# |
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
""" |
17
|
|
|
Unit tests for finance.slippage |
18
|
|
|
""" |
19
|
|
|
import datetime |
20
|
|
|
|
21
|
|
|
import pytz |
22
|
|
|
|
23
|
|
|
from unittest import TestCase |
24
|
|
|
|
25
|
|
|
from nose_parameterized import parameterized |
26
|
|
|
|
27
|
|
|
import pandas as pd |
28
|
|
|
|
29
|
|
|
from zipline.finance.slippage import VolumeShareSlippage |
30
|
|
|
|
31
|
|
|
from zipline.protocol import Event, DATASOURCE_TYPE |
32
|
|
|
from zipline.finance.blotter import Order |
33
|
|
|
|
34
|
|
|
|
35
|
|
|
class SlippageTestCase(TestCase): |
36
|
|
|
|
37
|
|
|
def test_volume_share_slippage(self): |
38
|
|
|
event = Event( |
39
|
|
|
{'volume': 200, |
40
|
|
|
'type': 4, |
41
|
|
|
'price': 3.0, |
42
|
|
|
'datetime': datetime.datetime( |
43
|
|
|
2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
44
|
|
|
'high': 3.15, |
45
|
|
|
'low': 2.85, |
46
|
|
|
'sid': 133, |
47
|
|
|
'source_id': 'test_source', |
48
|
|
|
'close': 3.0, |
49
|
|
|
'dt': |
50
|
|
|
datetime.datetime(2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
51
|
|
|
'open': 3.0} |
52
|
|
|
) |
53
|
|
|
|
54
|
|
|
slippage_model = VolumeShareSlippage() |
55
|
|
|
|
56
|
|
|
open_orders = [ |
57
|
|
|
Order(dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
58
|
|
|
amount=100, |
59
|
|
|
filled=0, |
60
|
|
|
sid=133) |
61
|
|
|
] |
62
|
|
|
|
63
|
|
|
orders_txns = list(slippage_model.simulate( |
64
|
|
|
event, |
65
|
|
|
open_orders |
66
|
|
|
)) |
67
|
|
|
|
68
|
|
|
self.assertEquals(len(orders_txns), 1) |
69
|
|
|
_, txn = orders_txns[0] |
70
|
|
|
|
71
|
|
|
expected_txn = { |
72
|
|
|
'price': float(3.01875), |
73
|
|
|
'dt': datetime.datetime( |
74
|
|
|
2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
75
|
|
|
'amount': int(50), |
76
|
|
|
'sid': int(133), |
77
|
|
|
'commission': None, |
78
|
|
|
'type': DATASOURCE_TYPE.TRANSACTION, |
79
|
|
|
'order_id': open_orders[0].id |
80
|
|
|
} |
81
|
|
|
|
82
|
|
|
self.assertIsNotNone(txn) |
83
|
|
|
|
84
|
|
|
# TODO: Make expected_txn an Transaction object and ensure there |
85
|
|
|
# is a __eq__ for that class. |
86
|
|
|
self.assertEquals(expected_txn, txn.__dict__) |
87
|
|
|
|
88
|
|
|
def test_orders_limit(self): |
89
|
|
|
|
90
|
|
|
events = self.gen_trades() |
91
|
|
|
|
92
|
|
|
slippage_model = VolumeShareSlippage() |
93
|
|
|
|
94
|
|
|
# long, does not trade |
95
|
|
|
|
96
|
|
|
open_orders = [ |
97
|
|
|
Order(**{ |
98
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
99
|
|
|
'amount': 100, |
100
|
|
|
'filled': 0, |
101
|
|
|
'sid': 133, |
102
|
|
|
'limit': 3.5}) |
103
|
|
|
] |
104
|
|
|
|
105
|
|
|
orders_txns = list(slippage_model.simulate( |
106
|
|
|
events[3], |
107
|
|
|
open_orders |
108
|
|
|
)) |
109
|
|
|
self.assertEquals(len(orders_txns), 0) |
110
|
|
|
|
111
|
|
|
# long, does not trade - impacted price worse than limit price |
112
|
|
|
|
113
|
|
|
open_orders = [ |
114
|
|
|
Order(**{ |
115
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
116
|
|
|
'amount': 100, |
117
|
|
|
'filled': 0, |
118
|
|
|
'sid': 133, |
119
|
|
|
'limit': 3.5}) |
120
|
|
|
] |
121
|
|
|
|
122
|
|
|
orders_txns = list(slippage_model.simulate( |
123
|
|
|
events[3], |
124
|
|
|
open_orders |
125
|
|
|
)) |
126
|
|
|
|
127
|
|
|
self.assertEquals(len(orders_txns), 0) |
128
|
|
|
|
129
|
|
|
# long, does trade |
130
|
|
|
|
131
|
|
|
open_orders = [ |
132
|
|
|
Order(**{ |
133
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
134
|
|
|
'amount': 100, |
135
|
|
|
'filled': 0, |
136
|
|
|
'sid': 133, |
137
|
|
|
'limit': 3.6}) |
138
|
|
|
] |
139
|
|
|
|
140
|
|
|
orders_txns = list(slippage_model.simulate( |
141
|
|
|
events[3], |
142
|
|
|
open_orders |
143
|
|
|
)) |
144
|
|
|
|
145
|
|
|
self.assertEquals(len(orders_txns), 1) |
146
|
|
|
txn = orders_txns[0][1] |
147
|
|
|
|
148
|
|
|
expected_txn = { |
149
|
|
|
'price': float(3.500875), |
150
|
|
|
'dt': datetime.datetime( |
151
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
152
|
|
|
'amount': int(100), |
153
|
|
|
'sid': int(133), |
154
|
|
|
'order_id': open_orders[0].id |
155
|
|
|
} |
156
|
|
|
|
157
|
|
|
self.assertIsNotNone(txn) |
158
|
|
|
|
159
|
|
|
for key, value in expected_txn.items(): |
160
|
|
|
self.assertEquals(value, txn[key]) |
161
|
|
|
|
162
|
|
|
# short, does not trade |
163
|
|
|
|
164
|
|
|
open_orders = [ |
165
|
|
|
Order(**{ |
166
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
167
|
|
|
'amount': -100, |
168
|
|
|
'filled': 0, |
169
|
|
|
'sid': 133, |
170
|
|
|
'limit': 3.5}) |
171
|
|
|
] |
172
|
|
|
|
173
|
|
|
orders_txns = list(slippage_model.simulate( |
174
|
|
|
events[0], |
175
|
|
|
open_orders |
176
|
|
|
)) |
177
|
|
|
|
178
|
|
|
expected_txn = {} |
179
|
|
|
|
180
|
|
|
self.assertEquals(len(orders_txns), 0) |
181
|
|
|
|
182
|
|
|
# short, does not trade - impacted price worse than limit price |
183
|
|
|
|
184
|
|
|
open_orders = [ |
185
|
|
|
Order(**{ |
186
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
187
|
|
|
'amount': -100, |
188
|
|
|
'filled': 0, |
189
|
|
|
'sid': 133, |
190
|
|
|
'limit': 3.5}) |
191
|
|
|
] |
192
|
|
|
|
193
|
|
|
orders_txns = list(slippage_model.simulate( |
194
|
|
|
events[1], |
195
|
|
|
open_orders |
196
|
|
|
)) |
197
|
|
|
|
198
|
|
|
self.assertEquals(len(orders_txns), 0) |
199
|
|
|
|
200
|
|
|
# short, does trade |
201
|
|
|
|
202
|
|
|
open_orders = [ |
203
|
|
|
Order(**{ |
204
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
205
|
|
|
'amount': -100, |
206
|
|
|
'filled': 0, |
207
|
|
|
'sid': 133, |
208
|
|
|
'limit': 3.4}) |
209
|
|
|
] |
210
|
|
|
|
211
|
|
|
orders_txns = list(slippage_model.simulate( |
212
|
|
|
events[1], |
213
|
|
|
open_orders |
214
|
|
|
)) |
215
|
|
|
|
216
|
|
|
self.assertEquals(len(orders_txns), 1) |
217
|
|
|
_, txn = orders_txns[0] |
218
|
|
|
|
219
|
|
|
expected_txn = { |
220
|
|
|
'price': float(3.499125), |
221
|
|
|
'dt': datetime.datetime( |
222
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
223
|
|
|
'amount': int(-100), |
224
|
|
|
'sid': int(133) |
225
|
|
|
} |
226
|
|
|
|
227
|
|
|
self.assertIsNotNone(txn) |
228
|
|
|
|
229
|
|
|
for key, value in expected_txn.items(): |
230
|
|
|
self.assertEquals(value, txn[key]) |
231
|
|
|
|
232
|
|
|
STOP_ORDER_CASES = { |
233
|
|
|
# Stop orders can be long/short and have their price greater or |
234
|
|
|
# less than the stop. |
235
|
|
|
# |
236
|
|
|
# A stop being reached is conditional on the order direction. |
237
|
|
|
# Long orders reach the stop when the price is greater than the stop. |
238
|
|
|
# Short orders reach the stop when the price is less than the stop. |
239
|
|
|
# |
240
|
|
|
# Which leads to the following 4 cases: |
241
|
|
|
# |
242
|
|
|
# | long | short | |
243
|
|
|
# | price > stop | | | |
244
|
|
|
# | price < stop | | | |
245
|
|
|
# |
246
|
|
|
# Currently the slippage module acts according to the following table, |
247
|
|
|
# where 'X' represents triggering a transaction |
248
|
|
|
# | long | short | |
249
|
|
|
# | price > stop | | X | |
250
|
|
|
# | price < stop | X | | |
251
|
|
|
# |
252
|
|
|
# However, the following behavior *should* be followed. |
253
|
|
|
# |
254
|
|
|
# | long | short | |
255
|
|
|
# | price > stop | X | | |
256
|
|
|
# | price < stop | | X | |
257
|
|
|
|
258
|
|
|
'long | price gt stop': { |
259
|
|
|
'order': { |
260
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
261
|
|
|
'amount': 100, |
262
|
|
|
'filled': 0, |
263
|
|
|
'sid': 133, |
264
|
|
|
'stop': 3.5 |
265
|
|
|
}, |
266
|
|
|
'event': { |
267
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
268
|
|
|
'volume': 2000, |
269
|
|
|
'price': 4.0, |
270
|
|
|
'high': 3.15, |
271
|
|
|
'low': 2.85, |
272
|
|
|
'sid': 133, |
273
|
|
|
'close': 4.0, |
274
|
|
|
'open': 3.5 |
275
|
|
|
}, |
276
|
|
|
'expected': { |
277
|
|
|
'transaction': { |
278
|
|
|
'price': 4.001, |
279
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
280
|
|
|
'amount': 100, |
281
|
|
|
'sid': 133, |
282
|
|
|
} |
283
|
|
|
} |
284
|
|
|
}, |
285
|
|
|
'long | price lt stop': { |
286
|
|
|
'order': { |
287
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
288
|
|
|
'amount': 100, |
289
|
|
|
'filled': 0, |
290
|
|
|
'sid': 133, |
291
|
|
|
'stop': 3.6 |
292
|
|
|
}, |
293
|
|
|
'event': { |
294
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
295
|
|
|
'volume': 2000, |
296
|
|
|
'price': 3.5, |
297
|
|
|
'high': 3.15, |
298
|
|
|
'low': 2.85, |
299
|
|
|
'sid': 133, |
300
|
|
|
'close': 3.5, |
301
|
|
|
'open': 4.0 |
302
|
|
|
}, |
303
|
|
|
'expected': { |
304
|
|
|
'transaction': None |
305
|
|
|
} |
306
|
|
|
}, |
307
|
|
|
'short | price gt stop': { |
308
|
|
|
'order': { |
309
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
310
|
|
|
'amount': -100, |
311
|
|
|
'filled': 0, |
312
|
|
|
'sid': 133, |
313
|
|
|
'stop': 3.4 |
314
|
|
|
}, |
315
|
|
|
'event': { |
316
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
317
|
|
|
'volume': 2000, |
318
|
|
|
'price': 3.5, |
319
|
|
|
'high': 3.15, |
320
|
|
|
'low': 2.85, |
321
|
|
|
'sid': 133, |
322
|
|
|
'close': 3.5, |
323
|
|
|
'open': 3.0 |
324
|
|
|
}, |
325
|
|
|
'expected': { |
326
|
|
|
'transaction': None |
327
|
|
|
} |
328
|
|
|
}, |
329
|
|
|
'short | price lt stop': { |
330
|
|
|
'order': { |
331
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
332
|
|
|
'amount': -100, |
333
|
|
|
'filled': 0, |
334
|
|
|
'sid': 133, |
335
|
|
|
'stop': 3.5 |
336
|
|
|
}, |
337
|
|
|
'event': { |
338
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
339
|
|
|
'volume': 2000, |
340
|
|
|
'price': 3.0, |
341
|
|
|
'high': 3.15, |
342
|
|
|
'low': 2.85, |
343
|
|
|
'sid': 133, |
344
|
|
|
'close': 3.0, |
345
|
|
|
'open': 3.0 |
346
|
|
|
}, |
347
|
|
|
'expected': { |
348
|
|
|
'transaction': { |
349
|
|
|
'price': 2.99925, |
350
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
351
|
|
|
'amount': -100, |
352
|
|
|
'sid': 133, |
353
|
|
|
} |
354
|
|
|
} |
355
|
|
|
}, |
356
|
|
|
} |
357
|
|
|
|
358
|
|
|
@parameterized.expand([ |
359
|
|
|
(name, case['order'], case['event'], case['expected']) |
360
|
|
|
for name, case in STOP_ORDER_CASES.items() |
361
|
|
|
]) |
362
|
|
|
def test_orders_stop(self, name, order_data, event_data, expected): |
363
|
|
|
order = Order(**order_data) |
364
|
|
|
event = Event(initial_values=event_data) |
365
|
|
|
|
366
|
|
|
slippage_model = VolumeShareSlippage() |
367
|
|
|
|
368
|
|
|
try: |
369
|
|
|
_, txn = next(slippage_model.simulate(event, [order])) |
370
|
|
|
except StopIteration: |
371
|
|
|
txn = None |
372
|
|
|
|
373
|
|
|
if expected['transaction'] is None: |
374
|
|
|
self.assertIsNone(txn) |
375
|
|
|
else: |
376
|
|
|
self.assertIsNotNone(txn) |
377
|
|
|
|
378
|
|
|
for key, value in expected['transaction'].items(): |
379
|
|
|
self.assertEquals(value, txn[key]) |
380
|
|
|
|
381
|
|
|
def test_orders_stop_limit(self): |
382
|
|
|
|
383
|
|
|
events = self.gen_trades() |
384
|
|
|
slippage_model = VolumeShareSlippage() |
385
|
|
|
|
386
|
|
|
# long, does not trade |
387
|
|
|
|
388
|
|
|
open_orders = [ |
389
|
|
|
Order(**{ |
390
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
391
|
|
|
'amount': 100, |
392
|
|
|
'filled': 0, |
393
|
|
|
'sid': 133, |
394
|
|
|
'stop': 4.0, |
395
|
|
|
'limit': 3.0}) |
396
|
|
|
] |
397
|
|
|
|
398
|
|
|
orders_txns = list(slippage_model.simulate( |
399
|
|
|
events[2], |
400
|
|
|
open_orders |
401
|
|
|
)) |
402
|
|
|
|
403
|
|
|
self.assertEquals(len(orders_txns), 0) |
404
|
|
|
|
405
|
|
|
orders_txns = list(slippage_model.simulate( |
406
|
|
|
events[3], |
407
|
|
|
open_orders |
408
|
|
|
)) |
409
|
|
|
|
410
|
|
|
self.assertEquals(len(orders_txns), 0) |
411
|
|
|
|
412
|
|
|
# long, does not trade - impacted price worse than limit price |
413
|
|
|
|
414
|
|
|
open_orders = [ |
415
|
|
|
Order(**{ |
416
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
417
|
|
|
'amount': 100, |
418
|
|
|
'filled': 0, |
419
|
|
|
'sid': 133, |
420
|
|
|
'stop': 4.0, |
421
|
|
|
'limit': 3.5}) |
422
|
|
|
] |
423
|
|
|
|
424
|
|
|
orders_txns = list(slippage_model.simulate( |
425
|
|
|
events[2], |
426
|
|
|
open_orders |
427
|
|
|
)) |
428
|
|
|
|
429
|
|
|
self.assertEquals(len(orders_txns), 0) |
430
|
|
|
|
431
|
|
|
orders_txns = list(slippage_model.simulate( |
432
|
|
|
events[3], |
433
|
|
|
open_orders |
434
|
|
|
)) |
435
|
|
|
|
436
|
|
|
self.assertEquals(len(orders_txns), 0) |
437
|
|
|
|
438
|
|
|
# long, does trade |
439
|
|
|
|
440
|
|
|
open_orders = [ |
441
|
|
|
Order(**{ |
442
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
443
|
|
|
'amount': 100, |
444
|
|
|
'filled': 0, |
445
|
|
|
'sid': 133, |
446
|
|
|
'stop': 4.0, |
447
|
|
|
'limit': 3.6}) |
448
|
|
|
] |
449
|
|
|
|
450
|
|
|
orders_txns = list(slippage_model.simulate( |
451
|
|
|
events[2], |
452
|
|
|
open_orders |
453
|
|
|
)) |
454
|
|
|
|
455
|
|
|
self.assertEquals(len(orders_txns), 0) |
456
|
|
|
|
457
|
|
|
orders_txns = list(slippage_model.simulate( |
458
|
|
|
events[3], |
459
|
|
|
open_orders |
460
|
|
|
)) |
461
|
|
|
|
462
|
|
|
self.assertEquals(len(orders_txns), 1) |
463
|
|
|
_, txn = orders_txns[0] |
464
|
|
|
|
465
|
|
|
expected_txn = { |
466
|
|
|
'price': float(3.500875), |
467
|
|
|
'dt': datetime.datetime( |
468
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
469
|
|
|
'amount': int(100), |
470
|
|
|
'sid': int(133) |
471
|
|
|
} |
472
|
|
|
|
473
|
|
|
for key, value in expected_txn.items(): |
474
|
|
|
self.assertEquals(value, txn[key]) |
475
|
|
|
|
476
|
|
|
# short, does not trade |
477
|
|
|
|
478
|
|
|
open_orders = [ |
479
|
|
|
Order(**{ |
480
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
481
|
|
|
'amount': -100, |
482
|
|
|
'filled': 0, |
483
|
|
|
'sid': 133, |
484
|
|
|
'stop': 3.0, |
485
|
|
|
'limit': 4.0}) |
486
|
|
|
] |
487
|
|
|
|
488
|
|
|
orders_txns = list(slippage_model.simulate( |
489
|
|
|
events[0], |
490
|
|
|
open_orders |
491
|
|
|
)) |
492
|
|
|
|
493
|
|
|
self.assertEquals(len(orders_txns), 0) |
494
|
|
|
|
495
|
|
|
orders_txns = list(slippage_model.simulate( |
496
|
|
|
events[1], |
497
|
|
|
open_orders |
498
|
|
|
)) |
499
|
|
|
|
500
|
|
|
self.assertEquals(len(orders_txns), 0) |
501
|
|
|
|
502
|
|
|
# short, does not trade - impacted price worse than limit price |
503
|
|
|
|
504
|
|
|
open_orders = [ |
505
|
|
|
Order(**{ |
506
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
507
|
|
|
'amount': -100, |
508
|
|
|
'filled': 0, |
509
|
|
|
'sid': 133, |
510
|
|
|
'stop': 3.0, |
511
|
|
|
'limit': 3.5}) |
512
|
|
|
] |
513
|
|
|
|
514
|
|
|
orders_txns = list(slippage_model.simulate( |
515
|
|
|
events[0], |
516
|
|
|
open_orders |
517
|
|
|
)) |
518
|
|
|
|
519
|
|
|
self.assertEquals(len(orders_txns), 0) |
520
|
|
|
|
521
|
|
|
orders_txns = list(slippage_model.simulate( |
522
|
|
|
events[1], |
523
|
|
|
open_orders |
524
|
|
|
)) |
525
|
|
|
|
526
|
|
|
self.assertEquals(len(orders_txns), 0) |
527
|
|
|
|
528
|
|
|
# short, does trade |
529
|
|
|
|
530
|
|
|
open_orders = [ |
531
|
|
|
Order(**{ |
532
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
533
|
|
|
'amount': -100, |
534
|
|
|
'filled': 0, |
535
|
|
|
'sid': 133, |
536
|
|
|
'stop': 3.0, |
537
|
|
|
'limit': 3.4}) |
538
|
|
|
] |
539
|
|
|
|
540
|
|
|
orders_txns = list(slippage_model.simulate( |
541
|
|
|
events[0], |
542
|
|
|
open_orders |
543
|
|
|
)) |
544
|
|
|
|
545
|
|
|
self.assertEquals(len(orders_txns), 0) |
546
|
|
|
|
547
|
|
|
orders_txns = list(slippage_model.simulate( |
548
|
|
|
events[1], |
549
|
|
|
open_orders |
550
|
|
|
)) |
551
|
|
|
|
552
|
|
|
self.assertEquals(len(orders_txns), 1) |
553
|
|
|
_, txn = orders_txns[0] |
554
|
|
|
|
555
|
|
|
expected_txn = { |
556
|
|
|
'price': float(3.499125), |
557
|
|
|
'dt': datetime.datetime( |
558
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
559
|
|
|
'amount': int(-100), |
560
|
|
|
'sid': int(133) |
561
|
|
|
} |
562
|
|
|
|
563
|
|
|
for key, value in expected_txn.items(): |
564
|
|
|
self.assertEquals(value, txn[key]) |
565
|
|
|
|
566
|
|
|
def gen_trades(self): |
567
|
|
|
# create a sequence of trades |
568
|
|
|
events = [ |
569
|
|
|
Event({ |
570
|
|
|
'volume': 2000, |
571
|
|
|
'type': 4, |
572
|
|
|
'price': 3.0, |
573
|
|
|
'datetime': datetime.datetime( |
574
|
|
|
2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
575
|
|
|
'high': 3.15, |
576
|
|
|
'low': 2.85, |
577
|
|
|
'sid': 133, |
578
|
|
|
'source_id': 'test_source', |
579
|
|
|
'close': 3.0, |
580
|
|
|
'dt': |
581
|
|
|
datetime.datetime(2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
582
|
|
|
'open': 3.0 |
583
|
|
|
}), |
584
|
|
|
Event({ |
585
|
|
|
'volume': 2000, |
586
|
|
|
'type': 4, |
587
|
|
|
'price': 3.5, |
588
|
|
|
'datetime': datetime.datetime( |
589
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
590
|
|
|
'high': 3.15, |
591
|
|
|
'low': 2.85, |
592
|
|
|
'sid': 133, |
593
|
|
|
'source_id': 'test_source', |
594
|
|
|
'close': 3.5, |
595
|
|
|
'dt': |
596
|
|
|
datetime.datetime(2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
597
|
|
|
'open': 3.0 |
598
|
|
|
}), |
599
|
|
|
Event({ |
600
|
|
|
'volume': 2000, |
601
|
|
|
'type': 4, |
602
|
|
|
'price': 4.0, |
603
|
|
|
'datetime': datetime.datetime( |
604
|
|
|
2006, 1, 5, 14, 33, tzinfo=pytz.utc), |
605
|
|
|
'high': 3.15, |
606
|
|
|
'low': 2.85, |
607
|
|
|
'sid': 133, |
608
|
|
|
'source_id': 'test_source', |
609
|
|
|
'close': 4.0, |
610
|
|
|
'dt': |
611
|
|
|
datetime.datetime(2006, 1, 5, 14, 33, tzinfo=pytz.utc), |
612
|
|
|
'open': 3.5 |
613
|
|
|
}), |
614
|
|
|
Event({ |
615
|
|
|
'volume': 2000, |
616
|
|
|
'type': 4, |
617
|
|
|
'price': 3.5, |
618
|
|
|
'datetime': datetime.datetime( |
619
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
620
|
|
|
'high': 3.15, |
621
|
|
|
'low': 2.85, |
622
|
|
|
'sid': 133, |
623
|
|
|
'source_id': 'test_source', |
624
|
|
|
'close': 3.5, |
625
|
|
|
'dt': |
626
|
|
|
datetime.datetime(2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
627
|
|
|
'open': 4.0 |
628
|
|
|
}), |
629
|
|
|
Event({ |
630
|
|
|
'volume': 2000, |
631
|
|
|
'type': 4, |
632
|
|
|
'price': 3.0, |
633
|
|
|
'datetime': datetime.datetime( |
634
|
|
|
2006, 1, 5, 14, 35, tzinfo=pytz.utc), |
635
|
|
|
'high': 3.15, |
636
|
|
|
'low': 2.85, |
637
|
|
|
'sid': 133, |
638
|
|
|
'source_id': 'test_source', |
639
|
|
|
'close': 3.0, |
640
|
|
|
'dt': |
641
|
|
|
datetime.datetime(2006, 1, 5, 14, 35, tzinfo=pytz.utc), |
642
|
|
|
'open': 3.5 |
643
|
|
|
}) |
644
|
|
|
] |
645
|
|
|
return events |
646
|
|
|
|