1
|
|
|
# |
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
from unittest import TestCase |
17
|
|
|
from itertools import product |
18
|
|
|
from textwrap import dedent |
19
|
|
|
import warnings |
20
|
|
|
|
21
|
|
|
from nose_parameterized import parameterized |
22
|
|
|
import numpy as np |
23
|
|
|
import pandas as pd |
24
|
|
|
from pandas.util.testing import assert_frame_equal |
25
|
|
|
from pandas.tseries.tools import normalize_date |
26
|
|
|
|
27
|
|
|
from .history_cases import ( |
28
|
|
|
HISTORY_CONTAINER_TEST_CASES, |
29
|
|
|
) |
30
|
|
|
from zipline import TradingAlgorithm |
31
|
|
|
from zipline.errors import HistoryInInitialize, IncompatibleHistoryFrequency |
32
|
|
|
from zipline.finance import trading |
33
|
|
|
from zipline.finance.trading import ( |
34
|
|
|
SimulationParameters, |
35
|
|
|
TradingEnvironment, |
36
|
|
|
) |
37
|
|
|
from zipline.history import history |
38
|
|
|
from zipline.history.history_container import HistoryContainer |
39
|
|
|
from zipline.protocol import BarData |
40
|
|
|
from zipline.sources import RandomWalkSource, DataFrameSource |
41
|
|
|
import zipline.utils.factory as factory |
42
|
|
|
from zipline.utils.test_utils import subtest |
43
|
|
|
|
44
|
|
|
# Cases are over the July 4th holiday, to ensure use of trading calendar. |
45
|
|
|
|
46
|
|
|
# March 2013 |
47
|
|
|
# Su Mo Tu We Th Fr Sa |
48
|
|
|
# 1 2 |
49
|
|
|
# 3 4 5 6 7 8 9 |
50
|
|
|
# 10 11 12 13 14 15 16 |
51
|
|
|
# 17 18 19 20 21 22 23 |
52
|
|
|
# 24 25 26 27 28 29 30 |
53
|
|
|
# 31 |
54
|
|
|
# April 2013 |
55
|
|
|
# Su Mo Tu We Th Fr Sa |
56
|
|
|
# 1 2 3 4 5 6 |
57
|
|
|
# 7 8 9 10 11 12 13 |
58
|
|
|
# 14 15 16 17 18 19 20 |
59
|
|
|
# 21 22 23 24 25 26 27 |
60
|
|
|
# 28 29 30 |
61
|
|
|
# |
62
|
|
|
# May 2013 |
63
|
|
|
# Su Mo Tu We Th Fr Sa |
64
|
|
|
# 1 2 3 4 |
65
|
|
|
# 5 6 7 8 9 10 11 |
66
|
|
|
# 12 13 14 15 16 17 18 |
67
|
|
|
# 19 20 21 22 23 24 25 |
68
|
|
|
# 26 27 28 29 30 31 |
69
|
|
|
# |
70
|
|
|
# June 2013 |
71
|
|
|
# Su Mo Tu We Th Fr Sa |
72
|
|
|
# 1 |
73
|
|
|
# 2 3 4 5 6 7 8 |
74
|
|
|
# 9 10 11 12 13 14 15 |
75
|
|
|
# 16 17 18 19 20 21 22 |
76
|
|
|
# 23 24 25 26 27 28 29 |
77
|
|
|
# 30 |
78
|
|
|
# July 2013 |
79
|
|
|
# Su Mo Tu We Th Fr Sa |
80
|
|
|
# 1 2 3 4 5 6 |
81
|
|
|
# 7 8 9 10 11 12 13 |
82
|
|
|
# 14 15 16 17 18 19 20 |
83
|
|
|
# 21 22 23 24 25 26 27 |
84
|
|
|
# 28 29 30 31 |
85
|
|
|
# |
86
|
|
|
# Times to be converted via: |
87
|
|
|
# pd.Timestamp('2013-07-05 9:31', tz='US/Eastern').tz_convert('UTC')}, |
88
|
|
|
|
89
|
|
|
INDEX_TEST_CASES_RAW = { |
90
|
|
|
'week of daily data': { |
91
|
|
|
'input': {'bar_count': 5, |
92
|
|
|
'frequency': '1d', |
93
|
|
|
'algo_dt': '2013-07-05 9:31AM'}, |
94
|
|
|
'expected': [ |
95
|
|
|
'2013-06-28 4:00PM', |
96
|
|
|
'2013-07-01 4:00PM', |
97
|
|
|
'2013-07-02 4:00PM', |
98
|
|
|
'2013-07-03 1:00PM', |
99
|
|
|
'2013-07-05 9:31AM', |
100
|
|
|
] |
101
|
|
|
}, |
102
|
|
|
'five minutes on july 5th open': { |
103
|
|
|
'input': {'bar_count': 5, |
104
|
|
|
'frequency': '1m', |
105
|
|
|
'algo_dt': '2013-07-05 9:31AM'}, |
106
|
|
|
'expected': [ |
107
|
|
|
'2013-07-03 12:57PM', |
108
|
|
|
'2013-07-03 12:58PM', |
109
|
|
|
'2013-07-03 12:59PM', |
110
|
|
|
'2013-07-03 1:00PM', |
111
|
|
|
'2013-07-05 9:31AM', |
112
|
|
|
] |
113
|
|
|
}, |
114
|
|
|
} |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
def to_timestamp(dt_str): |
118
|
|
|
return pd.Timestamp(dt_str, tz='US/Eastern').tz_convert('UTC') |
119
|
|
|
|
120
|
|
|
|
121
|
|
|
def convert_cases(cases): |
122
|
|
|
""" |
123
|
|
|
Convert raw strings to values comparable with system data. |
124
|
|
|
""" |
125
|
|
|
cases = cases.copy() |
126
|
|
|
for case in cases.values(): |
127
|
|
|
case['input']['algo_dt'] = to_timestamp(case['input']['algo_dt']) |
128
|
|
|
case['expected'] = pd.DatetimeIndex([to_timestamp(dt_str) for dt_str |
129
|
|
|
in case['expected']]) |
130
|
|
|
return cases |
131
|
|
|
|
132
|
|
|
INDEX_TEST_CASES = convert_cases(INDEX_TEST_CASES_RAW) |
133
|
|
|
|
134
|
|
|
|
135
|
|
|
def get_index_at_dt(case_input, env): |
136
|
|
|
history_spec = history.HistorySpec( |
137
|
|
|
case_input['bar_count'], |
138
|
|
|
case_input['frequency'], |
139
|
|
|
None, |
140
|
|
|
False, |
141
|
|
|
env=env, |
142
|
|
|
data_frequency='minute', |
143
|
|
|
) |
144
|
|
|
return history.index_at_dt(history_spec, case_input['algo_dt'], env=env) |
145
|
|
|
|
146
|
|
|
|
147
|
|
|
class TestHistoryIndex(TestCase): |
148
|
|
|
|
149
|
|
|
@classmethod |
150
|
|
|
def setUpClass(cls): |
151
|
|
|
cls.environment = TradingEnvironment() |
152
|
|
|
|
153
|
|
|
@classmethod |
154
|
|
|
def tearDownClass(cls): |
155
|
|
|
del cls.environment |
156
|
|
|
|
157
|
|
|
@parameterized.expand( |
158
|
|
|
[(name, case['input'], case['expected']) |
159
|
|
|
for name, case in INDEX_TEST_CASES.items()] |
160
|
|
|
) |
161
|
|
|
def test_index_at_dt(self, name, case_input, expected): |
162
|
|
|
history_index = get_index_at_dt(case_input, self.environment) |
163
|
|
|
|
164
|
|
|
history_series = pd.Series(index=history_index) |
165
|
|
|
expected_series = pd.Series(index=expected) |
166
|
|
|
|
167
|
|
|
pd.util.testing.assert_series_equal(history_series, expected_series) |
168
|
|
|
|
169
|
|
|
|
170
|
|
|
class TestHistoryContainer(TestCase): |
171
|
|
|
|
172
|
|
|
@classmethod |
173
|
|
|
def setUpClass(cls): |
174
|
|
|
cls.env = TradingEnvironment() |
175
|
|
|
|
176
|
|
|
@classmethod |
177
|
|
|
def tearDownClass(cls): |
178
|
|
|
del cls.env |
179
|
|
|
|
180
|
|
|
def bar_data_dt(self, bar_data, require_unique=True): |
181
|
|
|
""" |
182
|
|
|
Get a dt to associate with the given BarData object. |
183
|
|
|
|
184
|
|
|
If require_unique == True, throw an error if multiple unique dt's are |
185
|
|
|
encountered. Otherwise, return the earliest dt encountered. |
186
|
|
|
""" |
187
|
|
|
dts = {sid_data['dt'] for sid_data in bar_data.values()} |
188
|
|
|
if require_unique and len(dts) > 1: |
189
|
|
|
self.fail("Multiple unique dts ({0}) in {1}".format(dts, bar_data)) |
190
|
|
|
|
191
|
|
|
return sorted(dts)[0] |
192
|
|
|
|
193
|
|
|
@parameterized.expand( |
194
|
|
|
[(name, |
195
|
|
|
case['specs'], |
196
|
|
|
case['sids'], |
197
|
|
|
case['dt'], |
198
|
|
|
case['updates'], |
199
|
|
|
case['expected']) |
200
|
|
|
for name, case in HISTORY_CONTAINER_TEST_CASES.items()] |
201
|
|
|
) |
202
|
|
|
def test_history_container(self, |
203
|
|
|
name, |
204
|
|
|
specs, |
205
|
|
|
sids, |
206
|
|
|
dt, |
207
|
|
|
updates, |
208
|
|
|
expected): |
209
|
|
|
|
210
|
|
|
for spec in specs: |
211
|
|
|
# Sanity check on test input. |
212
|
|
|
self.assertEqual(len(expected[spec.key_str]), len(updates)) |
213
|
|
|
|
214
|
|
|
container = HistoryContainer( |
215
|
|
|
{spec.key_str: spec for spec in specs}, sids, dt, 'minute', |
216
|
|
|
env=self.env, |
217
|
|
|
) |
218
|
|
|
|
219
|
|
|
for update_count, update in enumerate(updates): |
220
|
|
|
|
221
|
|
|
bar_dt = self.bar_data_dt(update) |
222
|
|
|
container.update(update, bar_dt) |
223
|
|
|
|
224
|
|
|
for spec in specs: |
225
|
|
|
pd.util.testing.assert_frame_equal( |
226
|
|
|
container.get_history(spec, bar_dt), |
227
|
|
|
expected[spec.key_str][update_count], |
228
|
|
|
check_dtype=False, |
229
|
|
|
check_column_type=True, |
230
|
|
|
check_index_type=True, |
231
|
|
|
check_frame_type=True, |
232
|
|
|
) |
233
|
|
|
|
234
|
|
|
def test_multiple_specs_on_same_bar(self): |
235
|
|
|
""" |
236
|
|
|
Test that a ffill and non ffill spec both get |
237
|
|
|
the correct results when called on the same tick |
238
|
|
|
""" |
239
|
|
|
spec = history.HistorySpec( |
240
|
|
|
bar_count=3, |
241
|
|
|
frequency='1m', |
242
|
|
|
field='price', |
243
|
|
|
ffill=True, |
244
|
|
|
data_frequency='minute', |
245
|
|
|
env=self.env, |
246
|
|
|
) |
247
|
|
|
no_fill_spec = history.HistorySpec( |
248
|
|
|
bar_count=3, |
249
|
|
|
frequency='1m', |
250
|
|
|
field='price', |
251
|
|
|
ffill=False, |
252
|
|
|
data_frequency='minute', |
253
|
|
|
env=self.env, |
254
|
|
|
) |
255
|
|
|
|
256
|
|
|
specs = {spec.key_str: spec, no_fill_spec.key_str: no_fill_spec} |
257
|
|
|
initial_sids = [1, ] |
258
|
|
|
initial_dt = pd.Timestamp( |
259
|
|
|
'2013-06-28 9:31AM', tz='US/Eastern').tz_convert('UTC') |
260
|
|
|
|
261
|
|
|
container = HistoryContainer( |
262
|
|
|
specs, initial_sids, initial_dt, 'minute', env=self.env, |
263
|
|
|
) |
264
|
|
|
|
265
|
|
|
bar_data = BarData() |
266
|
|
|
container.update(bar_data, initial_dt) |
267
|
|
|
# Add data on bar two of first day. |
268
|
|
|
second_bar_dt = pd.Timestamp( |
269
|
|
|
'2013-06-28 9:32AM', tz='US/Eastern').tz_convert('UTC') |
270
|
|
|
bar_data[1] = { |
271
|
|
|
'price': 10, |
272
|
|
|
'dt': second_bar_dt |
273
|
|
|
} |
274
|
|
|
container.update(bar_data, second_bar_dt) |
275
|
|
|
|
276
|
|
|
third_bar_dt = pd.Timestamp( |
277
|
|
|
'2013-06-28 9:33AM', tz='US/Eastern').tz_convert('UTC') |
278
|
|
|
|
279
|
|
|
del bar_data[1] |
280
|
|
|
|
281
|
|
|
# add nan for 3rd bar |
282
|
|
|
container.update(bar_data, third_bar_dt) |
283
|
|
|
prices = container.get_history(spec, third_bar_dt) |
284
|
|
|
no_fill_prices = container.get_history(no_fill_spec, third_bar_dt) |
285
|
|
|
self.assertEqual(prices.values[-1], 10) |
286
|
|
|
self.assertTrue(np.isnan(no_fill_prices.values[-1]), |
287
|
|
|
"Last price should be np.nan") |
288
|
|
|
|
289
|
|
|
def test_container_nans_and_daily_roll(self): |
290
|
|
|
|
291
|
|
|
spec = history.HistorySpec( |
292
|
|
|
bar_count=3, |
293
|
|
|
frequency='1d', |
294
|
|
|
field='price', |
295
|
|
|
ffill=True, |
296
|
|
|
data_frequency='minute', |
297
|
|
|
env=self.env, |
298
|
|
|
) |
299
|
|
|
specs = {spec.key_str: spec} |
300
|
|
|
initial_sids = [1, ] |
301
|
|
|
initial_dt = pd.Timestamp( |
302
|
|
|
'2013-06-28 9:31AM', tz='US/Eastern').tz_convert('UTC') |
303
|
|
|
|
304
|
|
|
container = HistoryContainer( |
305
|
|
|
specs, initial_sids, initial_dt, 'minute', env=self.env, |
306
|
|
|
) |
307
|
|
|
|
308
|
|
|
bar_data = BarData() |
309
|
|
|
container.update(bar_data, initial_dt) |
310
|
|
|
# Since there was no backfill because of no db. |
311
|
|
|
# And no first bar of data, so all values should be nans. |
312
|
|
|
prices = container.get_history(spec, initial_dt) |
313
|
|
|
nan_values = np.isnan(prices[1]) |
314
|
|
|
self.assertTrue(all(nan_values), nan_values) |
315
|
|
|
|
316
|
|
|
# Add data on bar two of first day. |
317
|
|
|
second_bar_dt = pd.Timestamp( |
318
|
|
|
'2013-06-28 9:32AM', tz='US/Eastern').tz_convert('UTC') |
319
|
|
|
|
320
|
|
|
bar_data[1] = { |
321
|
|
|
'price': 10, |
322
|
|
|
'dt': second_bar_dt |
323
|
|
|
} |
324
|
|
|
container.update(bar_data, second_bar_dt) |
325
|
|
|
|
326
|
|
|
prices = container.get_history(spec, second_bar_dt) |
327
|
|
|
# Prices should be |
328
|
|
|
# 1 |
329
|
|
|
# 2013-06-26 20:00:00+00:00 NaN |
330
|
|
|
# 2013-06-27 20:00:00+00:00 NaN |
331
|
|
|
# 2013-06-28 13:32:00+00:00 10 |
332
|
|
|
|
333
|
|
|
self.assertTrue(np.isnan(prices[1].ix[0])) |
334
|
|
|
self.assertTrue(np.isnan(prices[1].ix[1])) |
335
|
|
|
self.assertEqual(prices[1].ix[2], 10) |
336
|
|
|
|
337
|
|
|
third_bar_dt = pd.Timestamp( |
338
|
|
|
'2013-06-28 9:33AM', tz='US/Eastern').tz_convert('UTC') |
339
|
|
|
|
340
|
|
|
del bar_data[1] |
341
|
|
|
|
342
|
|
|
container.update(bar_data, third_bar_dt) |
343
|
|
|
|
344
|
|
|
prices = container.get_history(spec, third_bar_dt) |
345
|
|
|
# The one should be forward filled |
346
|
|
|
|
347
|
|
|
# Prices should be |
348
|
|
|
# 1 |
349
|
|
|
# 2013-06-26 20:00:00+00:00 NaN |
350
|
|
|
# 2013-06-27 20:00:00+00:00 NaN |
351
|
|
|
# 2013-06-28 13:33:00+00:00 10 |
352
|
|
|
|
353
|
|
|
self.assertEquals(prices[1][third_bar_dt], 10) |
354
|
|
|
|
355
|
|
|
# Note that we did not fill in data at the close. |
356
|
|
|
# There was a bug where a nan was being introduced because of the |
357
|
|
|
# last value of 'raw' data was used, instead of a ffilled close price. |
358
|
|
|
|
359
|
|
|
day_two_first_bar_dt = pd.Timestamp( |
360
|
|
|
'2013-07-01 9:31AM', tz='US/Eastern').tz_convert('UTC') |
361
|
|
|
|
362
|
|
|
bar_data[1] = { |
363
|
|
|
'price': 20, |
364
|
|
|
'dt': day_two_first_bar_dt |
365
|
|
|
} |
366
|
|
|
|
367
|
|
|
container.update(bar_data, day_two_first_bar_dt) |
368
|
|
|
|
369
|
|
|
prices = container.get_history(spec, day_two_first_bar_dt) |
370
|
|
|
|
371
|
|
|
# Prices Should Be |
372
|
|
|
|
373
|
|
|
# 1 |
374
|
|
|
# 2013-06-27 20:00:00+00:00 nan |
375
|
|
|
# 2013-06-28 20:00:00+00:00 10 |
376
|
|
|
# 2013-07-01 13:31:00+00:00 20 |
377
|
|
|
|
378
|
|
|
self.assertTrue(np.isnan(prices[1].ix[0])) |
379
|
|
|
self.assertEqual(prices[1].ix[1], 10) |
380
|
|
|
self.assertEqual(prices[1].ix[2], 20) |
381
|
|
|
|
382
|
|
|
# Clear out the bar data |
383
|
|
|
|
384
|
|
|
del bar_data[1] |
385
|
|
|
|
386
|
|
|
day_three_first_bar_dt = pd.Timestamp( |
387
|
|
|
'2013-07-02 9:31AM', tz='US/Eastern').tz_convert('UTC') |
388
|
|
|
|
389
|
|
|
container.update(bar_data, day_three_first_bar_dt) |
390
|
|
|
|
391
|
|
|
prices = container.get_history(spec, day_three_first_bar_dt) |
392
|
|
|
|
393
|
|
|
# 1 |
394
|
|
|
# 2013-06-28 20:00:00+00:00 10 |
395
|
|
|
# 2013-07-01 20:00:00+00:00 20 |
396
|
|
|
# 2013-07-02 13:31:00+00:00 20 |
397
|
|
|
|
398
|
|
|
self.assertTrue(prices[1].ix[0], 10) |
399
|
|
|
self.assertTrue(prices[1].ix[1], 20) |
400
|
|
|
self.assertTrue(prices[1].ix[2], 20) |
401
|
|
|
|
402
|
|
|
day_four_first_bar_dt = pd.Timestamp( |
403
|
|
|
'2013-07-03 9:31AM', tz='US/Eastern').tz_convert('UTC') |
404
|
|
|
|
405
|
|
|
container.update(bar_data, day_four_first_bar_dt) |
406
|
|
|
|
407
|
|
|
prices = container.get_history(spec, day_four_first_bar_dt) |
408
|
|
|
|
409
|
|
|
# 1 |
410
|
|
|
# 2013-07-01 20:00:00+00:00 20 |
411
|
|
|
# 2013-07-02 20:00:00+00:00 20 |
412
|
|
|
# 2013-07-03 13:31:00+00:00 20 |
413
|
|
|
|
414
|
|
|
self.assertEqual(prices[1].ix[0], 20) |
415
|
|
|
self.assertEqual(prices[1].ix[1], 20) |
416
|
|
|
self.assertEqual(prices[1].ix[2], 20) |
417
|
|
|
|
418
|
|
|
|
419
|
|
|
class TestHistoryAlgo(TestCase): |
420
|
|
|
|
421
|
|
|
@classmethod |
422
|
|
|
def setUpClass(cls): |
423
|
|
|
cls.env = trading.TradingEnvironment() |
424
|
|
|
cls.env.write_data(equities_identifiers=[0, 1]) |
425
|
|
|
|
426
|
|
|
@classmethod |
427
|
|
|
def tearDownClass(cls): |
428
|
|
|
del cls.env |
429
|
|
|
|
430
|
|
|
def setUp(self): |
431
|
|
|
np.random.seed(123) |
432
|
|
|
|
433
|
|
|
def test_history_daily(self): |
434
|
|
|
bar_count = 3 |
435
|
|
|
algo_text = """ |
436
|
|
|
from zipline.api import history, add_history |
437
|
|
|
|
438
|
|
|
def initialize(context): |
439
|
|
|
add_history(bar_count={bar_count}, frequency='1d', field='price') |
440
|
|
|
context.history_trace = [] |
441
|
|
|
|
442
|
|
|
def handle_data(context, data): |
443
|
|
|
prices = history(bar_count={bar_count}, frequency='1d', field='price') |
444
|
|
|
context.history_trace.append(prices) |
445
|
|
|
""".format(bar_count=bar_count).strip() |
446
|
|
|
|
447
|
|
|
# March 2006 |
448
|
|
|
# Su Mo Tu We Th Fr Sa |
449
|
|
|
# 1 2 3 4 |
450
|
|
|
# 5 6 7 8 9 10 11 |
451
|
|
|
# 12 13 14 15 16 17 18 |
452
|
|
|
# 19 20 21 22 23 24 25 |
453
|
|
|
# 26 27 28 29 30 31 |
454
|
|
|
|
455
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
456
|
|
|
end = pd.Timestamp('2006-03-30', tz='UTC') |
457
|
|
|
|
458
|
|
|
sim_params = factory.create_simulation_parameters( |
459
|
|
|
start=start, end=end, data_frequency='daily', env=self.env, |
460
|
|
|
) |
461
|
|
|
|
462
|
|
|
_, df = factory.create_test_df_source(sim_params, self.env) |
463
|
|
|
df = df.astype(np.float64) |
464
|
|
|
source = DataFrameSource(df) |
465
|
|
|
|
466
|
|
|
test_algo = TradingAlgorithm( |
467
|
|
|
script=algo_text, |
468
|
|
|
data_frequency='daily', |
469
|
|
|
sim_params=sim_params, |
470
|
|
|
env=TestHistoryAlgo.env, |
471
|
|
|
) |
472
|
|
|
|
473
|
|
|
output = test_algo.run(source) |
474
|
|
|
self.assertIsNotNone(output) |
475
|
|
|
|
476
|
|
|
history_trace = test_algo.history_trace |
477
|
|
|
|
478
|
|
|
for i, received in enumerate(history_trace[bar_count - 1:]): |
479
|
|
|
expected = df.iloc[i:i + bar_count] |
480
|
|
|
assert_frame_equal(expected, received) |
481
|
|
|
|
482
|
|
|
def test_history_daily_data_1m_window(self): |
483
|
|
|
algo_text = """ |
484
|
|
|
from zipline.api import history, add_history |
485
|
|
|
|
486
|
|
|
def initialize(context): |
487
|
|
|
add_history(bar_count=1, frequency='1m', field='price') |
488
|
|
|
|
489
|
|
|
def handle_data(context, data): |
490
|
|
|
prices = history(bar_count=3, frequency='1d', field='price') |
491
|
|
|
""".strip() |
492
|
|
|
|
493
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
494
|
|
|
end = pd.Timestamp('2006-03-30', tz='UTC') |
495
|
|
|
|
496
|
|
|
sim_params = factory.create_simulation_parameters( |
497
|
|
|
start=start, end=end) |
498
|
|
|
|
499
|
|
|
with self.assertRaises(IncompatibleHistoryFrequency): |
500
|
|
|
algo = TradingAlgorithm( |
501
|
|
|
script=algo_text, |
502
|
|
|
data_frequency='daily', |
503
|
|
|
sim_params=sim_params, |
504
|
|
|
env=TestHistoryAlgo.env, |
505
|
|
|
) |
506
|
|
|
source = RandomWalkSource(start=start, end=end) |
507
|
|
|
algo.run(source) |
508
|
|
|
|
509
|
|
|
def test_basic_history(self): |
510
|
|
|
algo_text = """ |
511
|
|
|
from zipline.api import history, add_history |
512
|
|
|
|
513
|
|
|
def initialize(context): |
514
|
|
|
add_history(bar_count=2, frequency='1d', field='price') |
515
|
|
|
|
516
|
|
|
def handle_data(context, data): |
517
|
|
|
prices = history(bar_count=2, frequency='1d', field='price') |
518
|
|
|
prices['prices_times_two'] = prices[1] * 2 |
519
|
|
|
context.last_prices = prices |
520
|
|
|
""".strip() |
521
|
|
|
|
522
|
|
|
# March 2006 |
523
|
|
|
# Su Mo Tu We Th Fr Sa |
524
|
|
|
# 1 2 3 4 |
525
|
|
|
# 5 6 7 8 9 10 11 |
526
|
|
|
# 12 13 14 15 16 17 18 |
527
|
|
|
# 19 20 21 22 23 24 25 |
528
|
|
|
# 26 27 28 29 30 31 |
529
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
530
|
|
|
end = pd.Timestamp('2006-03-21', tz='UTC') |
531
|
|
|
|
532
|
|
|
sim_params = factory.create_simulation_parameters( |
533
|
|
|
start=start, end=end) |
534
|
|
|
|
535
|
|
|
test_algo = TradingAlgorithm( |
536
|
|
|
script=algo_text, |
537
|
|
|
data_frequency='minute', |
538
|
|
|
sim_params=sim_params, |
539
|
|
|
env=TestHistoryAlgo.env, |
540
|
|
|
) |
541
|
|
|
|
542
|
|
|
source = RandomWalkSource(start=start, |
543
|
|
|
end=end) |
544
|
|
|
output = test_algo.run(source) |
545
|
|
|
self.assertIsNotNone(output) |
546
|
|
|
|
547
|
|
|
last_prices = test_algo.last_prices[0] |
548
|
|
|
oldest_dt = pd.Timestamp( |
549
|
|
|
'2006-03-20 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
550
|
|
|
newest_dt = pd.Timestamp( |
551
|
|
|
'2006-03-21 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
552
|
|
|
|
553
|
|
|
self.assertEquals(oldest_dt, last_prices.index[0]) |
554
|
|
|
self.assertEquals(newest_dt, last_prices.index[-1]) |
555
|
|
|
|
556
|
|
|
# Random, depends on seed |
557
|
|
|
self.assertEquals(139.36946942498648, last_prices[oldest_dt]) |
558
|
|
|
self.assertEquals(180.15661995395106, last_prices[newest_dt]) |
559
|
|
|
|
560
|
|
|
@parameterized.expand([ |
561
|
|
|
('daily',), |
562
|
|
|
('minute',), |
563
|
|
|
]) |
564
|
|
|
def test_history_in_bts_price_days(self, data_freq): |
565
|
|
|
""" |
566
|
|
|
Test calling history() in before_trading_start() |
567
|
|
|
with daily price bars. |
568
|
|
|
""" |
569
|
|
|
algo_text = """ |
570
|
|
|
from zipline.api import history |
571
|
|
|
|
572
|
|
|
def initialize(context): |
573
|
|
|
context.first_bts_call = True |
574
|
|
|
|
575
|
|
|
def before_trading_start(context, data): |
576
|
|
|
if not context.first_bts_call: |
577
|
|
|
prices_bts = history(bar_count=3, frequency='1d', field='price') |
578
|
|
|
context.prices_bts = prices_bts |
579
|
|
|
context.first_bts_call = False |
580
|
|
|
|
581
|
|
|
def handle_data(context, data): |
582
|
|
|
prices_hd = history(bar_count=3, frequency='1d', field='price') |
583
|
|
|
context.prices_hd = prices_hd |
584
|
|
|
""".strip() |
585
|
|
|
|
586
|
|
|
# March 2006 |
587
|
|
|
# Su Mo Tu We Th Fr Sa |
588
|
|
|
# 1 2 3 4 |
589
|
|
|
# 5 6 7 8 9 10 11 |
590
|
|
|
# 12 13 14 15 16 17 18 |
591
|
|
|
# 19 20 21 22 23 24 25 |
592
|
|
|
# 26 27 28 29 30 31 |
593
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
594
|
|
|
end = pd.Timestamp('2006-03-22', tz='UTC') |
595
|
|
|
|
596
|
|
|
sim_params = factory.create_simulation_parameters( |
597
|
|
|
start=start, end=end, data_frequency=data_freq) |
598
|
|
|
|
599
|
|
|
test_algo = TradingAlgorithm( |
600
|
|
|
script=algo_text, |
601
|
|
|
data_frequency=data_freq, |
602
|
|
|
sim_params=sim_params, |
603
|
|
|
env=TestHistoryAlgo.env, |
604
|
|
|
) |
605
|
|
|
|
606
|
|
|
source = RandomWalkSource(start=start, end=end, freq=data_freq) |
607
|
|
|
output = test_algo.run(source) |
608
|
|
|
self.assertIsNotNone(output) |
609
|
|
|
|
610
|
|
|
# Get the prices recorded by history() within handle_data() |
611
|
|
|
prices_hd = test_algo.prices_hd[0] |
612
|
|
|
# Get the prices recorded by history() within BTS |
613
|
|
|
prices_bts = test_algo.prices_bts[0] |
614
|
|
|
|
615
|
|
|
# before_trading_start() is timestamp'd to midnight prior to |
616
|
|
|
# the day's trading. Since no equity trades occur at midnight, |
617
|
|
|
# the price recorded for this time is forward filled from the |
618
|
|
|
# last trade - typically ~4pm the previous day. This results |
619
|
|
|
# in the OHLCV data recorded by history() in BTS lagging |
620
|
|
|
# that recorded by history in handle_data(). |
621
|
|
|
# The trace of the pricing data from history() called within |
622
|
|
|
# handle_data() vs. BTS in the above algo is as follows: |
623
|
|
|
|
624
|
|
|
# When called within handle_data() |
625
|
|
|
# --------------------------------- |
626
|
|
|
# 2006-03-20 21:00:00 139.369469 |
627
|
|
|
# 2006-03-21 21:00:00 180.156620 |
628
|
|
|
# 2006-03-22 21:00:00 221.344654 |
629
|
|
|
|
630
|
|
|
# When called within BTS |
631
|
|
|
# --------------------------------- |
632
|
|
|
# 2006-03-17 21:00:00 NaN |
633
|
|
|
# 2006-03-20 21:00:00 139.369469 |
634
|
|
|
# 2006-03-22 00:00:00 180.156620 |
635
|
|
|
|
636
|
|
|
# Get relevant Timestamps for the history() call within handle_data() |
637
|
|
|
oldest_hd_dt = pd.Timestamp( |
638
|
|
|
'2006-03-20 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
639
|
|
|
penultimate_hd_dt = pd.Timestamp( |
640
|
|
|
'2006-03-21 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
641
|
|
|
|
642
|
|
|
# Get relevant Timestamps for the history() call within BTS |
643
|
|
|
penultimate_bts_dt = pd.Timestamp( |
644
|
|
|
'2006-03-20 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
645
|
|
|
newest_bts_dt = normalize_date(pd.Timestamp( |
646
|
|
|
'2006-03-22 04:00 PM', tz='US/Eastern').tz_convert('UTC')) |
647
|
|
|
|
648
|
|
|
if data_freq == 'daily': |
649
|
|
|
# If we're dealing with daily data, then we record |
650
|
|
|
# canonicalized timestamps, so make conversion here: |
651
|
|
|
oldest_hd_dt = normalize_date(oldest_hd_dt) |
652
|
|
|
penultimate_hd_dt = normalize_date(penultimate_hd_dt) |
653
|
|
|
penultimate_bts_dt = normalize_date(penultimate_bts_dt) |
654
|
|
|
|
655
|
|
|
self.assertEquals(prices_hd[oldest_hd_dt], |
656
|
|
|
prices_bts[penultimate_bts_dt]) |
657
|
|
|
self.assertEquals(prices_hd[penultimate_hd_dt], |
658
|
|
|
prices_bts[newest_bts_dt]) |
659
|
|
|
|
660
|
|
|
def test_history_in_bts_price_minutes(self): |
661
|
|
|
""" |
662
|
|
|
Test calling history() in before_trading_start() |
663
|
|
|
with minutely price bars. |
664
|
|
|
""" |
665
|
|
|
algo_text = """ |
666
|
|
|
from zipline.api import history |
667
|
|
|
|
668
|
|
|
def initialize(context): |
669
|
|
|
context.first_bts_call = True |
670
|
|
|
|
671
|
|
|
def before_trading_start(context, data): |
672
|
|
|
if not context.first_bts_call: |
673
|
|
|
price_bts = history(bar_count=1, frequency='1m', field='price') |
674
|
|
|
context.price_bts = price_bts |
675
|
|
|
context.first_bts_call = False |
676
|
|
|
|
677
|
|
|
def handle_data(context, data): |
678
|
|
|
pass |
679
|
|
|
|
680
|
|
|
""".strip() |
681
|
|
|
|
682
|
|
|
# March 2006 |
683
|
|
|
# Su Mo Tu We Th Fr Sa |
684
|
|
|
# 1 2 3 4 |
685
|
|
|
# 5 6 7 8 9 10 11 |
686
|
|
|
# 12 13 14 15 16 17 18 |
687
|
|
|
# 19 20 21 22 23 24 25 |
688
|
|
|
# 26 27 28 29 30 31 |
689
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
690
|
|
|
end = pd.Timestamp('2006-03-22', tz='UTC') |
691
|
|
|
|
692
|
|
|
sim_params = factory.create_simulation_parameters( |
693
|
|
|
start=start, end=end) |
694
|
|
|
|
695
|
|
|
test_algo = TradingAlgorithm( |
696
|
|
|
script=algo_text, |
697
|
|
|
data_frequency='minute', |
698
|
|
|
sim_params=sim_params, |
699
|
|
|
env=TestHistoryAlgo.env, |
700
|
|
|
) |
701
|
|
|
|
702
|
|
|
source = RandomWalkSource(start=start, end=end) |
703
|
|
|
output = test_algo.run(source) |
704
|
|
|
self.assertIsNotNone(output) |
705
|
|
|
|
706
|
|
|
# Get the prices recorded by history() within BTS |
707
|
|
|
price_bts_0 = test_algo.price_bts[0] |
708
|
|
|
price_bts_1 = test_algo.price_bts[1] |
709
|
|
|
|
710
|
|
|
# The prices recorded by history() in BTS should |
711
|
|
|
# be the closing price of the previous day, which are: |
712
|
|
|
# |
713
|
|
|
# sid | close on 2006-03-21 |
714
|
|
|
# ---------------------------- |
715
|
|
|
# 0 | 180.15661995395106 |
716
|
|
|
# 1 | 578.41665003444723 |
717
|
|
|
|
718
|
|
|
# These are not 'real' price values. They are the product of |
719
|
|
|
# RandonWalkSource, which produces random walk OHLCV timeseries. For a |
720
|
|
|
# given seed these values are deterministc. |
721
|
|
|
self.assertEquals(180.15661995395106, price_bts_0.ix[0]) |
722
|
|
|
self.assertEquals(578.41665003444723, price_bts_1.ix[0]) |
723
|
|
|
|
724
|
|
|
@parameterized.expand([ |
725
|
|
|
('daily',), |
726
|
|
|
('minute',), |
727
|
|
|
]) |
728
|
|
|
def test_history_in_bts_volume_days(self, data_freq): |
729
|
|
|
""" |
730
|
|
|
Test calling history() in before_trading_start() |
731
|
|
|
with daily volume bars. |
732
|
|
|
""" |
733
|
|
|
algo_text = """ |
734
|
|
|
from zipline.api import history |
735
|
|
|
|
736
|
|
|
def initialize(context): |
737
|
|
|
context.first_bts_call = True |
738
|
|
|
|
739
|
|
|
def before_trading_start(context, data): |
740
|
|
|
if not context.first_bts_call: |
741
|
|
|
volume_bts = history(bar_count=2, frequency='1d', field='volume') |
742
|
|
|
context.volume_bts = volume_bts |
743
|
|
|
context.first_bts_call = False |
744
|
|
|
|
745
|
|
|
def handle_data(context, data): |
746
|
|
|
volume_hd = history(bar_count=2, frequency='1d', field='volume') |
747
|
|
|
context.volume_hd = volume_hd |
748
|
|
|
""".strip() |
749
|
|
|
|
750
|
|
|
# March 2006 |
751
|
|
|
# Su Mo Tu We Th Fr Sa |
752
|
|
|
# 1 2 3 4 |
753
|
|
|
# 5 6 7 8 9 10 11 |
754
|
|
|
# 12 13 14 15 16 17 18 |
755
|
|
|
# 19 20 21 22 23 24 25 |
756
|
|
|
# 26 27 28 29 30 31 |
757
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
758
|
|
|
end = pd.Timestamp('2006-03-22', tz='UTC') |
759
|
|
|
|
760
|
|
|
sim_params = factory.create_simulation_parameters( |
761
|
|
|
start=start, end=end, data_frequency=data_freq) |
762
|
|
|
|
763
|
|
|
test_algo = TradingAlgorithm( |
764
|
|
|
script=algo_text, |
765
|
|
|
data_frequency=data_freq, |
766
|
|
|
sim_params=sim_params, |
767
|
|
|
env=TestHistoryAlgo.env, |
768
|
|
|
) |
769
|
|
|
|
770
|
|
|
source = RandomWalkSource(start=start, end=end, freq=data_freq) |
771
|
|
|
output = test_algo.run(source) |
772
|
|
|
self.assertIsNotNone(output) |
773
|
|
|
|
774
|
|
|
# Get the volume recorded by history() within handle_data() |
775
|
|
|
volume_hd_0 = test_algo.volume_hd[0] |
776
|
|
|
volume_hd_1 = test_algo.volume_hd[1] |
777
|
|
|
# Get the volume recorded by history() within BTS |
778
|
|
|
volume_bts_0 = test_algo.volume_bts[0] |
779
|
|
|
volume_bts_1 = test_algo.volume_bts[1] |
780
|
|
|
|
781
|
|
|
penultimate_hd_dt = pd.Timestamp( |
782
|
|
|
'2006-03-21 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
783
|
|
|
# Midnight of the day on which BTS is invoked. |
784
|
|
|
newest_bts_dt = normalize_date(pd.Timestamp( |
785
|
|
|
'2006-03-22 04:00 PM', tz='US/Eastern').tz_convert('UTC')) |
786
|
|
|
|
787
|
|
|
if data_freq == 'daily': |
788
|
|
|
# If we're dealing with daily data, then we record |
789
|
|
|
# canonicalized timestamps, so make conversion here: |
790
|
|
|
penultimate_hd_dt = normalize_date(penultimate_hd_dt) |
791
|
|
|
|
792
|
|
|
# When history() is called in BTS, its 'current' volume value |
793
|
|
|
# should equal the sum of the previous day. |
794
|
|
|
self.assertEquals(volume_hd_0[penultimate_hd_dt], |
795
|
|
|
volume_bts_0[newest_bts_dt]) |
796
|
|
|
self.assertEquals(volume_hd_1[penultimate_hd_dt], |
797
|
|
|
volume_bts_1[newest_bts_dt]) |
798
|
|
|
|
799
|
|
|
def test_history_in_bts_volume_minutes(self): |
800
|
|
|
""" |
801
|
|
|
Test calling history() in before_trading_start() |
802
|
|
|
with minutely volume bars. |
803
|
|
|
""" |
804
|
|
|
algo_text = """ |
805
|
|
|
from zipline.api import history |
806
|
|
|
|
807
|
|
|
def initialize(context): |
808
|
|
|
context.first_bts_call = True |
809
|
|
|
|
810
|
|
|
def before_trading_start(context, data): |
811
|
|
|
if not context.first_bts_call: |
812
|
|
|
volume_bts = history(bar_count=2, frequency='1m', field='volume') |
813
|
|
|
context.volume_bts = volume_bts |
814
|
|
|
context.first_bts_call = False |
815
|
|
|
|
816
|
|
|
def handle_data(context, data): |
817
|
|
|
pass |
818
|
|
|
""".strip() |
819
|
|
|
|
820
|
|
|
# March 2006 |
821
|
|
|
# Su Mo Tu We Th Fr Sa |
822
|
|
|
# 1 2 3 4 |
823
|
|
|
# 5 6 7 8 9 10 11 |
824
|
|
|
# 12 13 14 15 16 17 18 |
825
|
|
|
# 19 20 21 22 23 24 25 |
826
|
|
|
# 26 27 28 29 30 31 |
827
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
828
|
|
|
end = pd.Timestamp('2006-03-22', tz='UTC') |
829
|
|
|
|
830
|
|
|
sim_params = factory.create_simulation_parameters( |
831
|
|
|
start=start, end=end) |
832
|
|
|
|
833
|
|
|
test_algo = TradingAlgorithm( |
834
|
|
|
script=algo_text, |
835
|
|
|
data_frequency='minute', |
836
|
|
|
sim_params=sim_params, |
837
|
|
|
env=TestHistoryAlgo.env, |
838
|
|
|
) |
839
|
|
|
|
840
|
|
|
source = RandomWalkSource(start=start, end=end) |
841
|
|
|
output = test_algo.run(source) |
842
|
|
|
self.assertIsNotNone(output) |
843
|
|
|
|
844
|
|
|
# Get the volumes recorded for sid 0 by history() within BTS |
845
|
|
|
volume_bts_0 = test_algo.volume_bts[0] |
846
|
|
|
# Get the volumes recorded for sid 1 by history() within BTS |
847
|
|
|
volume_bts_1 = test_algo.volume_bts[1] |
848
|
|
|
|
849
|
|
|
# The values recorded on 2006-03-22 by history() in BTS |
850
|
|
|
# should equal the final volume values for the trading |
851
|
|
|
# day 2006-03-21: |
852
|
|
|
# 0 1 |
853
|
|
|
# 2006-03-21 20:59:00 215548 439908 |
854
|
|
|
# 2006-03-21 21:00:00 985645 664313 |
855
|
|
|
# |
856
|
|
|
# Note: These are not 'real' volume values. They are the product of |
857
|
|
|
# RandonWalkSource, which produces random walk OHLCV timeseries. For a |
858
|
|
|
# given seed these values are deterministc. |
859
|
|
|
self.assertEquals(215548, volume_bts_0.ix[0]) |
860
|
|
|
self.assertEquals(985645, volume_bts_0.ix[1]) |
861
|
|
|
self.assertEquals(439908, volume_bts_1.ix[0]) |
862
|
|
|
self.assertEquals(664313, volume_bts_1.ix[1]) |
863
|
|
|
|
864
|
|
|
def test_basic_history_one_day(self): |
865
|
|
|
algo_text = """ |
866
|
|
|
from zipline.api import history, add_history |
867
|
|
|
|
868
|
|
|
def initialize(context): |
869
|
|
|
add_history(bar_count=1, frequency='1d', field='price') |
870
|
|
|
|
871
|
|
|
def handle_data(context, data): |
872
|
|
|
prices = history(bar_count=1, frequency='1d', field='price') |
873
|
|
|
context.last_prices = prices |
874
|
|
|
""".strip() |
875
|
|
|
|
876
|
|
|
# March 2006 |
877
|
|
|
# Su Mo Tu We Th Fr Sa |
878
|
|
|
# 1 2 3 4 |
879
|
|
|
# 5 6 7 8 9 10 11 |
880
|
|
|
# 12 13 14 15 16 17 18 |
881
|
|
|
# 19 20 21 22 23 24 25 |
882
|
|
|
# 26 27 28 29 30 31 |
883
|
|
|
|
884
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
885
|
|
|
end = pd.Timestamp('2006-03-21', tz='UTC') |
886
|
|
|
|
887
|
|
|
sim_params = factory.create_simulation_parameters( |
888
|
|
|
start=start, end=end) |
889
|
|
|
|
890
|
|
|
test_algo = TradingAlgorithm( |
891
|
|
|
script=algo_text, |
892
|
|
|
data_frequency='minute', |
893
|
|
|
sim_params=sim_params, |
894
|
|
|
env=TestHistoryAlgo.env, |
895
|
|
|
) |
896
|
|
|
|
897
|
|
|
source = RandomWalkSource(start=start, |
898
|
|
|
end=end) |
899
|
|
|
output = test_algo.run(source) |
900
|
|
|
|
901
|
|
|
self.assertIsNotNone(output) |
902
|
|
|
|
903
|
|
|
last_prices = test_algo.last_prices[0] |
904
|
|
|
# oldest and newest should be the same if there is only 1 bar |
905
|
|
|
oldest_dt = pd.Timestamp( |
906
|
|
|
'2006-03-21 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
907
|
|
|
newest_dt = pd.Timestamp( |
908
|
|
|
'2006-03-21 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
909
|
|
|
|
910
|
|
|
self.assertEquals(oldest_dt, last_prices.index[0]) |
911
|
|
|
self.assertEquals(newest_dt, last_prices.index[-1]) |
912
|
|
|
|
913
|
|
|
# Random, depends on seed |
914
|
|
|
self.assertEquals(180.15661995395106, last_prices[oldest_dt]) |
915
|
|
|
self.assertEquals(180.15661995395106, last_prices[newest_dt]) |
916
|
|
|
|
917
|
|
|
def test_basic_history_positional_args(self): |
918
|
|
|
""" |
919
|
|
|
Ensure that positional args work. |
920
|
|
|
""" |
921
|
|
|
algo_text = """ |
922
|
|
|
from zipline.api import history, add_history |
923
|
|
|
|
924
|
|
|
def initialize(context): |
925
|
|
|
add_history(2, '1d', 'price') |
926
|
|
|
|
927
|
|
|
def handle_data(context, data): |
928
|
|
|
|
929
|
|
|
prices = history(2, '1d', 'price') |
930
|
|
|
context.last_prices = prices |
931
|
|
|
""".strip() |
932
|
|
|
|
933
|
|
|
# March 2006 |
934
|
|
|
# Su Mo Tu We Th Fr Sa |
935
|
|
|
# 1 2 3 4 |
936
|
|
|
# 5 6 7 8 9 10 11 |
937
|
|
|
# 12 13 14 15 16 17 18 |
938
|
|
|
# 19 20 21 22 23 24 25 |
939
|
|
|
# 26 27 28 29 30 31 |
940
|
|
|
|
941
|
|
|
start = pd.Timestamp('2006-03-20', tz='UTC') |
942
|
|
|
end = pd.Timestamp('2006-03-21', tz='UTC') |
943
|
|
|
|
944
|
|
|
sim_params = factory.create_simulation_parameters( |
945
|
|
|
start=start, end=end) |
946
|
|
|
|
947
|
|
|
test_algo = TradingAlgorithm( |
948
|
|
|
script=algo_text, |
949
|
|
|
data_frequency='minute', |
950
|
|
|
sim_params=sim_params, |
951
|
|
|
env=TestHistoryAlgo.env, |
952
|
|
|
) |
953
|
|
|
|
954
|
|
|
source = RandomWalkSource(start=start, |
955
|
|
|
end=end) |
956
|
|
|
output = test_algo.run(source) |
957
|
|
|
self.assertIsNotNone(output) |
958
|
|
|
|
959
|
|
|
last_prices = test_algo.last_prices[0] |
960
|
|
|
oldest_dt = pd.Timestamp( |
961
|
|
|
'2006-03-20 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
962
|
|
|
newest_dt = pd.Timestamp( |
963
|
|
|
'2006-03-21 4:00 PM', tz='US/Eastern').tz_convert('UTC') |
964
|
|
|
|
965
|
|
|
self.assertEquals(oldest_dt, last_prices.index[0]) |
966
|
|
|
self.assertEquals(newest_dt, last_prices.index[-1]) |
967
|
|
|
|
968
|
|
|
self.assertEquals(139.36946942498648, last_prices[oldest_dt]) |
969
|
|
|
self.assertEquals(180.15661995395106, last_prices[newest_dt]) |
970
|
|
|
|
971
|
|
|
def test_history_with_volume(self): |
972
|
|
|
algo_text = """ |
973
|
|
|
from zipline.api import history, add_history, record |
974
|
|
|
|
975
|
|
|
def initialize(context): |
976
|
|
|
add_history(3, '1d', 'volume') |
977
|
|
|
|
978
|
|
|
def handle_data(context, data): |
979
|
|
|
volume = history(3, '1d', 'volume') |
980
|
|
|
|
981
|
|
|
record(current_volume=volume[0].ix[-1]) |
982
|
|
|
""".strip() |
983
|
|
|
|
984
|
|
|
# April 2007 |
985
|
|
|
# Su Mo Tu We Th Fr Sa |
986
|
|
|
# 1 2 3 4 5 6 7 |
987
|
|
|
# 8 9 10 11 12 13 14 |
988
|
|
|
# 15 16 17 18 19 20 21 |
989
|
|
|
# 22 23 24 25 26 27 28 |
990
|
|
|
# 29 30 |
991
|
|
|
|
992
|
|
|
start = pd.Timestamp('2007-04-10', tz='UTC') |
993
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
994
|
|
|
|
995
|
|
|
sim_params = SimulationParameters( |
996
|
|
|
period_start=start, |
997
|
|
|
period_end=end, |
998
|
|
|
capital_base=float("1.0e5"), |
999
|
|
|
data_frequency='minute', |
1000
|
|
|
emission_rate='minute' |
1001
|
|
|
) |
1002
|
|
|
|
1003
|
|
|
test_algo = TradingAlgorithm( |
1004
|
|
|
script=algo_text, |
1005
|
|
|
data_frequency='minute', |
1006
|
|
|
sim_params=sim_params, |
1007
|
|
|
env=TestHistoryAlgo.env, |
1008
|
|
|
) |
1009
|
|
|
|
1010
|
|
|
source = RandomWalkSource(start=start, |
1011
|
|
|
end=end) |
1012
|
|
|
output = test_algo.run(source) |
1013
|
|
|
|
1014
|
|
|
np.testing.assert_equal(output.ix[0, 'current_volume'], |
1015
|
|
|
212218404.0) |
1016
|
|
|
|
1017
|
|
|
def test_history_with_high(self): |
1018
|
|
|
algo_text = """ |
1019
|
|
|
from zipline.api import history, add_history, record |
1020
|
|
|
|
1021
|
|
|
def initialize(context): |
1022
|
|
|
add_history(3, '1d', 'high') |
1023
|
|
|
|
1024
|
|
|
def handle_data(context, data): |
1025
|
|
|
highs = history(3, '1d', 'high') |
1026
|
|
|
|
1027
|
|
|
record(current_high=highs[0].ix[-1]) |
1028
|
|
|
""".strip() |
1029
|
|
|
|
1030
|
|
|
# April 2007 |
1031
|
|
|
# Su Mo Tu We Th Fr Sa |
1032
|
|
|
# 1 2 3 4 5 6 7 |
1033
|
|
|
# 8 9 10 11 12 13 14 |
1034
|
|
|
# 15 16 17 18 19 20 21 |
1035
|
|
|
# 22 23 24 25 26 27 28 |
1036
|
|
|
# 29 30 |
1037
|
|
|
|
1038
|
|
|
start = pd.Timestamp('2007-04-10', tz='UTC') |
1039
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1040
|
|
|
|
1041
|
|
|
sim_params = SimulationParameters( |
1042
|
|
|
period_start=start, |
1043
|
|
|
period_end=end, |
1044
|
|
|
capital_base=float("1.0e5"), |
1045
|
|
|
data_frequency='minute', |
1046
|
|
|
emission_rate='minute' |
1047
|
|
|
) |
1048
|
|
|
|
1049
|
|
|
test_algo = TradingAlgorithm( |
1050
|
|
|
script=algo_text, |
1051
|
|
|
data_frequency='minute', |
1052
|
|
|
sim_params=sim_params, |
1053
|
|
|
env=TestHistoryAlgo.env, |
1054
|
|
|
) |
1055
|
|
|
|
1056
|
|
|
source = RandomWalkSource(start=start, |
1057
|
|
|
end=end) |
1058
|
|
|
output = test_algo.run(source) |
1059
|
|
|
|
1060
|
|
|
np.testing.assert_equal(output.ix[0, 'current_high'], |
1061
|
|
|
139.5370641791925) |
1062
|
|
|
|
1063
|
|
|
def test_history_with_low(self): |
1064
|
|
|
algo_text = """ |
1065
|
|
|
from zipline.api import history, add_history, record |
1066
|
|
|
|
1067
|
|
|
def initialize(context): |
1068
|
|
|
add_history(3, '1d', 'low') |
1069
|
|
|
|
1070
|
|
|
def handle_data(context, data): |
1071
|
|
|
lows = history(3, '1d', 'low') |
1072
|
|
|
|
1073
|
|
|
record(current_low=lows[0].ix[-1]) |
1074
|
|
|
""".strip() |
1075
|
|
|
|
1076
|
|
|
# April 2007 |
1077
|
|
|
# Su Mo Tu We Th Fr Sa |
1078
|
|
|
# 1 2 3 4 5 6 7 |
1079
|
|
|
# 8 9 10 11 12 13 14 |
1080
|
|
|
# 15 16 17 18 19 20 21 |
1081
|
|
|
# 22 23 24 25 26 27 28 |
1082
|
|
|
# 29 30 |
1083
|
|
|
|
1084
|
|
|
start = pd.Timestamp('2007-04-10', tz='UTC') |
1085
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1086
|
|
|
|
1087
|
|
|
sim_params = SimulationParameters( |
1088
|
|
|
period_start=start, |
1089
|
|
|
period_end=end, |
1090
|
|
|
capital_base=float("1.0e5"), |
1091
|
|
|
data_frequency='minute', |
1092
|
|
|
emission_rate='minute' |
1093
|
|
|
) |
1094
|
|
|
|
1095
|
|
|
test_algo = TradingAlgorithm( |
1096
|
|
|
script=algo_text, |
1097
|
|
|
data_frequency='minute', |
1098
|
|
|
sim_params=sim_params, |
1099
|
|
|
env=TestHistoryAlgo.env, |
1100
|
|
|
) |
1101
|
|
|
|
1102
|
|
|
source = RandomWalkSource(start=start, |
1103
|
|
|
end=end) |
1104
|
|
|
output = test_algo.run(source) |
1105
|
|
|
|
1106
|
|
|
np.testing.assert_equal(output.ix[0, 'current_low'], |
1107
|
|
|
99.891436939669944) |
1108
|
|
|
|
1109
|
|
|
def test_history_with_open(self): |
1110
|
|
|
algo_text = """ |
1111
|
|
|
from zipline.api import history, add_history, record |
1112
|
|
|
|
1113
|
|
|
def initialize(context): |
1114
|
|
|
add_history(3, '1d', 'open_price') |
1115
|
|
|
|
1116
|
|
|
def handle_data(context, data): |
1117
|
|
|
opens = history(3, '1d', 'open_price') |
1118
|
|
|
|
1119
|
|
|
record(current_open=opens[0].ix[-1]) |
1120
|
|
|
""".strip() |
1121
|
|
|
|
1122
|
|
|
# April 2007 |
1123
|
|
|
# Su Mo Tu We Th Fr Sa |
1124
|
|
|
# 1 2 3 4 5 6 7 |
1125
|
|
|
# 8 9 10 11 12 13 14 |
1126
|
|
|
# 15 16 17 18 19 20 21 |
1127
|
|
|
# 22 23 24 25 26 27 28 |
1128
|
|
|
# 29 30 |
1129
|
|
|
|
1130
|
|
|
start = pd.Timestamp('2007-04-10', tz='UTC') |
1131
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1132
|
|
|
|
1133
|
|
|
sim_params = SimulationParameters( |
1134
|
|
|
period_start=start, |
1135
|
|
|
period_end=end, |
1136
|
|
|
capital_base=float("1.0e5"), |
1137
|
|
|
data_frequency='minute', |
1138
|
|
|
emission_rate='minute' |
1139
|
|
|
) |
1140
|
|
|
|
1141
|
|
|
test_algo = TradingAlgorithm( |
1142
|
|
|
script=algo_text, |
1143
|
|
|
data_frequency='minute', |
1144
|
|
|
sim_params=sim_params, |
1145
|
|
|
env=TestHistoryAlgo.env, |
1146
|
|
|
) |
1147
|
|
|
|
1148
|
|
|
source = RandomWalkSource(start=start, |
1149
|
|
|
end=end) |
1150
|
|
|
output = test_algo.run(source) |
1151
|
|
|
|
1152
|
|
|
np.testing.assert_equal(output.ix[0, 'current_open'], |
1153
|
|
|
99.991436939669939) |
1154
|
|
|
|
1155
|
|
|
def test_history_passed_to_func(self): |
1156
|
|
|
""" |
1157
|
|
|
Had an issue where MagicMock was causing errors during validation |
1158
|
|
|
with rolling mean. |
1159
|
|
|
""" |
1160
|
|
|
algo_text = """ |
1161
|
|
|
from zipline.api import history, add_history |
1162
|
|
|
import pandas as pd |
1163
|
|
|
|
1164
|
|
|
def initialize(context): |
1165
|
|
|
add_history(2, '1d', 'price') |
1166
|
|
|
|
1167
|
|
|
def handle_data(context, data): |
1168
|
|
|
prices = history(2, '1d', 'price') |
1169
|
|
|
|
1170
|
|
|
pd.rolling_mean(prices, 2) |
1171
|
|
|
""".strip() |
1172
|
|
|
|
1173
|
|
|
# April 2007 |
1174
|
|
|
# Su Mo Tu We Th Fr Sa |
1175
|
|
|
# 1 2 3 4 5 6 7 |
1176
|
|
|
# 8 9 10 11 12 13 14 |
1177
|
|
|
# 15 16 17 18 19 20 21 |
1178
|
|
|
# 22 23 24 25 26 27 28 |
1179
|
|
|
# 29 30 |
1180
|
|
|
|
1181
|
|
|
start = pd.Timestamp('2007-04-10', tz='UTC') |
1182
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1183
|
|
|
|
1184
|
|
|
sim_params = SimulationParameters( |
1185
|
|
|
period_start=start, |
1186
|
|
|
period_end=end, |
1187
|
|
|
capital_base=float("1.0e5"), |
1188
|
|
|
data_frequency='minute', |
1189
|
|
|
emission_rate='minute' |
1190
|
|
|
) |
1191
|
|
|
|
1192
|
|
|
test_algo = TradingAlgorithm( |
1193
|
|
|
script=algo_text, |
1194
|
|
|
data_frequency='minute', |
1195
|
|
|
sim_params=sim_params, |
1196
|
|
|
env=TestHistoryAlgo.env, |
1197
|
|
|
) |
1198
|
|
|
|
1199
|
|
|
source = RandomWalkSource(start=start, |
1200
|
|
|
end=end) |
1201
|
|
|
output = test_algo.run(source) |
1202
|
|
|
|
1203
|
|
|
# At this point, just ensure that there is no crash. |
1204
|
|
|
self.assertIsNotNone(output) |
1205
|
|
|
|
1206
|
|
|
def test_history_passed_to_talib(self): |
1207
|
|
|
""" |
1208
|
|
|
Had an issue where MagicMock was causing errors during validation |
1209
|
|
|
with talib. |
1210
|
|
|
|
1211
|
|
|
We don't officially support a talib integration, yet. |
1212
|
|
|
But using talib directly should work. |
1213
|
|
|
""" |
1214
|
|
|
algo_text = """ |
1215
|
|
|
import talib |
1216
|
|
|
import numpy as np |
1217
|
|
|
|
1218
|
|
|
from zipline.api import history, add_history, record |
1219
|
|
|
|
1220
|
|
|
def initialize(context): |
1221
|
|
|
add_history(2, '1d', 'price') |
1222
|
|
|
|
1223
|
|
|
def handle_data(context, data): |
1224
|
|
|
prices = history(2, '1d', 'price') |
1225
|
|
|
|
1226
|
|
|
ma_result = talib.MA(np.asarray(prices[0]), timeperiod=2) |
1227
|
|
|
record(ma=ma_result[-1]) |
1228
|
|
|
""".strip() |
1229
|
|
|
|
1230
|
|
|
# April 2007 |
1231
|
|
|
# Su Mo Tu We Th Fr Sa |
1232
|
|
|
# 1 2 3 4 5 6 7 |
1233
|
|
|
# 8 9 10 11 12 13 14 |
1234
|
|
|
# 15 16 17 18 19 20 21 |
1235
|
|
|
# 22 23 24 25 26 27 28 |
1236
|
|
|
# 29 30 |
1237
|
|
|
|
1238
|
|
|
# Eddie: this was set to 04-10 but I don't see how that makes |
1239
|
|
|
# sense as it does not generate enough data to get at -2 index |
1240
|
|
|
# below. |
1241
|
|
|
start = pd.Timestamp('2007-04-05', tz='UTC') |
1242
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1243
|
|
|
|
1244
|
|
|
sim_params = SimulationParameters( |
1245
|
|
|
period_start=start, |
1246
|
|
|
period_end=end, |
1247
|
|
|
capital_base=float("1.0e5"), |
1248
|
|
|
data_frequency='minute', |
1249
|
|
|
emission_rate='daily' |
1250
|
|
|
) |
1251
|
|
|
|
1252
|
|
|
test_algo = TradingAlgorithm( |
1253
|
|
|
script=algo_text, |
1254
|
|
|
data_frequency='minute', |
1255
|
|
|
sim_params=sim_params, |
1256
|
|
|
env=TestHistoryAlgo.env, |
1257
|
|
|
) |
1258
|
|
|
|
1259
|
|
|
source = RandomWalkSource(start=start, |
1260
|
|
|
end=end) |
1261
|
|
|
output = test_algo.run(source) |
1262
|
|
|
# At this point, just ensure that there is no crash. |
1263
|
|
|
self.assertIsNotNone(output) |
1264
|
|
|
|
1265
|
|
|
recorded_ma = output.ix[-2, 'ma'] |
1266
|
|
|
|
1267
|
|
|
self.assertFalse(pd.isnull(recorded_ma)) |
1268
|
|
|
# Depends on seed |
1269
|
|
|
np.testing.assert_almost_equal(recorded_ma, |
1270
|
|
|
159.76304468946876) |
1271
|
|
|
|
1272
|
|
|
@parameterized.expand([ |
1273
|
|
|
('daily',), |
1274
|
|
|
('minute',), |
1275
|
|
|
]) |
1276
|
|
|
def test_history_container_constructed_at_runtime(self, data_freq): |
1277
|
|
|
algo_text = dedent( |
1278
|
|
|
"""\ |
1279
|
|
|
from zipline.api import history |
1280
|
|
|
def handle_data(context, data): |
1281
|
|
|
context.prices = history(2, '1d', 'price') |
1282
|
|
|
""" |
1283
|
|
|
) |
1284
|
|
|
start = pd.Timestamp('2007-04-05', tz='UTC') |
1285
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1286
|
|
|
|
1287
|
|
|
sim_params = SimulationParameters( |
1288
|
|
|
period_start=start, |
1289
|
|
|
period_end=end, |
1290
|
|
|
capital_base=float("1.0e5"), |
1291
|
|
|
data_frequency=data_freq, |
1292
|
|
|
emission_rate=data_freq |
1293
|
|
|
) |
1294
|
|
|
|
1295
|
|
|
test_algo = TradingAlgorithm( |
1296
|
|
|
script=algo_text, |
1297
|
|
|
data_frequency=data_freq, |
1298
|
|
|
sim_params=sim_params, |
1299
|
|
|
env=TestHistoryAlgo.env, |
1300
|
|
|
) |
1301
|
|
|
|
1302
|
|
|
source = RandomWalkSource(start=start, end=end, freq=data_freq) |
1303
|
|
|
|
1304
|
|
|
self.assertIsNone(test_algo.history_container) |
1305
|
|
|
test_algo.run(source) |
1306
|
|
|
self.assertIsNotNone( |
1307
|
|
|
test_algo.history_container, |
1308
|
|
|
msg='HistoryContainer was not constructed at runtime', |
1309
|
|
|
) |
1310
|
|
|
|
1311
|
|
|
container = test_algo.history_container |
1312
|
|
|
self.assertEqual( |
1313
|
|
|
len(container.digest_panels), |
1314
|
|
|
1, |
1315
|
|
|
msg='The HistoryContainer created too many digest panels', |
1316
|
|
|
) |
1317
|
|
|
|
1318
|
|
|
freq, digest = list(container.digest_panels.items())[0] |
1319
|
|
|
self.assertEqual( |
1320
|
|
|
freq.unit_str, |
1321
|
|
|
'd', |
1322
|
|
|
) |
1323
|
|
|
|
1324
|
|
|
self.assertEqual( |
1325
|
|
|
digest.window_length, |
1326
|
|
|
1, |
1327
|
|
|
msg='The digest panel is not large enough to service the given' |
1328
|
|
|
' HistorySpec', |
1329
|
|
|
) |
1330
|
|
|
|
1331
|
|
|
def test_history_in_initialize(self): |
1332
|
|
|
algo_text = dedent( |
1333
|
|
|
"""\ |
1334
|
|
|
from zipline.api import history |
1335
|
|
|
|
1336
|
|
|
def initialize(context): |
1337
|
|
|
history(10, '1d', 'price') |
1338
|
|
|
|
1339
|
|
|
def handle_data(context, data): |
1340
|
|
|
pass |
1341
|
|
|
""" |
1342
|
|
|
) |
1343
|
|
|
|
1344
|
|
|
start = pd.Timestamp('2007-04-05', tz='UTC') |
1345
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1346
|
|
|
|
1347
|
|
|
sim_params = SimulationParameters( |
1348
|
|
|
period_start=start, |
1349
|
|
|
period_end=end, |
1350
|
|
|
capital_base=float("1.0e5"), |
1351
|
|
|
data_frequency='minute', |
1352
|
|
|
emission_rate='daily', |
1353
|
|
|
env=self.env, |
1354
|
|
|
) |
1355
|
|
|
|
1356
|
|
|
test_algo = TradingAlgorithm( |
1357
|
|
|
script=algo_text, |
1358
|
|
|
data_frequency='minute', |
1359
|
|
|
sim_params=sim_params, |
1360
|
|
|
env=self.env, |
1361
|
|
|
) |
1362
|
|
|
|
1363
|
|
|
with self.assertRaises(HistoryInInitialize): |
1364
|
|
|
test_algo.initialize() |
1365
|
|
|
|
1366
|
|
|
@parameterized.expand([ |
1367
|
|
|
(1,), |
1368
|
|
|
(2,), |
1369
|
|
|
]) |
1370
|
|
|
def test_history_grow_length_inter_bar(self, incr): |
1371
|
|
|
""" |
1372
|
|
|
Tests growing the length of a digest panel with different date_buf |
1373
|
|
|
deltas once per bar. |
1374
|
|
|
""" |
1375
|
|
|
algo_text = dedent( |
1376
|
|
|
"""\ |
1377
|
|
|
from zipline.api import history |
1378
|
|
|
|
1379
|
|
|
|
1380
|
|
|
def initialize(context): |
1381
|
|
|
context.bar_count = 1 |
1382
|
|
|
|
1383
|
|
|
|
1384
|
|
|
def handle_data(context, data): |
1385
|
|
|
prices = history(context.bar_count, '1d', 'price') |
1386
|
|
|
context.test_case.assertEqual(len(prices), context.bar_count) |
1387
|
|
|
context.bar_count += {incr} |
1388
|
|
|
""" |
1389
|
|
|
).format(incr=incr) |
1390
|
|
|
start = pd.Timestamp('2007-04-05', tz='UTC') |
1391
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1392
|
|
|
|
1393
|
|
|
sim_params = SimulationParameters( |
1394
|
|
|
period_start=start, |
1395
|
|
|
period_end=end, |
1396
|
|
|
capital_base=float("1.0e5"), |
1397
|
|
|
data_frequency='minute', |
1398
|
|
|
emission_rate='daily', |
1399
|
|
|
env=self.env, |
1400
|
|
|
) |
1401
|
|
|
|
1402
|
|
|
test_algo = TradingAlgorithm( |
1403
|
|
|
script=algo_text, |
1404
|
|
|
data_frequency='minute', |
1405
|
|
|
sim_params=sim_params, |
1406
|
|
|
env=self.env, |
1407
|
|
|
) |
1408
|
|
|
test_algo.test_case = self |
1409
|
|
|
|
1410
|
|
|
source = RandomWalkSource(start=start, end=end) |
1411
|
|
|
|
1412
|
|
|
self.assertIsNone(test_algo.history_container) |
1413
|
|
|
test_algo.run(source) |
1414
|
|
|
|
1415
|
|
|
@parameterized.expand([ |
1416
|
|
|
(1,), |
1417
|
|
|
(2,), |
1418
|
|
|
]) |
1419
|
|
|
def test_history_grow_length_intra_bar(self, incr): |
1420
|
|
|
""" |
1421
|
|
|
Tests growing the length of a digest panel with different date_buf |
1422
|
|
|
deltas in a single bar. |
1423
|
|
|
""" |
1424
|
|
|
algo_text = dedent( |
1425
|
|
|
"""\ |
1426
|
|
|
from zipline.api import history |
1427
|
|
|
|
1428
|
|
|
|
1429
|
|
|
def initialize(context): |
1430
|
|
|
context.bar_count = 1 |
1431
|
|
|
|
1432
|
|
|
|
1433
|
|
|
def handle_data(context, data): |
1434
|
|
|
prices = history(context.bar_count, '1d', 'price') |
1435
|
|
|
context.test_case.assertEqual(len(prices), context.bar_count) |
1436
|
|
|
context.bar_count += {incr} |
1437
|
|
|
prices = history(context.bar_count, '1d', 'price') |
1438
|
|
|
context.test_case.assertEqual(len(prices), context.bar_count) |
1439
|
|
|
""" |
1440
|
|
|
).format(incr=incr) |
1441
|
|
|
start = pd.Timestamp('2007-04-05', tz='UTC') |
1442
|
|
|
end = pd.Timestamp('2007-04-10', tz='UTC') |
1443
|
|
|
|
1444
|
|
|
sim_params = SimulationParameters( |
1445
|
|
|
period_start=start, |
1446
|
|
|
period_end=end, |
1447
|
|
|
capital_base=float("1.0e5"), |
1448
|
|
|
data_frequency='minute', |
1449
|
|
|
emission_rate='daily', |
1450
|
|
|
env=self.env, |
1451
|
|
|
) |
1452
|
|
|
|
1453
|
|
|
test_algo = TradingAlgorithm( |
1454
|
|
|
script=algo_text, |
1455
|
|
|
data_frequency='minute', |
1456
|
|
|
sim_params=sim_params, |
1457
|
|
|
env=self.env, |
1458
|
|
|
) |
1459
|
|
|
test_algo.test_case = self |
1460
|
|
|
|
1461
|
|
|
source = RandomWalkSource(start=start, end=end) |
1462
|
|
|
|
1463
|
|
|
self.assertIsNone(test_algo.history_container) |
1464
|
|
|
test_algo.run(source) |
1465
|
|
|
|
1466
|
|
|
|
1467
|
|
|
class TestHistoryContainerResize(TestCase): |
1468
|
|
|
|
1469
|
|
|
@classmethod |
1470
|
|
|
def setUpClass(cls): |
1471
|
|
|
cls.env = TradingEnvironment() |
1472
|
|
|
|
1473
|
|
|
@classmethod |
1474
|
|
|
def tearDownClass(cls): |
1475
|
|
|
del cls.env |
1476
|
|
|
|
1477
|
|
|
@subtest( |
1478
|
|
|
((freq, field, data_frequency, construct_digest) |
1479
|
|
|
for freq in ('1m', '1d') |
1480
|
|
|
for field in HistoryContainer.VALID_FIELDS |
1481
|
|
|
for data_frequency in ('minute', 'daily') |
1482
|
|
|
for construct_digest in (True, False) |
1483
|
|
|
if not (freq == '1m' and data_frequency == 'daily')), |
1484
|
|
|
'freq', |
1485
|
|
|
'field', |
1486
|
|
|
'data_frequency', |
1487
|
|
|
'construct_digest', |
1488
|
|
|
) |
1489
|
|
|
def test_history_grow_length(self, |
1490
|
|
|
freq, |
1491
|
|
|
field, |
1492
|
|
|
data_frequency, |
1493
|
|
|
construct_digest): |
1494
|
|
|
bar_count = 2 if construct_digest else 1 |
1495
|
|
|
spec = history.HistorySpec( |
1496
|
|
|
bar_count=bar_count, |
1497
|
|
|
frequency=freq, |
1498
|
|
|
field=field, |
1499
|
|
|
ffill=True, |
1500
|
|
|
data_frequency=data_frequency, |
1501
|
|
|
env=self.env, |
1502
|
|
|
) |
1503
|
|
|
specs = {spec.key_str: spec} |
1504
|
|
|
initial_sids = [1] |
1505
|
|
|
initial_dt = pd.Timestamp( |
1506
|
|
|
'2013-06-28 13:31' |
1507
|
|
|
if data_frequency == 'minute' |
1508
|
|
|
else '2013-06-28 12:00AM', |
1509
|
|
|
tz='UTC', |
1510
|
|
|
) |
1511
|
|
|
|
1512
|
|
|
container = HistoryContainer( |
1513
|
|
|
specs, initial_sids, initial_dt, data_frequency, env=self.env, |
1514
|
|
|
) |
1515
|
|
|
|
1516
|
|
|
if construct_digest: |
1517
|
|
|
self.assertEqual( |
1518
|
|
|
container.digest_panels[spec.frequency].window_length, 1, |
1519
|
|
|
) |
1520
|
|
|
|
1521
|
|
|
bar_data = BarData() |
1522
|
|
|
container.update(bar_data, initial_dt) |
1523
|
|
|
|
1524
|
|
|
to_add = ( |
1525
|
|
|
history.HistorySpec( |
1526
|
|
|
bar_count=bar_count + 1, |
1527
|
|
|
frequency=freq, |
1528
|
|
|
field=field, |
1529
|
|
|
ffill=True, |
1530
|
|
|
data_frequency=data_frequency, |
1531
|
|
|
env=self.env, |
1532
|
|
|
), |
1533
|
|
|
history.HistorySpec( |
1534
|
|
|
bar_count=bar_count + 2, |
1535
|
|
|
frequency=freq, |
1536
|
|
|
field=field, |
1537
|
|
|
ffill=True, |
1538
|
|
|
data_frequency=data_frequency, |
1539
|
|
|
env=self.env, |
1540
|
|
|
), |
1541
|
|
|
) |
1542
|
|
|
|
1543
|
|
|
for spec in to_add: |
1544
|
|
|
container.ensure_spec(spec, initial_dt, bar_data) |
1545
|
|
|
|
1546
|
|
|
self.assertEqual( |
1547
|
|
|
container.digest_panels[spec.frequency].window_length, |
1548
|
|
|
spec.bar_count - 1, |
1549
|
|
|
) |
1550
|
|
|
|
1551
|
|
|
self.assert_history(container, spec, initial_dt) |
1552
|
|
|
|
1553
|
|
|
@subtest( |
1554
|
|
|
((bar_count, freq, pair, data_frequency) |
1555
|
|
|
for bar_count in (1, 2) |
1556
|
|
|
for freq in ('1m', '1d') |
1557
|
|
|
for pair in product(HistoryContainer.VALID_FIELDS, repeat=2) |
1558
|
|
|
for data_frequency in ('minute', 'daily') |
1559
|
|
|
if not (freq == '1m' and data_frequency == 'daily')), |
1560
|
|
|
'bar_count', |
1561
|
|
|
'freq', |
1562
|
|
|
'pair', |
1563
|
|
|
'data_frequency', |
1564
|
|
|
) |
1565
|
|
|
def test_history_add_field(self, bar_count, freq, pair, data_frequency): |
1566
|
|
|
first, second = pair |
1567
|
|
|
spec = history.HistorySpec( |
1568
|
|
|
bar_count=bar_count, |
1569
|
|
|
frequency=freq, |
1570
|
|
|
field=first, |
1571
|
|
|
ffill=True, |
1572
|
|
|
data_frequency=data_frequency, |
1573
|
|
|
env=self.env, |
1574
|
|
|
) |
1575
|
|
|
specs = {spec.key_str: spec} |
1576
|
|
|
initial_sids = [1] |
1577
|
|
|
initial_dt = pd.Timestamp( |
1578
|
|
|
'2013-06-28 13:31' |
1579
|
|
|
if data_frequency == 'minute' |
1580
|
|
|
else '2013-06-28 12:00AM', |
1581
|
|
|
tz='UTC', |
1582
|
|
|
) |
1583
|
|
|
|
1584
|
|
|
container = HistoryContainer( |
1585
|
|
|
specs, initial_sids, initial_dt, data_frequency, env=self.env |
1586
|
|
|
) |
1587
|
|
|
|
1588
|
|
|
if bar_count > 1: |
1589
|
|
|
self.assertEqual( |
1590
|
|
|
container.digest_panels[spec.frequency].window_length, 1, |
1591
|
|
|
) |
1592
|
|
|
|
1593
|
|
|
bar_data = BarData() |
1594
|
|
|
container.update(bar_data, initial_dt) |
1595
|
|
|
|
1596
|
|
|
new_spec = history.HistorySpec( |
1597
|
|
|
bar_count, |
1598
|
|
|
frequency=freq, |
1599
|
|
|
field=second, |
1600
|
|
|
ffill=True, |
1601
|
|
|
data_frequency=data_frequency, |
1602
|
|
|
env=self.env, |
1603
|
|
|
) |
1604
|
|
|
|
1605
|
|
|
container.ensure_spec(new_spec, initial_dt, bar_data) |
1606
|
|
|
|
1607
|
|
|
if bar_count > 1: |
1608
|
|
|
digest_panel = container.digest_panels[new_spec.frequency] |
1609
|
|
|
self.assertEqual(digest_panel.window_length, bar_count - 1) |
1610
|
|
|
self.assertIn(second, digest_panel.items) |
1611
|
|
|
else: |
1612
|
|
|
self.assertNotIn(new_spec.frequency, container.digest_panels) |
1613
|
|
|
|
1614
|
|
|
with warnings.catch_warnings(): |
1615
|
|
|
warnings.simplefilter('ignore') |
1616
|
|
|
|
1617
|
|
|
self.assert_history(container, new_spec, initial_dt) |
1618
|
|
|
|
1619
|
|
|
@subtest( |
1620
|
|
|
((bar_count, pair, field, data_frequency) |
1621
|
|
|
for bar_count in (1, 2) |
1622
|
|
|
for pair in product(('1m', '1d'), repeat=2) |
1623
|
|
|
for field in HistoryContainer.VALID_FIELDS |
1624
|
|
|
for data_frequency in ('minute', 'daily') |
1625
|
|
|
if not ('1m' in pair and data_frequency == 'daily')), |
1626
|
|
|
'bar_count', |
1627
|
|
|
'pair', |
1628
|
|
|
'field', |
1629
|
|
|
'data_frequency', |
1630
|
|
|
) |
1631
|
|
|
def test_history_add_freq(self, bar_count, pair, field, data_frequency): |
1632
|
|
|
first, second = pair |
1633
|
|
|
spec = history.HistorySpec( |
1634
|
|
|
bar_count=bar_count, |
1635
|
|
|
frequency=first, |
1636
|
|
|
field=field, |
1637
|
|
|
ffill=True, |
1638
|
|
|
data_frequency=data_frequency, |
1639
|
|
|
env=self.env, |
1640
|
|
|
) |
1641
|
|
|
specs = {spec.key_str: spec} |
1642
|
|
|
initial_sids = [1] |
1643
|
|
|
initial_dt = pd.Timestamp( |
1644
|
|
|
'2013-06-28 13:31' |
1645
|
|
|
if data_frequency == 'minute' |
1646
|
|
|
else '2013-06-28 12:00AM', |
1647
|
|
|
tz='UTC', |
1648
|
|
|
) |
1649
|
|
|
|
1650
|
|
|
container = HistoryContainer( |
1651
|
|
|
specs, initial_sids, initial_dt, data_frequency, env=self.env, |
1652
|
|
|
) |
1653
|
|
|
|
1654
|
|
|
if bar_count > 1: |
1655
|
|
|
self.assertEqual( |
1656
|
|
|
container.digest_panels[spec.frequency].window_length, 1, |
1657
|
|
|
) |
1658
|
|
|
|
1659
|
|
|
bar_data = BarData() |
1660
|
|
|
container.update(bar_data, initial_dt) |
1661
|
|
|
|
1662
|
|
|
new_spec = history.HistorySpec( |
1663
|
|
|
bar_count, |
1664
|
|
|
frequency=second, |
1665
|
|
|
field=field, |
1666
|
|
|
ffill=True, |
1667
|
|
|
data_frequency=data_frequency, |
1668
|
|
|
env=self.env, |
1669
|
|
|
) |
1670
|
|
|
|
1671
|
|
|
container.ensure_spec(new_spec, initial_dt, bar_data) |
1672
|
|
|
|
1673
|
|
|
if bar_count > 1: |
1674
|
|
|
digest_panel = container.digest_panels[new_spec.frequency] |
1675
|
|
|
self.assertEqual(digest_panel.window_length, bar_count - 1) |
1676
|
|
|
else: |
1677
|
|
|
self.assertNotIn(new_spec.frequency, container.digest_panels) |
1678
|
|
|
|
1679
|
|
|
self.assert_history(container, new_spec, initial_dt) |
1680
|
|
|
|
1681
|
|
|
def assert_history(self, container, spec, dt): |
1682
|
|
|
hst = container.get_history(spec, dt) |
1683
|
|
|
|
1684
|
|
|
self.assertEqual(len(hst), spec.bar_count) |
1685
|
|
|
|
1686
|
|
|
back = spec.frequency.prev_bar |
1687
|
|
|
for n in reversed(hst.index): |
1688
|
|
|
self.assertEqual(dt, n) |
1689
|
|
|
dt = back(dt) |
1690
|
|
|
|