| Total Complexity | 92 |
| Total Lines | 1225 |
| Duplicated Lines | 0 % |
Complex classes like tests.HistoryTestCase often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | from os.path import dirname, join, realpath |
||
| 54 | class HistoryTestCase(TestCase): |
||
| 55 | @classmethod |
||
| 56 | def setUpClass(cls): |
||
| 57 | cls.AAPL = 1 |
||
| 58 | cls.MSFT = 2 |
||
| 59 | cls.DELL = 3 |
||
| 60 | cls.TSLA = 4 |
||
| 61 | cls.BRKA = 5 |
||
| 62 | cls.IBM = 6 |
||
| 63 | cls.GS = 7 |
||
| 64 | cls.C = 8 |
||
| 65 | cls.DIVIDEND_SID = 9 |
||
| 66 | cls.FUTURE_ASSET = 10 |
||
| 67 | cls.FUTURE_ASSET2 = 11 |
||
| 68 | cls.assets = [cls.AAPL, cls.MSFT, cls.DELL, cls.TSLA, cls.BRKA, |
||
| 69 | cls.IBM, cls.GS, cls.C, cls.DIVIDEND_SID] |
||
| 70 | |||
| 71 | asset_info = make_simple_asset_info( |
||
| 72 | cls.assets, |
||
| 73 | Timestamp('2014-03-03'), |
||
| 74 | Timestamp('2014-08-30'), |
||
| 75 | ['AAPL', 'MSFT', 'DELL', 'TSLA', 'BRKA', 'IBM', 'GS', 'C', |
||
| 76 | 'DIVIDEND_SID'] |
||
| 77 | ) |
||
| 78 | cls.env = TradingEnvironment() |
||
| 79 | |||
| 80 | cls.env.write_data( |
||
| 81 | equities_df=asset_info, |
||
| 82 | futures_data={ |
||
| 83 | cls.FUTURE_ASSET: { |
||
| 84 | "start_date": pd.Timestamp('2015-11-23', tz='UTC'), |
||
| 85 | "end_date": pd.Timestamp('2014-12-01', tz='UTC'), |
||
| 86 | 'symbol': 'TEST_FUTURE', |
||
| 87 | 'asset_type': 'future', |
||
| 88 | }, |
||
| 89 | cls.FUTURE_ASSET2: { |
||
| 90 | "start_date": pd.Timestamp('2014-03-19', tz='UTC'), |
||
| 91 | "end_date": pd.Timestamp('2014-03-22', tz='UTC'), |
||
| 92 | 'symbol': 'TEST_FUTURE2', |
||
| 93 | 'asset_type': 'future', |
||
| 94 | } |
||
| 95 | } |
||
| 96 | ) |
||
| 97 | |||
| 98 | cls.tempdir = TempDirectory() |
||
| 99 | cls.tempdir.create() |
||
| 100 | |||
| 101 | try: |
||
| 102 | cls.create_fake_minute_data(cls.tempdir) |
||
| 103 | |||
| 104 | cls.futures_start_dates = { |
||
| 105 | cls.FUTURE_ASSET: pd.Timestamp("2015-11-23 20:11", tz='UTC'), |
||
| 106 | cls.FUTURE_ASSET2: pd.Timestamp("2014-03-19 13:31", tz='UTC') |
||
| 107 | } |
||
| 108 | |||
| 109 | cls.create_fake_futures_minute_data( |
||
| 110 | cls.tempdir, |
||
| 111 | cls.env.asset_finder.retrieve_asset(cls.FUTURE_ASSET), |
||
| 112 | cls.futures_start_dates[cls.FUTURE_ASSET], |
||
| 113 | cls.futures_start_dates[cls.FUTURE_ASSET] + |
||
| 114 | timedelta(minutes=10000) |
||
| 115 | ) |
||
| 116 | |||
| 117 | # build data for FUTURE_ASSET2 from 2014-03-19 13:31 to |
||
| 118 | # 2014-03-21 20:00 |
||
| 119 | cls.create_fake_futures_minute_data( |
||
| 120 | cls.tempdir, |
||
| 121 | cls.env.asset_finder.retrieve_asset(cls.FUTURE_ASSET2), |
||
| 122 | cls.futures_start_dates[cls.FUTURE_ASSET2], |
||
| 123 | cls.futures_start_dates[cls.FUTURE_ASSET2] + |
||
| 124 | timedelta(minutes=3270) |
||
| 125 | ) |
||
| 126 | |||
| 127 | cls.create_fake_daily_data(cls.tempdir) |
||
| 128 | |||
| 129 | splits = DataFrame([ |
||
| 130 | {'effective_date': str_to_seconds("2002-01-03"), |
||
| 131 | 'ratio': 0.5, |
||
| 132 | 'sid': cls.AAPL}, |
||
| 133 | {'effective_date': str_to_seconds("2014-03-20"), |
||
| 134 | 'ratio': 0.5, |
||
| 135 | 'sid': cls.AAPL}, |
||
| 136 | {'effective_date': str_to_seconds("2014-03-21"), |
||
| 137 | 'ratio': 0.5, |
||
| 138 | 'sid': cls.AAPL}, |
||
| 139 | {'effective_date': str_to_seconds("2014-04-01"), |
||
| 140 | 'ratio': 0.5, |
||
| 141 | 'sid': cls.IBM}, |
||
| 142 | {'effective_date': str_to_seconds("2014-07-01"), |
||
| 143 | 'ratio': 0.5, |
||
| 144 | 'sid': cls.IBM}, |
||
| 145 | {'effective_date': str_to_seconds("2014-07-07"), |
||
| 146 | 'ratio': 0.5, |
||
| 147 | 'sid': cls.IBM}], |
||
| 148 | columns=['effective_date', 'ratio', 'sid'], |
||
| 149 | ) |
||
| 150 | |||
| 151 | mergers = DataFrame([ |
||
| 152 | {'effective_date': str_to_seconds("2014-07-16"), |
||
| 153 | 'ratio': 0.5, |
||
| 154 | 'sid': cls.C} |
||
| 155 | ], |
||
| 156 | columns=['effective_date', 'ratio', 'sid']) |
||
| 157 | |||
| 158 | dividends = DataFrame([ |
||
| 159 | {'ex_date': |
||
| 160 | Timestamp("2014-03-18", tz='UTC').to_datetime64(), |
||
| 161 | 'record_date': |
||
| 162 | Timestamp("2014-03-19", tz='UTC').to_datetime64(), |
||
| 163 | 'declared_date': |
||
| 164 | Timestamp("2014-03-18", tz='UTC').to_datetime64(), |
||
| 165 | 'pay_date': |
||
| 166 | Timestamp("2014-03-20", tz='UTC').to_datetime64(), |
||
| 167 | 'amount': 2.0, |
||
| 168 | 'sid': cls.DIVIDEND_SID}, |
||
| 169 | {'ex_date': |
||
| 170 | Timestamp("2014-03-20", tz='UTC').to_datetime64(), |
||
| 171 | 'record_date': |
||
| 172 | Timestamp("2014-03-21", tz='UTC').to_datetime64(), |
||
| 173 | 'declared_date': |
||
| 174 | Timestamp("2014-03-18", tz='UTC').to_datetime64(), |
||
| 175 | 'pay_date': |
||
| 176 | Timestamp("2014-03-23", tz='UTC').to_datetime64(), |
||
| 177 | 'amount': 4.0, |
||
| 178 | 'sid': cls.DIVIDEND_SID}], |
||
| 179 | columns=['ex_date', |
||
| 180 | 'record_date', |
||
| 181 | 'declared_date', |
||
| 182 | 'pay_date', |
||
| 183 | 'amount', |
||
| 184 | 'sid']) |
||
| 185 | |||
| 186 | cls.create_fake_adjustments(cls.tempdir, |
||
| 187 | "adjustments.sqlite", |
||
| 188 | splits=splits, |
||
| 189 | mergers=mergers, |
||
| 190 | dividends=dividends) |
||
| 191 | except: |
||
| 192 | cls.tempdir.cleanup() |
||
| 193 | raise |
||
| 194 | |||
| 195 | @classmethod |
||
| 196 | def tearDownClass(cls): |
||
| 197 | cls.tempdir.cleanup() |
||
| 198 | |||
| 199 | @classmethod |
||
| 200 | def create_fake_futures_minute_data(cls, tempdir, asset, start_dt, end_dt): |
||
| 201 | num_minutes = int((end_dt - start_dt).total_seconds() / 60) |
||
| 202 | |||
| 203 | # need to prepend one 0 per minute between normalize_date(start_dt) |
||
| 204 | # and start_dt |
||
| 205 | zeroes_buffer = \ |
||
| 206 | [0] * int((start_dt - |
||
| 207 | normalize_date(start_dt)).total_seconds() / 60) |
||
| 208 | |||
| 209 | future_df = pd.DataFrame({ |
||
| 210 | "open": np.array(zeroes_buffer + |
||
| 211 | list(range(0, num_minutes))) * 1000, |
||
| 212 | "high": np.array(zeroes_buffer + |
||
| 213 | list(range(10000, 10000 + num_minutes))) * 1000, |
||
| 214 | "low": np.array(zeroes_buffer + |
||
| 215 | list(range(20000, 20000 + num_minutes))) * 1000, |
||
| 216 | "close": np.array(zeroes_buffer + |
||
| 217 | list(range(30000, 30000 + num_minutes))) * 1000, |
||
| 218 | "volume": np.array(zeroes_buffer + |
||
| 219 | list(range(40000, 40000 + num_minutes))) |
||
| 220 | }) |
||
| 221 | |||
| 222 | path = join(tempdir.path, "{0}.bcolz".format(asset.sid)) |
||
| 223 | ctable = bcolz.ctable.fromdataframe(future_df, rootdir=path) |
||
| 224 | |||
| 225 | ctable.attrs["start_dt"] = start_dt.value / 1e9 |
||
| 226 | ctable.attrs["last_dt"] = end_dt.value / 1e9 |
||
| 227 | |||
| 228 | @classmethod |
||
| 229 | def create_fake_minute_data(cls, tempdir): |
||
| 230 | resources = { |
||
| 231 | cls.AAPL: join(TEST_MINUTE_RESOURCE_PATH, 'AAPL_minute.csv.gz'), |
||
| 232 | cls.MSFT: join(TEST_MINUTE_RESOURCE_PATH, 'MSFT_minute.csv.gz'), |
||
| 233 | cls.DELL: join(TEST_MINUTE_RESOURCE_PATH, 'DELL_minute.csv.gz'), |
||
| 234 | cls.TSLA: join(TEST_MINUTE_RESOURCE_PATH, "TSLA_minute.csv.gz"), |
||
| 235 | cls.BRKA: join(TEST_MINUTE_RESOURCE_PATH, "BRKA_minute.csv.gz"), |
||
| 236 | cls.IBM: join(TEST_MINUTE_RESOURCE_PATH, "IBM_minute.csv.gz"), |
||
| 237 | cls.GS: |
||
| 238 | join(TEST_MINUTE_RESOURCE_PATH, "IBM_minute.csv.gz"), # unused |
||
| 239 | cls.C: join(TEST_MINUTE_RESOURCE_PATH, "C_minute.csv.gz"), |
||
| 240 | cls.DIVIDEND_SID: join(TEST_MINUTE_RESOURCE_PATH, |
||
| 241 | "DIVIDEND_minute.csv.gz"), |
||
| 242 | } |
||
| 243 | |||
| 244 | MinuteBarWriterFromCSVs(resources).write(tempdir.path, cls.assets) |
||
| 245 | |||
| 246 | @classmethod |
||
| 247 | def create_fake_daily_data(cls, tempdir): |
||
| 248 | resources = { |
||
| 249 | cls.AAPL: join(TEST_DAILY_RESOURCE_PATH, 'AAPL.csv'), |
||
| 250 | cls.MSFT: join(TEST_DAILY_RESOURCE_PATH, 'MSFT.csv'), |
||
| 251 | cls.DELL: join(TEST_DAILY_RESOURCE_PATH, 'MSFT.csv'), # unused |
||
| 252 | cls.TSLA: join(TEST_DAILY_RESOURCE_PATH, 'MSFT.csv'), # unused |
||
| 253 | cls.BRKA: join(TEST_DAILY_RESOURCE_PATH, 'BRK-A.csv'), |
||
| 254 | cls.IBM: join(TEST_MINUTE_RESOURCE_PATH, 'IBM_daily.csv.gz'), |
||
| 255 | cls.GS: join(TEST_MINUTE_RESOURCE_PATH, 'GS_daily.csv.gz'), |
||
| 256 | cls.C: join(TEST_MINUTE_RESOURCE_PATH, 'C_daily.csv.gz'), |
||
| 257 | cls.DIVIDEND_SID: join(TEST_MINUTE_RESOURCE_PATH, |
||
| 258 | 'DIVIDEND_daily.csv.gz') |
||
| 259 | } |
||
| 260 | raw_data = { |
||
| 261 | asset: read_csv(path, parse_dates=['day']).set_index('day') |
||
| 262 | for asset, path in iteritems(resources) |
||
| 263 | } |
||
| 264 | for frame in raw_data.values(): |
||
| 265 | frame['price'] = frame['close'] |
||
| 266 | |||
| 267 | writer = DailyBarWriterFromCSVs(resources) |
||
| 268 | data_path = tempdir.getpath('test_daily_data.bcolz') |
||
| 269 | writer.write(data_path, trading_days, cls.assets) |
||
| 270 | |||
| 271 | @classmethod |
||
| 272 | def create_fake_adjustments(cls, tempdir, filename, |
||
| 273 | splits=None, mergers=None, dividends=None): |
||
| 274 | writer = SQLiteAdjustmentWriter(tempdir.getpath(filename), |
||
| 275 | cls.env.trading_days, |
||
| 276 | MockDailyBarReader()) |
||
| 277 | |||
| 278 | if dividends is None: |
||
| 279 | dividends = DataFrame( |
||
| 280 | { |
||
| 281 | # Hackery to make the dtypes correct on an empty frame. |
||
| 282 | 'ex_date': array([], dtype='datetime64[ns]'), |
||
| 283 | 'pay_date': array([], dtype='datetime64[ns]'), |
||
| 284 | 'record_date': array([], dtype='datetime64[ns]'), |
||
| 285 | 'declared_date': array([], dtype='datetime64[ns]'), |
||
| 286 | 'amount': array([], dtype=float), |
||
| 287 | 'sid': array([], dtype=int), |
||
| 288 | }, |
||
| 289 | index=DatetimeIndex([], tz='UTC'), |
||
| 290 | columns=['ex_date', |
||
| 291 | 'pay_date', |
||
| 292 | 'record_date', |
||
| 293 | 'declared_date', |
||
| 294 | 'amount', |
||
| 295 | 'sid'] |
||
| 296 | ) |
||
| 297 | |||
| 298 | if splits is None: |
||
| 299 | splits = DataFrame( |
||
| 300 | { |
||
| 301 | # Hackery to make the dtypes correct on an empty frame. |
||
| 302 | 'effective_date': array([], dtype=int), |
||
| 303 | 'ratio': array([], dtype=float), |
||
| 304 | 'sid': array([], dtype=int), |
||
| 305 | }, |
||
| 306 | index=DatetimeIndex([], tz='UTC')) |
||
| 307 | |||
| 308 | if mergers is None: |
||
| 309 | mergers = DataFrame( |
||
| 310 | { |
||
| 311 | # Hackery to make the dtypes correct on an empty frame. |
||
| 312 | 'effective_date': array([], dtype=int), |
||
| 313 | 'ratio': array([], dtype=float), |
||
| 314 | 'sid': array([], dtype=int), |
||
| 315 | }, |
||
| 316 | index=DatetimeIndex([], tz='UTC')) |
||
| 317 | |||
| 318 | writer.write(splits, mergers, dividends) |
||
| 319 | |||
| 320 | def get_portal(self, |
||
| 321 | daily_equities_filename="test_daily_data.bcolz", |
||
| 322 | adjustments_filename="adjustments.sqlite", |
||
| 323 | env=None): |
||
| 324 | |||
| 325 | if env is None: |
||
| 326 | env = self.env |
||
| 327 | |||
| 328 | temp_path = self.tempdir.path |
||
| 329 | |||
| 330 | adjustment_reader = SQLiteAdjustmentReader( |
||
| 331 | join(temp_path, adjustments_filename)) |
||
| 332 | |||
| 333 | return DataPortal( |
||
| 334 | env, |
||
| 335 | minutes_equities_path=temp_path, |
||
| 336 | daily_equities_path=join(temp_path, daily_equities_filename), |
||
| 337 | adjustment_reader=adjustment_reader |
||
| 338 | ) |
||
| 339 | |||
| 340 | def test_history_in_initialize(self): |
||
| 341 | algo_text = dedent( |
||
| 342 | """\ |
||
| 343 | from zipline.api import history |
||
| 344 | |||
| 345 | def initialize(context): |
||
| 346 | history([24], 10, '1d', 'price') |
||
| 347 | |||
| 348 | def handle_data(context, data): |
||
| 349 | pass |
||
| 350 | """ |
||
| 351 | ) |
||
| 352 | |||
| 353 | start = pd.Timestamp('2007-04-05', tz='UTC') |
||
| 354 | end = pd.Timestamp('2007-04-10', tz='UTC') |
||
| 355 | |||
| 356 | sim_params = SimulationParameters( |
||
| 357 | period_start=start, |
||
| 358 | period_end=end, |
||
| 359 | capital_base=float("1.0e5"), |
||
| 360 | data_frequency='minute', |
||
| 361 | emission_rate='daily', |
||
| 362 | env=self.env, |
||
| 363 | ) |
||
| 364 | |||
| 365 | test_algo = TradingAlgorithm( |
||
| 366 | script=algo_text, |
||
| 367 | data_frequency='minute', |
||
| 368 | sim_params=sim_params, |
||
| 369 | env=self.env, |
||
| 370 | ) |
||
| 371 | |||
| 372 | with self.assertRaises(HistoryInInitialize): |
||
| 373 | test_algo.initialize() |
||
| 374 | |||
| 375 | def test_minute_basic_functionality(self): |
||
| 376 | # get a 5-bar minute history from the very end of the available data |
||
| 377 | window = self.get_portal().get_history_window( |
||
| 378 | [1], |
||
| 379 | pd.Timestamp("2014-03-21 18:23:00+00:00", tz='UTC'), |
||
| 380 | 5, |
||
| 381 | "1m", |
||
| 382 | "open_price" |
||
| 383 | ) |
||
| 384 | |||
| 385 | self.assertEqual(len(window), 5) |
||
| 386 | reference = [534.469, 534.471, 534.475, 534.477, 534.477] |
||
| 387 | for i in range(0, 4): |
||
| 388 | self.assertEqual(window.iloc[-5 + i].loc[1], reference[i]) |
||
| 389 | |||
| 390 | def test_minute_splits(self): |
||
| 391 | portal = self.get_portal() |
||
| 392 | |||
| 393 | window = portal.get_history_window( |
||
| 394 | [1], |
||
| 395 | pd.Timestamp("2014-03-21 18:30:00+00:00", tz='UTC'), |
||
| 396 | 1000, |
||
| 397 | "1m", |
||
| 398 | "open_price" |
||
| 399 | ) |
||
| 400 | |||
| 401 | self.assertEqual(len(window), 1000) |
||
| 402 | |||
| 403 | # there are two splits for AAPL (on 2014-03-20 and 2014-03-21), |
||
| 404 | # each with ratio 0.5). |
||
| 405 | |||
| 406 | day1_end = pd.Timestamp("2014-03-19 20:00", tz='UTC') |
||
| 407 | day2_start = pd.Timestamp("2014-03-20 13:31", tz='UTC') |
||
| 408 | day2_end = pd.Timestamp("2014-03-20 20:00", tz='UTC') |
||
| 409 | day3_start = pd.Timestamp("2014-03-21 13:31", tz='UTC') |
||
| 410 | |||
| 411 | self.assertEquals(window.loc[day1_end, 1], 533.086) |
||
| 412 | self.assertEquals(window.loc[day2_start, 1], 533.087) |
||
| 413 | self.assertEquals(window.loc[day2_end, 1], 533.853) |
||
| 414 | self.assertEquals(window.loc[day3_start, 1], 533.854) |
||
| 415 | |||
| 416 | def test_minute_window_starts_before_trading_start(self): |
||
| 417 | portal = self.get_portal() |
||
| 418 | |||
| 419 | # get a 50-bar minute history for MSFT starting 5 minutes into 3/20, |
||
| 420 | # its first trading day |
||
| 421 | window = portal.get_history_window( |
||
| 422 | [2], |
||
| 423 | pd.Timestamp("2014-03-20 13:35:00", tz='UTC'), |
||
| 424 | 50, |
||
| 425 | "1m", |
||
| 426 | "high", |
||
| 427 | ) |
||
| 428 | |||
| 429 | self.assertEqual(len(window), 50) |
||
| 430 | reference = [107.081, 109.476, 102.316, 107.861, 106.040] |
||
| 431 | for i in range(0, 4): |
||
| 432 | self.assertEqual(window.iloc[-5 + i].loc[2], reference[i]) |
||
| 433 | |||
| 434 | # get history for two securities at the same time, where one starts |
||
| 435 | # trading a day later than the other |
||
| 436 | window2 = portal.get_history_window( |
||
| 437 | [1, 2], |
||
| 438 | pd.Timestamp("2014-03-20 13:35:00", tz='UTC'), |
||
| 439 | 50, |
||
| 440 | "1m", |
||
| 441 | "low", |
||
| 442 | ) |
||
| 443 | |||
| 444 | self.assertEqual(len(window2), 50) |
||
| 445 | reference2 = { |
||
| 446 | 1: [1059.318, 1055.914, 1061.136, 1063.698, 1055.964], |
||
| 447 | 2: [98.902, 99.841, 90.984, 99.891, 98.027] |
||
| 448 | } |
||
| 449 | |||
| 450 | for i in range(0, 45): |
||
| 451 | self.assertFalse(np.isnan(window2.iloc[i].loc[1])) |
||
| 452 | |||
| 453 | # there should be 45 NaNs for MSFT until it starts trading |
||
| 454 | self.assertTrue(np.isnan(window2.iloc[i].loc[2])) |
||
| 455 | |||
| 456 | for i in range(0, 4): |
||
| 457 | self.assertEquals(window2.iloc[-5 + i].loc[1], |
||
| 458 | reference2[1][i]) |
||
| 459 | self.assertEquals(window2.iloc[-5 + i].loc[2], |
||
| 460 | reference2[2][i]) |
||
| 461 | |||
| 462 | def test_minute_window_ends_before_trading_start(self): |
||
|
|
|||
| 463 | # entire window is before the trading start |
||
| 464 | window = self.get_portal().get_history_window( |
||
| 465 | [2], |
||
| 466 | pd.Timestamp("2014-02-05 14:35:00", tz='UTC'), |
||
| 467 | 100, |
||
| 468 | "1m", |
||
| 469 | "high" |
||
| 470 | ) |
||
| 471 | |||
| 472 | self.assertEqual(len(window), 100) |
||
| 473 | for i in range(0, 100): |
||
| 474 | self.assertTrue(np.isnan(window.iloc[i].loc[2])) |
||
| 475 | |||
| 476 | def test_minute_window_ends_after_trading_end(self): |
||
| 477 | portal = self.get_portal() |
||
| 478 | |||
| 479 | window = portal.get_history_window( |
||
| 480 | [2], |
||
| 481 | pd.Timestamp("2014-03-24 13:35:00", tz='UTC'), |
||
| 482 | 50, |
||
| 483 | "1m", |
||
| 484 | "high", |
||
| 485 | ) |
||
| 486 | |||
| 487 | # should be 45 non-NaNs then 5 NaNs as MSFT has stopped trading at |
||
| 488 | # the end of the day 2014-03-21 (and the 22nd and 23rd is weekend) |
||
| 489 | self.assertEqual(len(window), 50) |
||
| 490 | |||
| 491 | for i in range(0, 45): |
||
| 492 | self.assertFalse(np.isnan(window.iloc[i].loc[2])) |
||
| 493 | |||
| 494 | for i in range(46, 50): |
||
| 495 | self.assertTrue(np.isnan(window.iloc[i].loc[2])) |
||
| 496 | |||
| 497 | def test_minute_window_starts_after_trading_end(self): |
||
| 498 | # entire window is after the trading end |
||
| 499 | window = self.get_portal().get_history_window( |
||
| 500 | [2], |
||
| 501 | pd.Timestamp("2014-04-02 14:35:00", tz='UTC'), |
||
| 502 | 100, |
||
| 503 | "1m", |
||
| 504 | "high" |
||
| 505 | ) |
||
| 506 | |||
| 507 | self.assertEqual(len(window), 100) |
||
| 508 | for i in range(0, 100): |
||
| 509 | self.assertTrue(np.isnan(window.iloc[i].loc[2])) |
||
| 510 | |||
| 511 | def test_minute_window_starts_before_1_2_2002(self): |
||
| 512 | window = self.get_portal().get_history_window( |
||
| 513 | [3], |
||
| 514 | pd.Timestamp("2002-01-02 14:35:00", tz='UTC'), |
||
| 515 | 50, |
||
| 516 | "1m", |
||
| 517 | "close_price" |
||
| 518 | ) |
||
| 519 | |||
| 520 | self.assertEqual(len(window), 50) |
||
| 521 | for i in range(0, 45): |
||
| 522 | self.assertTrue(np.isnan(window.iloc[i].loc[3])) |
||
| 523 | |||
| 524 | for i in range(46, 50): |
||
| 525 | self.assertFalse(np.isnan(window.iloc[i].loc[3])) |
||
| 526 | |||
| 527 | def test_minute_early_close(self): |
||
| 528 | # market was closed early on 7/3, and that's reflected in our |
||
| 529 | # fake IBM minute data. also, IBM had a split that takes effect |
||
| 530 | # right after the early close. |
||
| 531 | |||
| 532 | # five minutes into the day after an early close, get 20 1m bars |
||
| 533 | window = self.get_portal().get_history_window( |
||
| 534 | [self.IBM], |
||
| 535 | pd.Timestamp("2014-07-07 13:35:00", tz='UTC'), |
||
| 536 | 20, |
||
| 537 | "1m", |
||
| 538 | "high" |
||
| 539 | ) |
||
| 540 | |||
| 541 | self.assertEqual(len(window), 20) |
||
| 542 | |||
| 543 | reference = [27134.486, 27134.802, 27134.660, 27132.813, 27130.964, |
||
| 544 | 27133.767, 27133.268, 27131.510, 27134.946, 27132.400, |
||
| 545 | 27134.350, 27130.588, 27132.528, 27130.418, 27131.040, |
||
| 546 | 27132.664, 27131.307, 27133.978, 27132.779, 27134.476] |
||
| 547 | |||
| 548 | for i in range(0, 20): |
||
| 549 | self.assertAlmostEquals(window.iloc[i].loc[self.IBM], reference[i]) |
||
| 550 | |||
| 551 | def test_minute_merger(self): |
||
| 552 | def check(field, ref): |
||
| 553 | window = self.get_portal().get_history_window( |
||
| 554 | [self.C], |
||
| 555 | pd.Timestamp("2014-07-16 13:35", tz='UTC'), |
||
| 556 | 10, |
||
| 557 | "1m", |
||
| 558 | field |
||
| 559 | ) |
||
| 560 | |||
| 561 | self.assertEqual(len(window), len(ref)) |
||
| 562 | |||
| 563 | for i in range(0, len(ref) - 1): |
||
| 564 | self.assertEquals(window.iloc[i].loc[self.C], ref[i]) |
||
| 565 | |||
| 566 | open_ref = [71.99, 71.991, 71.992, 71.996, 71.996, |
||
| 567 | 72.000, 72.001, 72.002, 72.004, 72.005] |
||
| 568 | high_ref = [77.334, 80.196, 80.387, 72.331, 79.184, |
||
| 569 | 75.439, 81.176, 78.564, 80.498, 82.000] |
||
| 570 | low_ref = [62.621, 70.427, 65.572, 68.357, 63.623, |
||
| 571 | 69.805, 67.245, 64.238, 64.487, 71.864] |
||
| 572 | close_ref = [69.977, 75.311, 72.979, 70.344, 71.403, |
||
| 573 | 72.622, 74.210, 71.401, 72.492, 73.669] |
||
| 574 | vol_ref = [12663, 12662, 12661, 12661, 12660, 12661, |
||
| 575 | 12663, 12662, 12663, 12662] |
||
| 576 | |||
| 577 | check("open_price", open_ref) |
||
| 578 | check("high", high_ref) |
||
| 579 | check("low", low_ref) |
||
| 580 | check("close_price", close_ref) |
||
| 581 | check("price", close_ref) |
||
| 582 | check("volume", vol_ref) |
||
| 583 | |||
| 584 | def test_minute_forward_fill(self): |
||
| 585 | # only forward fill if ffill=True AND we are asking for "price" |
||
| 586 | |||
| 587 | # our fake TSLA data (sid 4) is missing a bunch of minute bars |
||
| 588 | # right after the open on 2002-01-02 |
||
| 589 | |||
| 590 | for field in ["open_price", "high", "low", "volume", "close_price"]: |
||
| 591 | no_ffill = self.get_portal().get_history_window( |
||
| 592 | [4], |
||
| 593 | pd.Timestamp("2002-01-02 21:00:00", tz='UTC'), |
||
| 594 | 390, |
||
| 595 | "1m", |
||
| 596 | field |
||
| 597 | ) |
||
| 598 | |||
| 599 | missing_bar_indices = [1, 3, 5, 7, 9, 11, 13] |
||
| 600 | if field == 'volume': |
||
| 601 | for bar_idx in missing_bar_indices: |
||
| 602 | self.assertEqual(no_ffill.iloc[bar_idx].loc[4], 0) |
||
| 603 | else: |
||
| 604 | for bar_idx in missing_bar_indices: |
||
| 605 | self.assertTrue(np.isnan(no_ffill.iloc[bar_idx].loc[4])) |
||
| 606 | |||
| 607 | ffill_window = self.get_portal().get_history_window( |
||
| 608 | [4], |
||
| 609 | pd.Timestamp("2002-01-02 21:00:00", tz='UTC'), |
||
| 610 | 390, |
||
| 611 | "1m", |
||
| 612 | "price" |
||
| 613 | ) |
||
| 614 | |||
| 615 | for i in range(0, 390): |
||
| 616 | self.assertFalse(np.isnan(ffill_window.iloc[i].loc[4])) |
||
| 617 | |||
| 618 | # 2002-01-02 14:31:00+00:00 126.183 |
||
| 619 | # 2002-01-02 14:32:00+00:00 126.183 |
||
| 620 | # 2002-01-02 14:33:00+00:00 125.648 |
||
| 621 | # 2002-01-02 14:34:00+00:00 125.648 |
||
| 622 | # 2002-01-02 14:35:00+00:00 126.016 |
||
| 623 | # 2002-01-02 14:36:00+00:00 126.016 |
||
| 624 | # 2002-01-02 14:37:00+00:00 127.918 |
||
| 625 | # 2002-01-02 14:38:00+00:00 127.918 |
||
| 626 | # 2002-01-02 14:39:00+00:00 126.423 |
||
| 627 | # 2002-01-02 14:40:00+00:00 126.423 |
||
| 628 | # 2002-01-02 14:41:00+00:00 129.825 |
||
| 629 | # 2002-01-02 14:42:00+00:00 129.825 |
||
| 630 | # 2002-01-02 14:43:00+00:00 125.392 |
||
| 631 | # 2002-01-02 14:44:00+00:00 125.392 |
||
| 632 | |||
| 633 | vals = [126.183, 125.648, 126.016, 127.918, 126.423, 129.825, 125.392] |
||
| 634 | for idx, val in enumerate(vals): |
||
| 635 | self.assertEqual(ffill_window.iloc[2 * idx].loc[4], val) |
||
| 636 | self.assertEqual(ffill_window.iloc[(2 * idx) + 1].loc[4], val) |
||
| 637 | |||
| 638 | # make sure that if we pass ffill=False with field="price", we do |
||
| 639 | # not ffill |
||
| 640 | really_no_ffill_window = self.get_portal().get_history_window( |
||
| 641 | [4], |
||
| 642 | pd.Timestamp("2002-01-02 21:00:00", tz='UTC'), |
||
| 643 | 390, |
||
| 644 | "1m", |
||
| 645 | "price", |
||
| 646 | ffill=False |
||
| 647 | ) |
||
| 648 | |||
| 649 | for idx, val in enumerate(vals): |
||
| 650 | idx1 = 2 * idx |
||
| 651 | idx2 = idx1 + 1 |
||
| 652 | self.assertEqual(really_no_ffill_window.iloc[idx1].loc[4], val) |
||
| 653 | self.assertTrue(np.isnan(really_no_ffill_window.iloc[idx2].loc[4])) |
||
| 654 | |||
| 655 | def test_daily_functionality(self): |
||
| 656 | # 9 daily bars |
||
| 657 | # 2014-03-10,183999.0,186400.0,183601.0,186400.0,400 |
||
| 658 | # 2014-03-11,186925.0,187490.0,185910.0,187101.0,600 |
||
| 659 | # 2014-03-12,186498.0,187832.0,186005.0,187750.0,300 |
||
| 660 | # 2014-03-13,188150.0,188852.0,185254.0,185750.0,700 |
||
| 661 | # 2014-03-14,185825.0,186507.0,183418.0,183860.0,600 |
||
| 662 | # 2014-03-17,184350.0,185790.0,184350.0,185050.0,400 |
||
| 663 | # 2014-03-18,185400.0,185400.0,183860.0,184860.0,200 |
||
| 664 | # 2014-03-19,184860.0,185489.0,182764.0,183860.0,200 |
||
| 665 | # 2014-03-20,183999.0,186742.0,183630.0,186540.0,300 |
||
| 666 | |||
| 667 | # 5 one-minute bars that will be aggregated |
||
| 668 | # 2014-03-21 13:31:00+00:00,185422401,185426332,185413974,185420153,304 |
||
| 669 | # 2014-03-21 13:32:00+00:00,185422402,185424165,185417717,185420941,300 |
||
| 670 | # 2014-03-21 13:33:00+00:00,185422403,185430663,185419420,185425041,303 |
||
| 671 | # 2014-03-21 13:34:00+00:00,185422403,185431290,185417079,185424184,302 |
||
| 672 | # 2014-03-21 13:35:00+00:00,185422405,185430210,185416293,185423251,302 |
||
| 673 | |||
| 674 | def run_query(field, values): |
||
| 675 | window = self.get_portal().get_history_window( |
||
| 676 | [self.BRKA], |
||
| 677 | pd.Timestamp("2014-03-21 13:35", tz='UTC'), |
||
| 678 | 10, |
||
| 679 | "1d", |
||
| 680 | field |
||
| 681 | ) |
||
| 682 | |||
| 683 | self.assertEqual(len(window), 10) |
||
| 684 | |||
| 685 | for i in range(0, 10): |
||
| 686 | self.assertEquals(window.iloc[i].loc[self.BRKA], |
||
| 687 | values[i]) |
||
| 688 | |||
| 689 | # last value is the first minute's open |
||
| 690 | opens = [183999, 186925, 186498, 188150, 185825, 184350, |
||
| 691 | 185400, 184860, 183999, 185422.401] |
||
| 692 | |||
| 693 | # last value is the last minute's close |
||
| 694 | closes = [186400, 187101, 187750, 185750, 183860, 185050, |
||
| 695 | 184860, 183860, 186540, 185423.251] |
||
| 696 | |||
| 697 | # last value is the highest high value |
||
| 698 | highs = [186400, 187490, 187832, 188852, 186507, 185790, |
||
| 699 | 185400, 185489, 186742, 185431.290] |
||
| 700 | |||
| 701 | # last value is the lowest low value |
||
| 702 | lows = [183601, 185910, 186005, 185254, 183418, 184350, 183860, |
||
| 703 | 182764, 183630, 185413.974] |
||
| 704 | |||
| 705 | # last value is the sum of all the minute volumes |
||
| 706 | volumes = [400, 600, 300, 700, 600, 400, 200, 200, 300, 1511] |
||
| 707 | |||
| 708 | run_query("open_price", opens) |
||
| 709 | run_query("close_price", closes) |
||
| 710 | run_query("price", closes) |
||
| 711 | run_query("high", highs) |
||
| 712 | run_query("low", lows) |
||
| 713 | run_query("volume", volumes) |
||
| 714 | |||
| 715 | def test_daily_splits_with_no_minute_data(self): |
||
| 716 | # scenario is that we have daily data for AAPL through 6/11, |
||
| 717 | # but we have no minute data for AAPL on 6/11. there's also a split |
||
| 718 | # for AAPL on 6/9. |
||
| 719 | splits = DataFrame( |
||
| 720 | [ |
||
| 721 | { |
||
| 722 | 'effective_date': str_to_seconds('2014-06-09'), |
||
| 723 | 'ratio': (1 / 7.0), |
||
| 724 | 'sid': self.AAPL, |
||
| 725 | } |
||
| 726 | ], |
||
| 727 | columns=['effective_date', 'ratio', 'sid']) |
||
| 728 | |||
| 729 | self.create_fake_adjustments(self.tempdir, |
||
| 730 | "adjustments2.sqlite", |
||
| 731 | splits=splits) |
||
| 732 | |||
| 733 | portal = self.get_portal(adjustments_filename="adjustments2.sqlite") |
||
| 734 | |||
| 735 | def test_window(field, reference, ffill=True): |
||
| 736 | window = portal.get_history_window( |
||
| 737 | [self.AAPL], |
||
| 738 | pd.Timestamp("2014-06-11 15:30", tz='UTC'), |
||
| 739 | 6, |
||
| 740 | "1d", |
||
| 741 | field, |
||
| 742 | ffill |
||
| 743 | ) |
||
| 744 | |||
| 745 | self.assertEqual(len(window), 6) |
||
| 746 | |||
| 747 | for i in range(0, 5): |
||
| 748 | self.assertEquals(window.iloc[i].loc[self.AAPL], |
||
| 749 | reference[i]) |
||
| 750 | |||
| 751 | if ffill and field == "price": |
||
| 752 | last_val = window.iloc[5].loc[self.AAPL] |
||
| 753 | second_to_last_val = window.iloc[4].loc[self.AAPL] |
||
| 754 | |||
| 755 | self.assertEqual(last_val, second_to_last_val) |
||
| 756 | else: |
||
| 757 | if field == "volume": |
||
| 758 | self.assertEqual(window.iloc[5].loc[self.AAPL], 0) |
||
| 759 | else: |
||
| 760 | self.assertTrue(np.isnan(window.iloc[5].loc[self.AAPL])) |
||
| 761 | |||
| 762 | # 2014-06-04,637.4400099999999,647.8899690000001,636.110046,644.819992,p |
||
| 763 | # 2014-06-05,646.20005,649.370003,642.610008,647.349983,75951400 |
||
| 764 | # 2014-06-06,649.900002,651.259979,644.469971,645.570023,87484600 |
||
| 765 | # 2014-06-09,92.699997,93.879997,91.75,93.699997,75415000 |
||
| 766 | # 2014-06-10,94.730003,95.050003,93.57,94.25,62777000 |
||
| 767 | open_data = [91.063, 92.314, 92.843, 92.699, 94.730] |
||
| 768 | test_window("open_price", open_data, ffill=False) |
||
| 769 | test_window("open_price", open_data) |
||
| 770 | |||
| 771 | high_data = [92.556, 92.767, 93.037, 93.879, 95.050] |
||
| 772 | test_window("high", high_data, ffill=False) |
||
| 773 | test_window("high", high_data) |
||
| 774 | |||
| 775 | low_data = [90.873, 91.801, 92.067, 91.750, 93.570] |
||
| 776 | test_window("low", low_data, ffill=False) |
||
| 777 | test_window("low", low_data) |
||
| 778 | |||
| 779 | close_data = [92.117, 92.478, 92.224, 93.699, 94.250] |
||
| 780 | test_window("close_price", close_data, ffill=False) |
||
| 781 | test_window("close_price", close_data) |
||
| 782 | test_window("price", close_data, ffill=False) |
||
| 783 | test_window("price", close_data) |
||
| 784 | |||
| 785 | vol_data = [587093500, 531659800, 612392200, 75415000, 62777000] |
||
| 786 | test_window("volume", vol_data) |
||
| 787 | test_window("volume", vol_data, ffill=False) |
||
| 788 | |||
| 789 | def test_daily_window_starts_before_trading_start(self): |
||
| 790 | portal = self.get_portal() |
||
| 791 | |||
| 792 | # MSFT started on 3/3/2014, so try to go before that |
||
| 793 | window = portal.get_history_window( |
||
| 794 | [self.MSFT], |
||
| 795 | pd.Timestamp("2014-03-05 13:35:00", tz='UTC'), |
||
| 796 | 5, |
||
| 797 | "1d", |
||
| 798 | "high" |
||
| 799 | ) |
||
| 800 | |||
| 801 | self.assertEqual(len(window), 5) |
||
| 802 | |||
| 803 | # should be two empty days, then 3/3 and 3/4, then |
||
| 804 | # an empty day because we don't have minute data for 3/5 |
||
| 805 | self.assertTrue(np.isnan(window.iloc[0].loc[self.MSFT])) |
||
| 806 | self.assertTrue(np.isnan(window.iloc[1].loc[self.MSFT])) |
||
| 807 | self.assertEquals(window.iloc[2].loc[self.MSFT], 38.130) |
||
| 808 | self.assertEquals(window.iloc[3].loc[self.MSFT], 38.48) |
||
| 809 | self.assertTrue(np.isnan(window.iloc[4].loc[self.MSFT])) |
||
| 810 | |||
| 811 | def test_daily_window_ends_before_trading_start(self): |
||
| 812 | portal = self.get_portal() |
||
| 813 | |||
| 814 | # MSFT started on 3/3/2014, so try to go before that |
||
| 815 | window = portal.get_history_window( |
||
| 816 | [self.MSFT], |
||
| 817 | pd.Timestamp("2014-02-28 13:35:00", tz='UTC'), |
||
| 818 | 5, |
||
| 819 | "1d", |
||
| 820 | "high" |
||
| 821 | ) |
||
| 822 | |||
| 823 | self.assertEqual(len(window), 5) |
||
| 824 | for i in range(0, 5): |
||
| 825 | self.assertTrue(np.isnan(window.iloc[i].loc[self.MSFT])) |
||
| 826 | |||
| 827 | def test_daily_window_starts_after_trading_end(self): |
||
| 828 | # MSFT stopped trading EOD Friday 8/29/2014 |
||
| 829 | window = self.get_portal().get_history_window( |
||
| 830 | [self.MSFT], |
||
| 831 | pd.Timestamp("2014-09-12 13:35:00", tz='UTC'), |
||
| 832 | 8, |
||
| 833 | "1d", |
||
| 834 | "high", |
||
| 835 | ) |
||
| 836 | |||
| 837 | self.assertEqual(len(window), 8) |
||
| 838 | for i in range(0, 8): |
||
| 839 | self.assertTrue(np.isnan(window.iloc[i].loc[self.MSFT])) |
||
| 840 | |||
| 841 | def test_daily_window_ends_after_trading_end(self): |
||
| 842 | # MSFT stopped trading EOD Friday 8/29/2014 |
||
| 843 | window = self.get_portal().get_history_window( |
||
| 844 | [self.MSFT], |
||
| 845 | pd.Timestamp("2014-09-04 13:35:00", tz='UTC'), |
||
| 846 | 10, |
||
| 847 | "1d", |
||
| 848 | "high", |
||
| 849 | ) |
||
| 850 | |||
| 851 | # should be 7 non-NaNs (8/21-8/22, 8/25-8/29) and 3 NaNs (9/2 - 9/4) |
||
| 852 | # (9/1/2014 is labor day) |
||
| 853 | self.assertEqual(len(window), 10) |
||
| 854 | |||
| 855 | for i in range(0, 7): |
||
| 856 | self.assertFalse(np.isnan(window.iloc[i].loc[self.MSFT])) |
||
| 857 | |||
| 858 | for i in range(7, 10): |
||
| 859 | self.assertTrue(np.isnan(window.iloc[i].loc[self.MSFT])) |
||
| 860 | |||
| 861 | def test_empty_sid_list(self): |
||
| 862 | portal = self.get_portal() |
||
| 863 | |||
| 864 | fields = ["open_price", |
||
| 865 | "close_price", |
||
| 866 | "high", |
||
| 867 | "low", |
||
| 868 | "volume", |
||
| 869 | "price"] |
||
| 870 | freqs = ["1m", "1d"] |
||
| 871 | |||
| 872 | for field in fields: |
||
| 873 | for freq in freqs: |
||
| 874 | window = portal.get_history_window( |
||
| 875 | [], |
||
| 876 | pd.Timestamp("2014-06-11 15:30", tz='UTC'), |
||
| 877 | 6, |
||
| 878 | freq, |
||
| 879 | field |
||
| 880 | ) |
||
| 881 | |||
| 882 | self.assertEqual(len(window), 6) |
||
| 883 | |||
| 884 | for i in range(0, 6): |
||
| 885 | self.assertEqual(len(window.iloc[i]), 0) |
||
| 886 | |||
| 887 | def test_daily_window_starts_before_1_2_2002(self): |
||
| 888 | |||
| 889 | env = TradingEnvironment() |
||
| 890 | asset_info = make_simple_asset_info( |
||
| 891 | [self.GS], |
||
| 892 | Timestamp('1999-05-04'), |
||
| 893 | Timestamp('2004-08-30'), |
||
| 894 | ['GS'] |
||
| 895 | ) |
||
| 896 | env.write_data(equities_df=asset_info) |
||
| 897 | portal = self.get_portal(env=env) |
||
| 898 | |||
| 899 | window = portal.get_history_window( |
||
| 900 | [self.GS], |
||
| 901 | pd.Timestamp("2002-01-04 14:35:00", tz='UTC'), |
||
| 902 | 10, |
||
| 903 | "1d", |
||
| 904 | "low" |
||
| 905 | ) |
||
| 906 | |||
| 907 | # 12/20, 12/21, 12/24, 12/26, 12/27, 12/28, 12/31 should be NaNs |
||
| 908 | # 1/2 and 1/3 should be non-NaN |
||
| 909 | # 1/4 should be NaN (since we don't have minute data for it) |
||
| 910 | |||
| 911 | self.assertEqual(len(window), 10) |
||
| 912 | |||
| 913 | for i in range(0, 7): |
||
| 914 | self.assertTrue(np.isnan(window.iloc[i].loc[self.GS])) |
||
| 915 | |||
| 916 | for i in range(8, 9): |
||
| 917 | self.assertFalse(np.isnan(window.iloc[i].loc[self.GS])) |
||
| 918 | |||
| 919 | self.assertTrue(np.isnan(window.iloc[9].loc[self.GS])) |
||
| 920 | |||
| 921 | def test_minute_window_ends_before_1_2_2002(self): |
||
| 922 | with self.assertRaises(ValueError): |
||
| 923 | self.get_portal().get_history_window( |
||
| 924 | [self.GS], |
||
| 925 | pd.Timestamp("2001-12-31 14:35:00", tz='UTC'), |
||
| 926 | 50, |
||
| 927 | "1m", |
||
| 928 | "close_price" |
||
| 929 | ) |
||
| 930 | |||
| 931 | def test_bad_history_inputs(self): |
||
| 932 | portal = self.get_portal() |
||
| 933 | |||
| 934 | # bad fieldname |
||
| 935 | for field in ["foo", "bar", "", "5"]: |
||
| 936 | with self.assertRaises(ValueError): |
||
| 937 | portal.get_history_window( |
||
| 938 | [self.AAPL], |
||
| 939 | pd.Timestamp("2014-06-11 15:30", tz='UTC'), |
||
| 940 | 6, |
||
| 941 | "1d", |
||
| 942 | field |
||
| 943 | ) |
||
| 944 | |||
| 945 | # bad frequency |
||
| 946 | for freq in ["2m", "30m", "3d", "300d", "", "5"]: |
||
| 947 | with self.assertRaises(ValueError): |
||
| 948 | portal.get_history_window( |
||
| 949 | [self.AAPL], |
||
| 950 | pd.Timestamp("2014-06-11 15:30", tz='UTC'), |
||
| 951 | 6, |
||
| 952 | freq, |
||
| 953 | "volume" |
||
| 954 | ) |
||
| 955 | |||
| 956 | def test_daily_merger(self): |
||
| 957 | def check(field, ref): |
||
| 958 | window = self.get_portal().get_history_window( |
||
| 959 | [self.C], |
||
| 960 | pd.Timestamp("2014-07-17 13:35", tz='UTC'), |
||
| 961 | 4, |
||
| 962 | "1d", |
||
| 963 | field |
||
| 964 | ) |
||
| 965 | |||
| 966 | self.assertEqual(len(window), len(ref),) |
||
| 967 | |||
| 968 | for i in range(0, len(ref) - 1): |
||
| 969 | self.assertEquals(window.iloc[i].loc[self.C], ref[i], i) |
||
| 970 | |||
| 971 | # 2014-07-14 00:00:00+00:00,139.18,139.14,139.2,139.17,12351 |
||
| 972 | # 2014-07-15 00:00:00+00:00,139.2,139.2,139.18,139.19,12354 |
||
| 973 | # 2014-07-16 00:00:00+00:00,69.58,69.56,69.57,69.565,12352 |
||
| 974 | # 2014-07-17 13:31:00+00:00,72767,80146,63406,71776,12876 |
||
| 975 | # 2014-07-17 13:32:00+00:00,72769,76943,68907,72925,12875 |
||
| 976 | # 2014-07-17 13:33:00+00:00,72771,76127,63194,69660,12875 |
||
| 977 | # 2014-07-17 13:34:00+00:00,72774,79349,69771,74560,12877 |
||
| 978 | # 2014-07-17 13:35:00+00:00,72776,75340,68970,72155,12879 |
||
| 979 | |||
| 980 | open_ref = [69.59, 69.6, 69.58, 72.767] |
||
| 981 | high_ref = [69.57, 69.6, 69.56, 80.146] |
||
| 982 | low_ref = [69.6, 69.59, 69.57, 63.194] |
||
| 983 | close_ref = [69.585, 69.595, 69.565, 72.155] |
||
| 984 | vol_ref = [12351, 12354, 12352, 64382] |
||
| 985 | |||
| 986 | check("open_price", open_ref) |
||
| 987 | check("high", high_ref) |
||
| 988 | check("low", low_ref) |
||
| 989 | check("close_price", close_ref) |
||
| 990 | check("price", close_ref) |
||
| 991 | check("volume", vol_ref) |
||
| 992 | |||
| 993 | def test_minute_adjustments_as_of_lookback_date(self): |
||
| 994 | # AAPL has splits on 2014-03-20 and 2014-03-21 |
||
| 995 | window_0320 = self.get_portal().get_history_window( |
||
| 996 | [self.AAPL], |
||
| 997 | pd.Timestamp("2014-03-20 13:35", tz='UTC'), |
||
| 998 | 395, |
||
| 999 | "1m", |
||
| 1000 | "open_price" |
||
| 1001 | ) |
||
| 1002 | |||
| 1003 | window_0321 = self.get_portal().get_history_window( |
||
| 1004 | [self.AAPL], |
||
| 1005 | pd.Timestamp("2014-03-21 13:35", tz='UTC'), |
||
| 1006 | 785, |
||
| 1007 | "1m", |
||
| 1008 | "open_price" |
||
| 1009 | ) |
||
| 1010 | |||
| 1011 | for i in range(0, 395): |
||
| 1012 | # history on 3/20, since the 3/21 0.5 split hasn't |
||
| 1013 | # happened yet, should return values 2x larger than history on |
||
| 1014 | # 3/21 |
||
| 1015 | self.assertEqual(window_0320.iloc[i].loc[self.AAPL], |
||
| 1016 | window_0321.iloc[i].loc[self.AAPL] * 2) |
||
| 1017 | |||
| 1018 | def test_daily_adjustments_as_of_lookback_date(self): |
||
| 1019 | window_0402 = self.get_portal().get_history_window( |
||
| 1020 | [self.IBM], |
||
| 1021 | pd.Timestamp("2014-04-02 13:35", tz='UTC'), |
||
| 1022 | 23, |
||
| 1023 | "1d", |
||
| 1024 | "open_price" |
||
| 1025 | ) |
||
| 1026 | |||
| 1027 | window_0702 = self.get_portal().get_history_window( |
||
| 1028 | [self.IBM], |
||
| 1029 | pd.Timestamp("2014-07-02 13:35", tz='UTC'), |
||
| 1030 | 86, |
||
| 1031 | "1d", |
||
| 1032 | "open_price" |
||
| 1033 | ) |
||
| 1034 | |||
| 1035 | for i in range(0, 22): |
||
| 1036 | self.assertEqual(window_0402.iloc[i].loc[self.IBM], |
||
| 1037 | window_0702.iloc[i].loc[self.IBM] * 2) |
||
| 1038 | |||
| 1039 | def test_minute_dividends(self): |
||
| 1040 | def check(field, ref): |
||
| 1041 | window = self.get_portal().get_history_window( |
||
| 1042 | [self.DIVIDEND_SID], |
||
| 1043 | pd.Timestamp("2014-03-18 13:35", tz='UTC'), |
||
| 1044 | 10, |
||
| 1045 | "1m", |
||
| 1046 | field |
||
| 1047 | ) |
||
| 1048 | |||
| 1049 | self.assertEqual(len(window), len(ref)) |
||
| 1050 | |||
| 1051 | np.testing.assert_allclose(window.loc[:, self.DIVIDEND_SID], ref) |
||
| 1052 | |||
| 1053 | # the DIVIDEND stock has dividends on 2014-03-18 (0.98) |
||
| 1054 | # 2014-03-17 19:56:00+00:00,118923,123229,112445,117837,2273 |
||
| 1055 | # 2014-03-17 19:57:00+00:00,118927,122997,117911,120454,2274 |
||
| 1056 | # 2014-03-17 19:58:00+00:00,118930,129112,111136,120124,2274 |
||
| 1057 | # 2014-03-17 19:59:00+00:00,118932,126147,112112,119129,2276 |
||
| 1058 | # 2014-03-17 20:00:00+00:00,118932,124541,108717,116628,2275 |
||
| 1059 | # 2014-03-18 13:31:00+00:00,116457,120731,114148,117439,2274 |
||
| 1060 | # 2014-03-18 13:32:00+00:00,116461,116520,106572,111546,2275 |
||
| 1061 | # 2014-03-18 13:33:00+00:00,116461,117115,108506,112810,2274 |
||
| 1062 | # 2014-03-18 13:34:00+00:00,116461,119787,108861,114323,2273 |
||
| 1063 | # 2014-03-18 13:35:00+00:00,116464,117221,112698,114960,2272 |
||
| 1064 | |||
| 1065 | open_ref = [116.545, # 2014-03-17 19:56:00+00:00 |
||
| 1066 | 116.548, # 2014-03-17 19:57:00+00:00 |
||
| 1067 | 116.551, # 2014-03-17 19:58:00+00:00 |
||
| 1068 | 116.553, # 2014-03-17 19:59:00+00:00 |
||
| 1069 | 116.553, # 2014-03-17 20:00:00+00:00 |
||
| 1070 | 116.457, # 2014-03-18 13:31:00+00:00 |
||
| 1071 | 116.461, # 2014-03-18 13:32:00+00:00 |
||
| 1072 | 116.461, # 2014-03-18 13:33:00+00:00 |
||
| 1073 | 116.461, # 2014-03-18 13:34:00+00:00 |
||
| 1074 | 116.464] # 2014-03-18 13:35:00+00:00 |
||
| 1075 | |||
| 1076 | high_ref = [120.764, # 2014-03-17 19:56:00+00:00 |
||
| 1077 | 120.537, # 2014-03-17 19:57:00+00:00 |
||
| 1078 | 126.530, # 2014-03-17 19:58:00+00:00 |
||
| 1079 | 123.624, # 2014-03-17 19:59:00+00:00 |
||
| 1080 | 122.050, # 2014-03-17 20:00:00+00:00 |
||
| 1081 | 120.731, # 2014-03-18 13:31:00+00:00 |
||
| 1082 | 116.520, # 2014-03-18 13:32:00+00:00 |
||
| 1083 | 117.115, # 2014-03-18 13:33:00+00:00 |
||
| 1084 | 119.787, # 2014-03-18 13:34:00+00:00 |
||
| 1085 | 117.221] # 2014-03-18 13:35:00+00:00 |
||
| 1086 | |||
| 1087 | low_ref = [110.196, # 2014-03-17 19:56:00+00:00 |
||
| 1088 | 115.553, # 2014-03-17 19:57:00+00:00 |
||
| 1089 | 108.913, # 2014-03-17 19:58:00+00:00 |
||
| 1090 | 109.870, # 2014-03-17 19:59:00+00:00 |
||
| 1091 | 106.543, # 2014-03-17 20:00:00+00:00 |
||
| 1092 | 114.148, # 2014-03-18 13:31:00+00:00 |
||
| 1093 | 106.572, # 2014-03-18 13:32:00+00:00 |
||
| 1094 | 108.506, # 2014-03-18 13:33:00+00:00 |
||
| 1095 | 108.861, # 2014-03-18 13:34:00+00:00 |
||
| 1096 | 112.698] # 2014-03-18 13:35:00+00:00 |
||
| 1097 | |||
| 1098 | close_ref = [115.480, # 2014-03-17 19:56:00+00:00 |
||
| 1099 | 118.045, # 2014-03-17 19:57:00+00:00 |
||
| 1100 | 117.722, # 2014-03-17 19:58:00+00:00 |
||
| 1101 | 116.746, # 2014-03-17 19:59:00+00:00 |
||
| 1102 | 114.295, # 2014-03-17 20:00:00+00:00 |
||
| 1103 | 117.439, # 2014-03-18 13:31:00+00:00 |
||
| 1104 | 111.546, # 2014-03-18 13:32:00+00:00 |
||
| 1105 | 112.810, # 2014-03-18 13:33:00+00:00 |
||
| 1106 | 114.323, # 2014-03-18 13:34:00+00:00 |
||
| 1107 | 114.960] # 2014-03-18 13:35:00+00:00 |
||
| 1108 | |||
| 1109 | volume_ref = [2273, # 2014-03-17 19:56:00+00:00 |
||
| 1110 | 2274, # 2014-03-17 19:57:00+00:00 |
||
| 1111 | 2274, # 2014-03-17 19:58:00+00:00 |
||
| 1112 | 2276, # 2014-03-17 19:59:00+00:00 |
||
| 1113 | 2275, # 2014-03-17 20:00:00+00:00 |
||
| 1114 | 2274, # 2014-03-18 13:31:00+00:00 |
||
| 1115 | 2275, # 2014-03-18 13:32:00+00:00 |
||
| 1116 | 2274, # 2014-03-18 13:33:00+00:00 |
||
| 1117 | 2273, # 2014-03-18 13:34:00+00:00 |
||
| 1118 | 2272] # 2014-03-18 13:35:00+00:00 |
||
| 1119 | |||
| 1120 | check("open_price", open_ref) |
||
| 1121 | check("high", high_ref) |
||
| 1122 | check("low", low_ref) |
||
| 1123 | check("close_price", close_ref) |
||
| 1124 | check("price", close_ref) |
||
| 1125 | check("volume", volume_ref) |
||
| 1126 | |||
| 1127 | def test_daily_dividends(self): |
||
| 1128 | def check(field, ref): |
||
| 1129 | window = self.get_portal().get_history_window( |
||
| 1130 | [self.DIVIDEND_SID], |
||
| 1131 | pd.Timestamp("2014-03-21 13:35", tz='UTC'), |
||
| 1132 | 6, |
||
| 1133 | "1d", |
||
| 1134 | field |
||
| 1135 | ) |
||
| 1136 | |||
| 1137 | self.assertEqual(len(window), len(ref)) |
||
| 1138 | |||
| 1139 | np.testing.assert_allclose(window.loc[:, self.DIVIDEND_SID], ref) |
||
| 1140 | |||
| 1141 | # 2014-03-14 00:00:00+00:00,106408,106527,103498,105012,950 |
||
| 1142 | # 2014-03-17 00:00:00+00:00,106411,110252,99877,105064,950 |
||
| 1143 | # 2014-03-18 00:00:00+00:00,104194,110891,95342,103116,972 |
||
| 1144 | # 2014-03-19 00:00:00+00:00,104198,107086,102615,104851,973 |
||
| 1145 | # 2014-03-20 00:00:00+00:00,100032,102989,92179,97584,1016 |
||
| 1146 | # 2014-03-21 13:31:00+00:00,114098,120818,110333,115575,2866 |
||
| 1147 | # 2014-03-21 13:32:00+00:00,114099,120157,105353,112755,2866 |
||
| 1148 | # 2014-03-21 13:33:00+00:00,114099,122263,108838,115550,2867 |
||
| 1149 | # 2014-03-21 13:34:00+00:00,114101,116620,106654,111637,2867 |
||
| 1150 | # 2014-03-21 13:35:00+00:00,114104,123773,107769,115771,2867 |
||
| 1151 | |||
| 1152 | open_ref = [100.108, # 2014-03-14 00:00:00+00:00 |
||
| 1153 | 100.111, # 2014-03-17 00:00:00+00:00 |
||
| 1154 | 100.026, # 2014-03-18 00:00:00+00:00 |
||
| 1155 | 100.030, # 2014-03-19 00:00:00+00:00 |
||
| 1156 | 100.032, # 2014-03-20 00:00:00+00:00 |
||
| 1157 | 114.098] # 2014-03-21 00:00:00+00:00 |
||
| 1158 | |||
| 1159 | high_ref = [100.221, # 2014-03-14 00:00:00+00:00 |
||
| 1160 | 103.725, # 2014-03-17 00:00:00+00:00 |
||
| 1161 | 106.455, # 2014-03-18 00:00:00+00:00 |
||
| 1162 | 102.803, # 2014-03-19 00:00:00+00:00 |
||
| 1163 | 102.988, # 2014-03-20 00:00:00+00:00 |
||
| 1164 | 123.773] # 2014-03-21 00:00:00+00:00 |
||
| 1165 | |||
| 1166 | low_ref = [97.370, # 2014-03-14 00:00:00+00:00 |
||
| 1167 | 93.964, # 2014-03-17 00:00:00+00:00 |
||
| 1168 | 91.528, # 2014-03-18 00:00:00+00:00 |
||
| 1169 | 98.510, # 2014-03-19 00:00:00+00:00 |
||
| 1170 | 92.179, # 2014-03-20 00:00:00+00:00 |
||
| 1171 | 105.353] # 2014-03-21 00:00:00+00:00 |
||
| 1172 | |||
| 1173 | close_ref = [98.795, # 2014-03-14 00:00:00+00:00 |
||
| 1174 | 98.844, # 2014-03-17 00:00:00+00:00 |
||
| 1175 | 98.991, # 2014-03-18 00:00:00+00:00 |
||
| 1176 | 100.657, # 2014-03-19 00:00:00+00:00 |
||
| 1177 | 97.584, # 2014-03-20 00:00:00+00:00 |
||
| 1178 | 115.771] # 2014-03-21 00:00:00+00:00 |
||
| 1179 | |||
| 1180 | volume_ref = [950, # 2014-03-14 00:00:00+00:00 |
||
| 1181 | 950, # 2014-03-17 00:00:00+00:00 |
||
| 1182 | 972, # 2014-03-18 00:00:00+00:00 |
||
| 1183 | 973, # 2014-03-19 00:00:00+00:00 |
||
| 1184 | 1016, # 2014-03-20 00:00:00+00:00 |
||
| 1185 | 14333] # 2014-03-21 00:00:00+00:00 |
||
| 1186 | |||
| 1187 | check("open_price", open_ref) |
||
| 1188 | check("high", high_ref) |
||
| 1189 | check("low", low_ref) |
||
| 1190 | check("close_price", close_ref) |
||
| 1191 | check("price", close_ref) |
||
| 1192 | check("volume", volume_ref) |
||
| 1193 | |||
| 1194 | @parameterized.expand([('open', 0), |
||
| 1195 | ('high', 10000), |
||
| 1196 | ('low', 20000), |
||
| 1197 | ('close', 30000), |
||
| 1198 | ('price', 30000), |
||
| 1199 | ('volume', 40000)]) |
||
| 1200 | def test_futures_history_minutes(self, field, offset): |
||
| 1201 | # our history data, for self.FUTURE_ASSET, is 10,000 bars starting at |
||
| 1202 | # self.futures_start_dt. Those 10k bars are 24/7. |
||
| 1203 | |||
| 1204 | # = 2015-11-30 18:50 UTC, 13:50 Eastern = during market hours |
||
| 1205 | futures_end_dt = \ |
||
| 1206 | self.futures_start_dates[self.FUTURE_ASSET] + \ |
||
| 1207 | timedelta(minutes=9999) |
||
| 1208 | |||
| 1209 | window = self.get_portal().get_history_window( |
||
| 1210 | [self.FUTURE_ASSET], |
||
| 1211 | futures_end_dt, |
||
| 1212 | 1000, |
||
| 1213 | "1m", |
||
| 1214 | field |
||
| 1215 | ) |
||
| 1216 | |||
| 1217 | # check the minutes are right |
||
| 1218 | reference_minutes = self.env.market_minute_window( |
||
| 1219 | futures_end_dt, 1000, step=-1 |
||
| 1220 | )[::-1] |
||
| 1221 | |||
| 1222 | np.testing.assert_array_equal(window.index, reference_minutes) |
||
| 1223 | |||
| 1224 | # check the values |
||
| 1225 | |||
| 1226 | # 2015-11-24 18:41 |
||
| 1227 | # ... |
||
| 1228 | # 2015-11-24 21:00 |
||
| 1229 | # 2015-11-25 14:31 |
||
| 1230 | # ... |
||
| 1231 | # 2015-11-25 21:00 |
||
| 1232 | # 2015-11-27 14:31 |
||
| 1233 | # ... |
||
| 1234 | # 2015-11-27 18:00 # early close |
||
| 1235 | # 2015-11-30 14:31 |
||
| 1236 | # ... |
||
| 1237 | # 2015-11-30 18:50 |
||
| 1238 | |||
| 1239 | reference_values = pd.date_range( |
||
| 1240 | start=self.futures_start_dates[self.FUTURE_ASSET], |
||
| 1241 | end=futures_end_dt, |
||
| 1242 | freq="T" |
||
| 1243 | ) |
||
| 1244 | |||
| 1245 | for idx, dt in enumerate(window.index): |
||
| 1246 | date_val = reference_values.searchsorted(dt) |
||
| 1247 | self.assertEqual(offset + date_val, |
||
| 1248 | window.iloc[idx][self.FUTURE_ASSET]) |
||
| 1249 | |||
| 1250 | def test_history_minute_blended(self): |
||
| 1251 | window = self.get_portal().get_history_window( |
||
| 1252 | [self.FUTURE_ASSET2, self.AAPL], |
||
| 1253 | pd.Timestamp("2014-03-21 20:00", tz='UTC'), |
||
| 1254 | 200, |
||
| 1255 | "1m", |
||
| 1256 | "price" |
||
| 1257 | ) |
||
| 1258 | |||
| 1259 | # just a sanity check |
||
| 1260 | self.assertEqual(200, len(window[self.AAPL])) |
||
| 1261 | self.assertEqual(200, len(window[self.FUTURE_ASSET2])) |
||
| 1262 | |||
| 1263 | def test_futures_history_daily(self): |
||
| 1264 | # get 3 days ending 11/30 10:00 am Eastern |
||
| 1265 | # = 11/25, 11/27 (half day), 11/30 (partial) |
||
| 1266 | |||
| 1267 | window = self.get_portal().get_history_window( |
||
| 1268 | [self.env.asset_finder.retrieve_asset(self.FUTURE_ASSET)], |
||
| 1269 | pd.Timestamp("2015-11-30 15:00", tz='UTC'), |
||
| 1270 | 3, |
||
| 1271 | "1d", |
||
| 1272 | "high" |
||
| 1273 | ) |
||
| 1274 | |||
| 1275 | self.assertEqual(3, len(window[self.FUTURE_ASSET])) |
||
| 1276 | |||
| 1277 | np.testing.assert_array_equal([12929.0, 15629.0, 19769.0], |
||
| 1278 | window.values.T[0]) |
||
| 1279 |
Duplicated code is one of the most pungent code smells. If you need to duplicate the same code in three or more different places, we strongly encourage you to look into extracting the code into a single class or operation.
You can also find more detailed suggestions in the “Code” section of your repository.