|
1
|
|
|
from six import StringIO, iteritems |
|
2
|
|
|
from abc import ABCMeta, abstractmethod |
|
3
|
|
|
from collections import namedtuple |
|
4
|
|
|
import hashlib |
|
5
|
|
|
from textwrap import dedent |
|
6
|
|
|
import pandas as pd |
|
7
|
|
|
from pandas import read_csv |
|
8
|
|
|
import numpy |
|
9
|
|
|
from logbook import Logger |
|
10
|
|
|
import pytz |
|
11
|
|
|
import warnings |
|
12
|
|
|
import requests |
|
13
|
|
|
|
|
14
|
|
|
from zipline.errors import ( |
|
15
|
|
|
MultipleSymbolsFound, |
|
16
|
|
|
SymbolNotFound, |
|
17
|
|
|
ZiplineError |
|
18
|
|
|
) |
|
19
|
|
|
from zipline.protocol import ( |
|
20
|
|
|
DATASOURCE_TYPE, |
|
21
|
|
|
Event |
|
22
|
|
|
) |
|
23
|
|
|
from zipline.assets import Equity |
|
24
|
|
|
|
|
25
|
|
|
logger = Logger('Requests Source Logger') |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
|
def roll_dts_to_midnight(dts, env): |
|
29
|
|
|
return pd.DatetimeIndex( |
|
30
|
|
|
(dts.tz_convert('US/Eastern') - pd.Timedelta(hours=16)).date, |
|
31
|
|
|
tz='UTC', |
|
32
|
|
|
) + env.trading_day |
|
33
|
|
|
|
|
34
|
|
|
|
|
35
|
|
|
class FetcherEvent(Event): |
|
36
|
|
|
pass |
|
37
|
|
|
|
|
38
|
|
|
|
|
39
|
|
|
class FetcherCSVRedirectError(ZiplineError): |
|
40
|
|
|
msg = dedent( |
|
41
|
|
|
"""\ |
|
42
|
|
|
Attempt to fetch_csv from a redirected url. {url} |
|
43
|
|
|
must be changed to {new_url} |
|
44
|
|
|
""" |
|
45
|
|
|
) |
|
46
|
|
|
|
|
47
|
|
|
def __init__(self, *args, **kwargs): |
|
48
|
|
|
self.url = kwargs["url"] |
|
49
|
|
|
self.new_url = kwargs["new_url"] |
|
50
|
|
|
self.extra = kwargs["extra"] |
|
51
|
|
|
|
|
52
|
|
|
super(FetcherCSVRedirectError, self).__init__(*args, **kwargs) |
|
53
|
|
|
|
|
54
|
|
|
# The following optional arguments are supported for |
|
55
|
|
|
# requests backed data sources. |
|
56
|
|
|
# see http://docs.python-requests.org/en/latest/api/#main-interface |
|
57
|
|
|
# for a full list. |
|
58
|
|
|
ALLOWED_REQUESTS_KWARGS = { |
|
59
|
|
|
'params', |
|
60
|
|
|
'headers', |
|
61
|
|
|
'auth', |
|
62
|
|
|
'cert'} |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
# The following optional arguments are supported for pandas' read_csv |
|
66
|
|
|
# function, and may be passed as kwargs to the datasource below. |
|
67
|
|
|
# see http://pandas.pydata.org/ |
|
68
|
|
|
# pandas-docs/stable/generated/pandas.io.parsers.read_csv.html |
|
69
|
|
|
ALLOWED_READ_CSV_KWARGS = { |
|
70
|
|
|
'sep', |
|
71
|
|
|
'dialect', |
|
72
|
|
|
'doublequote', |
|
73
|
|
|
'escapechar', |
|
74
|
|
|
'quotechar', |
|
75
|
|
|
'quoting', |
|
76
|
|
|
'skipinitialspace', |
|
77
|
|
|
'lineterminator', |
|
78
|
|
|
'header', |
|
79
|
|
|
'index_col', |
|
80
|
|
|
'names', |
|
81
|
|
|
'prefix', |
|
82
|
|
|
'skiprows', |
|
83
|
|
|
'skipfooter', |
|
84
|
|
|
'skip_footer', |
|
85
|
|
|
'na_values', |
|
86
|
|
|
'true_values', |
|
87
|
|
|
'false_values', |
|
88
|
|
|
'delimiter', |
|
89
|
|
|
'converters', |
|
90
|
|
|
'dtype', |
|
91
|
|
|
'delim_whitespace', |
|
92
|
|
|
'as_recarray', |
|
93
|
|
|
'na_filter', |
|
94
|
|
|
'compact_ints', |
|
95
|
|
|
'use_unsigned', |
|
96
|
|
|
'buffer_lines', |
|
97
|
|
|
'warn_bad_lines', |
|
98
|
|
|
'error_bad_lines', |
|
99
|
|
|
'keep_default_na', |
|
100
|
|
|
'thousands', |
|
101
|
|
|
'comment', |
|
102
|
|
|
'decimal', |
|
103
|
|
|
'keep_date_col', |
|
104
|
|
|
'nrows', |
|
105
|
|
|
'chunksize', |
|
106
|
|
|
'encoding', |
|
107
|
|
|
'usecols' |
|
108
|
|
|
} |
|
109
|
|
|
|
|
110
|
|
|
SHARED_REQUESTS_KWARGS = { |
|
111
|
|
|
'stream': True, |
|
112
|
|
|
'allow_redirects': False, |
|
113
|
|
|
} |
|
114
|
|
|
|
|
115
|
|
|
|
|
116
|
|
|
def mask_requests_args(url, validating=False, params_checker=None, **kwargs): |
|
117
|
|
|
requests_kwargs = {key: val for (key, val) in iteritems(kwargs) |
|
118
|
|
|
if key in ALLOWED_REQUESTS_KWARGS} |
|
119
|
|
|
if params_checker is not None: |
|
120
|
|
|
url, s_params = params_checker(url) |
|
121
|
|
|
if s_params: |
|
122
|
|
|
if 'params' in requests_kwargs: |
|
123
|
|
|
requests_kwargs['params'].update(s_params) |
|
124
|
|
|
else: |
|
125
|
|
|
requests_kwargs['params'] = s_params |
|
126
|
|
|
|
|
127
|
|
|
# Giving the connection 30 seconds. This timeout does not |
|
128
|
|
|
# apply to the download of the response body. |
|
129
|
|
|
# (Note that Quandl links can take >10 seconds to return their |
|
130
|
|
|
# first byte on occasion) |
|
131
|
|
|
requests_kwargs['timeout'] = 1.0 if validating else 30.0 |
|
132
|
|
|
requests_kwargs.update(SHARED_REQUESTS_KWARGS) |
|
133
|
|
|
|
|
134
|
|
|
request_pair = namedtuple("RequestPair", ("requests_kwargs", "url")) |
|
135
|
|
|
return request_pair(requests_kwargs, url) |
|
136
|
|
|
|
|
137
|
|
|
|
|
138
|
|
|
class PandasCSV(object): |
|
139
|
|
|
__metaclass__ = ABCMeta |
|
140
|
|
|
|
|
141
|
|
|
def __init__(self, |
|
142
|
|
|
pre_func, |
|
143
|
|
|
post_func, |
|
144
|
|
|
env, |
|
145
|
|
|
start_date, |
|
146
|
|
|
end_date, |
|
147
|
|
|
date_column, |
|
148
|
|
|
date_format, |
|
149
|
|
|
timezone, |
|
150
|
|
|
symbol, |
|
151
|
|
|
mask, |
|
152
|
|
|
symbol_column, |
|
153
|
|
|
data_frequency, |
|
154
|
|
|
**kwargs): |
|
155
|
|
|
|
|
156
|
|
|
self.start_date = start_date |
|
157
|
|
|
self.end_date = end_date |
|
158
|
|
|
self.date_column = date_column |
|
159
|
|
|
self.date_format = date_format |
|
160
|
|
|
self.timezone = timezone |
|
161
|
|
|
self.mask = mask |
|
162
|
|
|
self.symbol_column = symbol_column or "symbol" |
|
163
|
|
|
self.data_frequency = data_frequency |
|
164
|
|
|
|
|
165
|
|
|
invalid_kwargs = set(kwargs) - ALLOWED_READ_CSV_KWARGS |
|
166
|
|
|
if invalid_kwargs: |
|
167
|
|
|
raise TypeError( |
|
168
|
|
|
"Unexpected keyword arguments: %s" % invalid_kwargs, |
|
169
|
|
|
) |
|
170
|
|
|
|
|
171
|
|
|
self.pandas_kwargs = self.mask_pandas_args(kwargs) |
|
172
|
|
|
|
|
173
|
|
|
self.symbol = symbol |
|
174
|
|
|
|
|
175
|
|
|
self.env = env |
|
176
|
|
|
self.finder = env.asset_finder |
|
177
|
|
|
|
|
178
|
|
|
self.pre_func = pre_func |
|
179
|
|
|
self.post_func = post_func |
|
180
|
|
|
|
|
181
|
|
|
@property |
|
182
|
|
|
def fields(self): |
|
183
|
|
|
return self.df.columns.tolist() |
|
184
|
|
|
|
|
185
|
|
|
def get_hash(self): |
|
186
|
|
|
return self.namestring |
|
187
|
|
|
|
|
188
|
|
|
@abstractmethod |
|
189
|
|
|
def fetch_data(self): |
|
190
|
|
|
return |
|
191
|
|
|
|
|
192
|
|
|
@staticmethod |
|
193
|
|
|
def parse_date_str_series(format_str, tz, date_str_series, data_frequency, |
|
194
|
|
|
env): |
|
195
|
|
|
""" |
|
196
|
|
|
Efficient parsing for a 1d Pandas/numpy object containing string |
|
197
|
|
|
representations of dates. |
|
198
|
|
|
|
|
199
|
|
|
Note: pd.to_datetime is significantly faster when no format string is |
|
200
|
|
|
passed, and in pandas 0.12.0 the %p strptime directive is not correctly |
|
201
|
|
|
handled if a format string is explicitly passed, but AM/PM is handled |
|
202
|
|
|
properly if format=None. |
|
203
|
|
|
|
|
204
|
|
|
Moreover, we were previously ignoring this parameter unintentionally |
|
205
|
|
|
because we were incorrectly passing it as a positional. For all these |
|
206
|
|
|
reasons, we ignore the format_str parameter when parsing datetimes. |
|
207
|
|
|
""" |
|
208
|
|
|
|
|
209
|
|
|
# Explicitly ignoring this parameter. See note above. |
|
210
|
|
|
if format_str is not None: |
|
211
|
|
|
logger.warn( |
|
212
|
|
|
"The 'format_str' parameter to fetch_csv is deprecated. " |
|
213
|
|
|
"Ignoring and defaulting to pandas default date parsing." |
|
214
|
|
|
) |
|
215
|
|
|
format_str = None |
|
216
|
|
|
|
|
217
|
|
|
tz_str = str(tz) |
|
218
|
|
|
if tz_str == pytz.utc.zone: |
|
219
|
|
|
parsed = pd.to_datetime( |
|
220
|
|
|
date_str_series.values, |
|
221
|
|
|
format=format_str, |
|
222
|
|
|
utc=True, |
|
223
|
|
|
coerce=True, |
|
224
|
|
|
) |
|
225
|
|
|
else: |
|
226
|
|
|
parsed = pd.to_datetime( |
|
227
|
|
|
date_str_series.values, |
|
228
|
|
|
format=format_str, |
|
229
|
|
|
coerce=True, |
|
230
|
|
|
).tz_localize(tz_str).tz_convert('UTC') |
|
231
|
|
|
|
|
232
|
|
|
if data_frequency == 'daily': |
|
233
|
|
|
parsed = roll_dts_to_midnight(parsed, env) |
|
234
|
|
|
return parsed |
|
235
|
|
|
|
|
236
|
|
|
def mask_pandas_args(self, kwargs): |
|
237
|
|
|
pandas_kwargs = {key: val for (key, val) in iteritems(kwargs) |
|
238
|
|
|
if key in ALLOWED_READ_CSV_KWARGS} |
|
239
|
|
|
if 'usecols' in pandas_kwargs: |
|
240
|
|
|
usecols = pandas_kwargs['usecols'] |
|
241
|
|
|
if usecols and self.date_column not in usecols: |
|
242
|
|
|
# make a new list so we don't modify user's, |
|
243
|
|
|
# and to ensure it is mutable |
|
244
|
|
|
with_date = list(usecols) |
|
245
|
|
|
with_date.append(self.date_column) |
|
246
|
|
|
pandas_kwargs['usecols'] = with_date |
|
247
|
|
|
|
|
248
|
|
|
# No strings in the 'symbol' column should be interpreted as NaNs |
|
249
|
|
|
pandas_kwargs.setdefault('keep_default_na', False) |
|
250
|
|
|
pandas_kwargs.setdefault('na_values', {'symbol': []}) |
|
251
|
|
|
|
|
252
|
|
|
return pandas_kwargs |
|
253
|
|
|
|
|
254
|
|
|
def _lookup_unconflicted_symbol(self, symbol): |
|
255
|
|
|
""" |
|
256
|
|
|
Attempt to find a unique asset whose symbol is the given string. |
|
257
|
|
|
|
|
258
|
|
|
If multiple assets have held the given symbol, return a 0. |
|
259
|
|
|
|
|
260
|
|
|
If no asset has held the given symbol, return a NaN. |
|
261
|
|
|
""" |
|
262
|
|
|
try: |
|
263
|
|
|
uppered = symbol.upper() |
|
264
|
|
|
except AttributeError: |
|
265
|
|
|
# The mapping fails because symbol was a non-string |
|
266
|
|
|
return numpy.nan |
|
267
|
|
|
|
|
268
|
|
|
try: |
|
269
|
|
|
return self.finder.lookup_symbol(uppered, as_of_date=None) |
|
270
|
|
|
except MultipleSymbolsFound: |
|
271
|
|
|
# Fill conflicted entries with zeros to mark that they need to be |
|
272
|
|
|
# resolved by date. |
|
273
|
|
|
return 0 |
|
274
|
|
|
except SymbolNotFound: |
|
275
|
|
|
# Fill not found entries with nans. |
|
276
|
|
|
return numpy.nan |
|
277
|
|
|
|
|
278
|
|
|
def load_df(self): |
|
279
|
|
|
df = self.fetch_data() |
|
280
|
|
|
|
|
281
|
|
|
if self.pre_func: |
|
282
|
|
|
df = self.pre_func(df) |
|
283
|
|
|
|
|
284
|
|
|
# Batch-convert the user-specifed date column into timestamps. |
|
285
|
|
|
df['dt'] = self.parse_date_str_series( |
|
286
|
|
|
self.date_format, |
|
287
|
|
|
self.timezone, |
|
288
|
|
|
df[self.date_column], |
|
289
|
|
|
self.data_frequency, |
|
290
|
|
|
self.env |
|
291
|
|
|
).values |
|
292
|
|
|
|
|
293
|
|
|
# ignore rows whose dates we couldn't parse |
|
294
|
|
|
df = df[df['dt'].notnull()] |
|
295
|
|
|
|
|
296
|
|
|
if self.symbol is not None: |
|
297
|
|
|
df['sid'] = self.symbol |
|
298
|
|
|
elif self.finder: |
|
299
|
|
|
|
|
300
|
|
|
df.sort(self.symbol_column) |
|
301
|
|
|
|
|
302
|
|
|
# Pop the 'sid' column off of the DataFrame, just in case the user |
|
303
|
|
|
# has assigned it, and throw a warning |
|
304
|
|
|
try: |
|
305
|
|
|
df.pop('sid') |
|
306
|
|
|
warnings.warn( |
|
307
|
|
|
"Assignment of the 'sid' column of a DataFrame is " |
|
308
|
|
|
"not supported by Fetcher. The 'sid' column has been " |
|
309
|
|
|
"overwritten.", |
|
310
|
|
|
category=UserWarning, |
|
311
|
|
|
stacklevel=2, |
|
312
|
|
|
) |
|
313
|
|
|
except KeyError: |
|
314
|
|
|
# There was no 'sid' column, so no warning is necessary |
|
315
|
|
|
pass |
|
316
|
|
|
|
|
317
|
|
|
# Fill entries for any symbols that don't require a date to |
|
318
|
|
|
# uniquely identify. Entries for which multiple securities exist |
|
319
|
|
|
# are replaced with zeroes, while entries for which no asset |
|
320
|
|
|
# exists are replaced with NaNs. |
|
321
|
|
|
unique_symbols = df[self.symbol_column].unique() |
|
322
|
|
|
sid_series = pd.Series( |
|
323
|
|
|
data=map(self._lookup_unconflicted_symbol, unique_symbols), |
|
324
|
|
|
index=unique_symbols, |
|
325
|
|
|
name='sid', |
|
326
|
|
|
) |
|
327
|
|
|
df = df.join(sid_series, on=self.symbol_column) |
|
328
|
|
|
|
|
329
|
|
|
# Fill any zero entries left in our sid column by doing a lookup |
|
330
|
|
|
# using both symbol and the row date. |
|
331
|
|
|
conflict_rows = df[df['sid'] == 0] |
|
332
|
|
|
for row_idx, row in conflict_rows.iterrows(): |
|
333
|
|
|
try: |
|
334
|
|
|
asset = self.finder.lookup_symbol( |
|
335
|
|
|
row[self.symbol_column], |
|
336
|
|
|
# Replacing tzinfo here is necessary because of the |
|
337
|
|
|
# timezone metadata bug described below. |
|
338
|
|
|
row['dt'].replace(tzinfo=pytz.utc), |
|
339
|
|
|
|
|
340
|
|
|
# It's possible that no asset comes back here if our |
|
341
|
|
|
# lookup date is from before any asset held the |
|
342
|
|
|
# requested symbol. Mark such cases as NaN so that |
|
343
|
|
|
# they get dropped in the next step. |
|
344
|
|
|
) or numpy.nan |
|
345
|
|
|
except SymbolNotFound: |
|
346
|
|
|
asset = numpy.nan |
|
347
|
|
|
|
|
348
|
|
|
# Assign the resolved asset to the cell |
|
349
|
|
|
df.ix[row_idx, 'sid'] = asset |
|
350
|
|
|
|
|
351
|
|
|
# Filter out rows containing symbols that we failed to find. |
|
352
|
|
|
length_before_drop = len(df) |
|
353
|
|
|
df = df[df['sid'].notnull()] |
|
354
|
|
|
no_sid_count = length_before_drop - len(df) |
|
355
|
|
|
if no_sid_count: |
|
356
|
|
|
logger.warn( |
|
357
|
|
|
"Dropped {} rows from fetched csv.".format(no_sid_count), |
|
358
|
|
|
no_sid_count, |
|
359
|
|
|
extra={'syslog': True}, |
|
360
|
|
|
) |
|
361
|
|
|
else: |
|
362
|
|
|
df['sid'] = df['symbol'] |
|
363
|
|
|
|
|
364
|
|
|
# Dates are localized to UTC when they come out of |
|
365
|
|
|
# parse_date_str_series, but we need to re-localize them here because |
|
366
|
|
|
# of a bug that wasn't fixed until |
|
367
|
|
|
# https://github.com/pydata/pandas/pull/7092. |
|
368
|
|
|
# We should be able to remove the call to tz_localize once we're on |
|
369
|
|
|
# pandas 0.14.0 |
|
370
|
|
|
|
|
371
|
|
|
# We don't set 'dt' as the index until here because the Symbol parsing |
|
372
|
|
|
# operations above depend on having a unique index for the dataframe, |
|
373
|
|
|
# and the 'dt' column can contain multiple dates for the same entry. |
|
374
|
|
|
df.drop_duplicates(["sid", "dt"]) |
|
375
|
|
|
df.set_index(['dt'], inplace=True) |
|
376
|
|
|
df = df.tz_localize('UTC') |
|
377
|
|
|
df.sort_index(inplace=True) |
|
378
|
|
|
|
|
379
|
|
|
cols_to_drop = [self.date_column] |
|
380
|
|
|
if self.symbol is None: |
|
381
|
|
|
cols_to_drop.append(self.symbol_column) |
|
382
|
|
|
df = df[df.columns.drop(cols_to_drop)] |
|
383
|
|
|
|
|
384
|
|
|
if self.post_func: |
|
385
|
|
|
df = self.post_func(df) |
|
386
|
|
|
|
|
387
|
|
|
return df |
|
388
|
|
|
|
|
389
|
|
|
def __iter__(self): |
|
390
|
|
|
asset_cache = {} |
|
391
|
|
|
for dt, series in self.df.iterrows(): |
|
392
|
|
|
if dt < self.start_date: |
|
393
|
|
|
continue |
|
394
|
|
|
|
|
395
|
|
|
if dt > self.end_date: |
|
396
|
|
|
return |
|
397
|
|
|
|
|
398
|
|
|
event = FetcherEvent() |
|
399
|
|
|
# when dt column is converted to be the dataframe's index |
|
400
|
|
|
# the dt column is dropped. So, we need to manually copy |
|
401
|
|
|
# dt into the event. |
|
402
|
|
|
event.dt = dt |
|
403
|
|
|
for k, v in series.iteritems(): |
|
404
|
|
|
# convert numpy integer types to |
|
405
|
|
|
# int. This assumes we are on a 64bit |
|
406
|
|
|
# platform that will not lose information |
|
407
|
|
|
# by casting. |
|
408
|
|
|
# TODO: this is only necessary on the |
|
409
|
|
|
# amazon qexec instances. would be good |
|
410
|
|
|
# to figure out how to use the numpy dtypes |
|
411
|
|
|
# without this check and casting. |
|
412
|
|
|
if isinstance(v, numpy.integer): |
|
413
|
|
|
v = int(v) |
|
414
|
|
|
|
|
415
|
|
|
setattr(event, k, v) |
|
416
|
|
|
|
|
417
|
|
|
# If it has start_date, then it's already an Asset |
|
418
|
|
|
# object from asset_for_symbol, and we don't have to |
|
419
|
|
|
# transform it any further. Checking for start_date is |
|
420
|
|
|
# faster than isinstance. |
|
421
|
|
|
if event.sid in asset_cache: |
|
422
|
|
|
event.sid = asset_cache[event.sid] |
|
423
|
|
|
elif hasattr(event.sid, 'start_date'): |
|
424
|
|
|
# Clone for user algo code, if we haven't already. |
|
425
|
|
|
asset_cache[event.sid] = event.sid |
|
426
|
|
|
elif self.finder and isinstance(event.sid, int): |
|
427
|
|
|
asset = self.finder.retrieve_asset(event.sid, |
|
428
|
|
|
default_none=True) |
|
429
|
|
|
if asset: |
|
430
|
|
|
# Clone for user algo code. |
|
431
|
|
|
event.sid = asset_cache[asset] = asset |
|
432
|
|
|
elif self.mask: |
|
433
|
|
|
# When masking drop all non-mappable values. |
|
434
|
|
|
continue |
|
435
|
|
|
elif self.symbol is None: |
|
436
|
|
|
# If the event's sid property is an int we coerce |
|
437
|
|
|
# it into an Equity. |
|
438
|
|
|
event.sid = asset_cache[event.sid] = Equity(event.sid) |
|
439
|
|
|
|
|
440
|
|
|
event.type = DATASOURCE_TYPE.CUSTOM |
|
441
|
|
|
event.source_id = self.namestring |
|
442
|
|
|
yield event |
|
443
|
|
|
|
|
444
|
|
|
|
|
445
|
|
|
class PandasRequestsCSV(PandasCSV): |
|
446
|
|
|
# maximum 100 megs to prevent DDoS |
|
447
|
|
|
MAX_DOCUMENT_SIZE = (1024 * 1024) * 100 |
|
448
|
|
|
|
|
449
|
|
|
# maximum number of bytes to read in at a time |
|
450
|
|
|
CONTENT_CHUNK_SIZE = 4096 |
|
451
|
|
|
|
|
452
|
|
|
def __init__(self, |
|
453
|
|
|
url, |
|
454
|
|
|
pre_func, |
|
455
|
|
|
post_func, |
|
456
|
|
|
env, |
|
457
|
|
|
start_date, |
|
458
|
|
|
end_date, |
|
459
|
|
|
date_column, |
|
460
|
|
|
date_format, |
|
461
|
|
|
timezone, |
|
462
|
|
|
symbol, |
|
463
|
|
|
mask, |
|
464
|
|
|
symbol_column, |
|
465
|
|
|
data_frequency, |
|
466
|
|
|
special_params_checker=None, |
|
467
|
|
|
**kwargs): |
|
468
|
|
|
|
|
469
|
|
|
# Peel off extra requests kwargs, forwarding the remaining kwargs to |
|
470
|
|
|
# the superclass. |
|
471
|
|
|
# Also returns possible https updated url if sent to http quandl ds |
|
472
|
|
|
# If url hasn't changed, will just return the original. |
|
473
|
|
|
self._requests_kwargs, self.url =\ |
|
474
|
|
|
mask_requests_args(url, |
|
475
|
|
|
params_checker=special_params_checker, |
|
476
|
|
|
**kwargs) |
|
477
|
|
|
|
|
478
|
|
|
remaining_kwargs = { |
|
479
|
|
|
k: v for k, v in iteritems(kwargs) |
|
480
|
|
|
if k not in self.requests_kwargs |
|
481
|
|
|
} |
|
482
|
|
|
|
|
483
|
|
|
self.namestring = type(self).__name__ |
|
484
|
|
|
|
|
485
|
|
|
super(PandasRequestsCSV, self).__init__( |
|
486
|
|
|
pre_func, |
|
487
|
|
|
post_func, |
|
488
|
|
|
env, |
|
489
|
|
|
start_date, |
|
490
|
|
|
end_date, |
|
491
|
|
|
date_column, |
|
492
|
|
|
date_format, |
|
493
|
|
|
timezone, |
|
494
|
|
|
symbol, |
|
495
|
|
|
mask, |
|
496
|
|
|
symbol_column, |
|
497
|
|
|
data_frequency, |
|
498
|
|
|
**remaining_kwargs |
|
499
|
|
|
) |
|
500
|
|
|
|
|
501
|
|
|
self.fetch_size = None |
|
502
|
|
|
self.fetch_hash = None |
|
503
|
|
|
|
|
504
|
|
|
self.df = self.load_df() |
|
505
|
|
|
|
|
506
|
|
|
self.special_params_checker = special_params_checker |
|
507
|
|
|
|
|
508
|
|
|
@property |
|
509
|
|
|
def requests_kwargs(self): |
|
510
|
|
|
return self._requests_kwargs |
|
511
|
|
|
|
|
512
|
|
|
def fetch_url(self, url): |
|
513
|
|
|
info = "checking {url} with {params}" |
|
514
|
|
|
logger.info(info.format(url=url, params=self.requests_kwargs)) |
|
515
|
|
|
# setting decode_unicode=True sometimes results in a |
|
516
|
|
|
# UnicodeEncodeError exception, so instead we'll use |
|
517
|
|
|
# pandas logic for decoding content |
|
518
|
|
|
try: |
|
519
|
|
|
response = requests.get(url, **self.requests_kwargs) |
|
520
|
|
|
except requests.exceptions.ConnectionError: |
|
521
|
|
|
raise Exception('Could not connect to %s' % url) |
|
522
|
|
|
|
|
523
|
|
|
if not response.ok: |
|
524
|
|
|
raise Exception('Problem reaching %s' % url) |
|
525
|
|
|
elif response.is_redirect: |
|
526
|
|
|
# On the offchance we don't catch a redirect URL |
|
527
|
|
|
# in validation, this will catch it. |
|
528
|
|
|
new_url = response.headers['location'] |
|
529
|
|
|
raise FetcherCSVRedirectError( |
|
530
|
|
|
url=url, |
|
531
|
|
|
new_url=new_url, |
|
532
|
|
|
extra={ |
|
533
|
|
|
'old_url': url, |
|
534
|
|
|
'new_url': new_url |
|
535
|
|
|
} |
|
536
|
|
|
) |
|
537
|
|
|
|
|
538
|
|
|
content_length = 0 |
|
539
|
|
|
logger.info('{} connection established in {:.1f} seconds'.format( |
|
540
|
|
|
url, response.elapsed.total_seconds())) |
|
541
|
|
|
|
|
542
|
|
|
# use the decode_unicode flag to ensure that the output of this is |
|
543
|
|
|
# a string, and not bytes. |
|
544
|
|
|
for chunk in response.iter_content(self.CONTENT_CHUNK_SIZE, |
|
545
|
|
|
decode_unicode=True): |
|
546
|
|
|
if content_length > self.MAX_DOCUMENT_SIZE: |
|
547
|
|
|
raise Exception('Document size too big.') |
|
548
|
|
|
if chunk: |
|
549
|
|
|
content_length += len(chunk) |
|
550
|
|
|
yield chunk |
|
551
|
|
|
|
|
552
|
|
|
return |
|
553
|
|
|
|
|
554
|
|
|
def fetch_data(self): |
|
555
|
|
|
# create a data frame directly from the full text of |
|
556
|
|
|
# the response from the returned file-descriptor. |
|
557
|
|
|
data = self.fetch_url(self.url) |
|
558
|
|
|
fd = StringIO() |
|
559
|
|
|
|
|
560
|
|
|
if isinstance(data, str): |
|
561
|
|
|
fd.write(data) |
|
562
|
|
|
else: |
|
563
|
|
|
for chunk in data: |
|
564
|
|
|
fd.write(chunk) |
|
565
|
|
|
|
|
566
|
|
|
self.fetch_size = fd.tell() |
|
567
|
|
|
|
|
568
|
|
|
fd.seek(0) |
|
569
|
|
|
|
|
570
|
|
|
try: |
|
571
|
|
|
# see if pandas can parse csv data |
|
572
|
|
|
frames = read_csv(fd, **self.pandas_kwargs) |
|
573
|
|
|
|
|
574
|
|
|
frames_hash = hashlib.md5(str(fd.getvalue()).encode('utf-8')) |
|
575
|
|
|
self.fetch_hash = frames_hash.hexdigest() |
|
576
|
|
|
except pd.parser.CParserError: |
|
577
|
|
|
# could not parse the data, raise exception |
|
578
|
|
|
raise Exception('Error parsing remote CSV data.') |
|
579
|
|
|
finally: |
|
580
|
|
|
fd.close() |
|
581
|
|
|
|
|
582
|
|
|
return frames |
|
583
|
|
|
|