1
|
|
|
# |
2
|
|
|
# Copyright 2014 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
import pandas as pd |
16
|
|
|
from mock import patch |
17
|
|
|
|
18
|
|
|
from nose_parameterized import parameterized |
19
|
|
|
from six.moves import range |
20
|
|
|
from unittest import TestCase |
21
|
|
|
from zipline import TradingAlgorithm |
22
|
|
|
from zipline.sources.benchmark_source import BenchmarkSource |
23
|
|
|
from zipline.test_algorithms import NoopAlgorithm |
24
|
|
|
from zipline.utils import factory |
25
|
|
|
from zipline.utils.test_utils import FakeDataPortal |
26
|
|
|
|
27
|
|
|
|
28
|
|
|
class BeforeTradingAlgorithm(TradingAlgorithm): |
29
|
|
|
def __init__(self, *args, **kwargs): |
30
|
|
|
self.before_trading_at = [] |
31
|
|
|
super(BeforeTradingAlgorithm, self).__init__(*args, **kwargs) |
32
|
|
|
|
33
|
|
|
def before_trading_start(self, data): |
34
|
|
|
self.before_trading_at.append(self.datetime) |
35
|
|
|
|
36
|
|
|
def handle_data(self, data): |
37
|
|
|
pass |
38
|
|
|
|
39
|
|
|
|
40
|
|
|
FREQUENCIES = {'daily': 0, 'minute': 1} # daily is less frequent than minute |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class TestTradeSimulation(TestCase): |
44
|
|
|
|
45
|
|
|
def fake_minutely_benchmark(self, dt): |
46
|
|
|
return 0.01 |
47
|
|
|
|
48
|
|
|
def test_minutely_emissions_generate_performance_stats_for_last_day(self): |
49
|
|
|
params = factory.create_simulation_parameters(num_days=1, |
50
|
|
|
data_frequency='minute', |
51
|
|
|
emission_rate='minute') |
52
|
|
|
with patch.object(BenchmarkSource, "get_value", |
53
|
|
|
self.fake_minutely_benchmark): |
54
|
|
|
algo = NoopAlgorithm(sim_params=params) |
55
|
|
|
algo.run(data_portal=FakeDataPortal()) |
56
|
|
|
self.assertEqual(algo.perf_tracker.day_count, 1.0) |
57
|
|
|
|
58
|
|
|
@parameterized.expand([('%s_%s_%s' % (num_days, freq, emission_rate), |
59
|
|
|
num_days, freq, emission_rate) |
60
|
|
|
for freq in FREQUENCIES |
61
|
|
|
for emission_rate in FREQUENCIES |
62
|
|
|
for num_days in range(1, 4) |
63
|
|
|
if FREQUENCIES[emission_rate] <= FREQUENCIES[freq]]) |
64
|
|
|
def test_before_trading_start(self, test_name, num_days, freq, |
65
|
|
|
emission_rate): |
66
|
|
|
params = factory.create_simulation_parameters( |
67
|
|
|
num_days=num_days, data_frequency=freq, |
68
|
|
|
emission_rate=emission_rate) |
69
|
|
|
|
70
|
|
|
def fake_benchmark(self, dt): |
71
|
|
|
return 0.01 |
72
|
|
|
|
73
|
|
|
with patch.object(BenchmarkSource, "get_value", |
74
|
|
|
self.fake_minutely_benchmark): |
75
|
|
|
algo = BeforeTradingAlgorithm(sim_params=params) |
76
|
|
|
algo.run(data_portal=FakeDataPortal()) |
77
|
|
|
|
78
|
|
|
self.assertEqual(algo.perf_tracker.day_count, num_days) |
79
|
|
|
|
80
|
|
|
self.assertTrue(params.trading_days.equals( |
81
|
|
|
pd.DatetimeIndex(algo.before_trading_at)), |
82
|
|
|
"Expected %s but was %s." |
83
|
|
|
% (params.trading_days, algo.before_trading_at)) |
84
|
|
|
|