1
|
|
|
from datashape import istabular |
2
|
|
|
import pandas as pd |
3
|
|
|
from toolz import valmap |
4
|
|
|
|
5
|
|
|
from .core import ( |
6
|
|
|
TS_FIELD_NAME, |
7
|
|
|
SID_FIELD_NAME, |
8
|
|
|
bind_expression_to_resources, |
9
|
|
|
ffill_query_in_range, |
10
|
|
|
) |
11
|
|
|
from zipline.pipeline.data import EarningsCalendar |
12
|
|
|
from zipline.pipeline.loaders.base import PipelineLoader |
13
|
|
|
from zipline.pipeline.loaders.earnings import EarningsCalendarLoader |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
ANNOUNCEMENT_FIELD_NAME = 'announcement_date' |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
class BlazeEarningsCalendarLoader(PipelineLoader): |
20
|
|
|
"""A pipeline loader for the ``EarningsCalendar`` dataset that loads |
21
|
|
|
data from a blaze expression. |
22
|
|
|
|
23
|
|
|
Parameters |
24
|
|
|
---------- |
25
|
|
|
expr : Expr |
26
|
|
|
The expression representing the data to load. |
27
|
|
|
resources : dict, optional |
28
|
|
|
Mapping from the atomic terms of ``expr`` to actual data resources. |
29
|
|
|
odo_kwargs : dict, optional |
30
|
|
|
Extra keyword arguments to pass to odo when executing the expression. |
31
|
|
|
|
32
|
|
|
Notes |
33
|
|
|
----- |
34
|
|
|
The expression should have a tabular dshape of:: |
35
|
|
|
|
36
|
|
|
Dim * {{ |
37
|
|
|
{SID_FIELD_NAME}: int64, |
38
|
|
|
{TS_FIELD_NAME}: datetime, |
39
|
|
|
{ANNOUNCEMENT_FIELD_NAME}: ?datetime, |
40
|
|
|
}} |
41
|
|
|
|
42
|
|
|
Where each row of the table is a record including the sid to identify the |
43
|
|
|
company, the timestamp where we learned about the announcement, and the |
44
|
|
|
date when the earnings will be announced. |
45
|
|
|
|
46
|
|
|
If the '{TS_FIELD_NAME}' field is not included it is assumed that we |
47
|
|
|
start the backtest with knowledge of all announcements. |
48
|
|
|
""" |
49
|
|
|
__doc__ = __doc__.format( |
50
|
|
|
TS_FIELD_NAME=TS_FIELD_NAME, |
51
|
|
|
SID_FIELD_NAME=SID_FIELD_NAME, |
52
|
|
|
ANNOUNCEMENT_FIELD_NAME=ANNOUNCEMENT_FIELD_NAME, |
53
|
|
|
) |
54
|
|
|
|
55
|
|
|
_expected_fields = frozenset({ |
56
|
|
|
TS_FIELD_NAME, |
57
|
|
|
SID_FIELD_NAME, |
58
|
|
|
ANNOUNCEMENT_FIELD_NAME, |
59
|
|
|
}) |
60
|
|
|
|
61
|
|
|
def __init__(self, |
62
|
|
|
expr, |
63
|
|
|
resources=None, |
64
|
|
|
odo_kwargs=None, |
65
|
|
|
dataset=EarningsCalendar): |
66
|
|
|
dshape = expr.dshape |
67
|
|
|
|
68
|
|
|
if not istabular(dshape): |
69
|
|
|
raise ValueError( |
70
|
|
|
'expression dshape must be tabular, got: %s' % dshape, |
71
|
|
|
) |
72
|
|
|
|
73
|
|
|
expected_fields = self._expected_fields |
74
|
|
|
self._expr = bind_expression_to_resources( |
75
|
|
|
expr[list(expected_fields)], |
76
|
|
|
resources, |
77
|
|
|
) |
78
|
|
|
self._odo_kwargs = odo_kwargs if odo_kwargs is not None else {} |
79
|
|
|
self._dataset = dataset |
80
|
|
|
|
81
|
|
|
def load_adjusted_array(self, columns, dates, assets, mask): |
82
|
|
|
raw = ffill_query_in_range( |
83
|
|
|
self._expr, |
84
|
|
|
dates[0], |
85
|
|
|
dates[-1], |
86
|
|
|
self._odo_kwargs, |
87
|
|
|
) |
88
|
|
|
sids = raw.loc[:, SID_FIELD_NAME] |
89
|
|
|
raw.drop( |
90
|
|
|
sids[~sids.isin(assets)].index, |
91
|
|
|
inplace=True |
92
|
|
|
) |
93
|
|
|
|
94
|
|
|
gb = raw.groupby(SID_FIELD_NAME) |
95
|
|
|
|
96
|
|
|
def mkseries(idx, raw_loc=raw.loc): |
97
|
|
|
vs = raw_loc[ |
98
|
|
|
idx, [TS_FIELD_NAME, ANNOUNCEMENT_FIELD_NAME] |
99
|
|
|
].values |
100
|
|
|
return pd.Series( |
101
|
|
|
index=pd.DatetimeIndex(vs[:, 0]), |
102
|
|
|
data=vs[:, 1], |
103
|
|
|
) |
104
|
|
|
|
105
|
|
|
return EarningsCalendarLoader( |
106
|
|
|
dates, |
107
|
|
|
valmap(mkseries, gb.groups), |
108
|
|
|
dataset=self._dataset, |
109
|
|
|
).load_adjusted_array(columns, dates, assets, mask) |
110
|
|
|
|