1
|
|
|
""" |
2
|
|
|
Tests for the reference loader for EarningsCalendar. |
3
|
|
|
""" |
4
|
|
|
from unittest import TestCase |
5
|
|
|
|
6
|
|
|
import blaze as bz |
7
|
|
|
from blaze.compute.core import swap_resources_into_scope |
8
|
|
|
from contextlib2 import ExitStack |
9
|
|
|
from nose_parameterized import parameterized |
10
|
|
|
import pandas as pd |
11
|
|
|
import numpy as np |
12
|
|
|
from pandas.util.testing import assert_series_equal |
13
|
|
|
from six import iteritems |
14
|
|
|
|
15
|
|
|
from zipline.pipeline import Pipeline |
16
|
|
|
from zipline.pipeline.data import EarningsCalendar |
17
|
|
|
from zipline.pipeline.engine import SimplePipelineEngine |
18
|
|
|
from zipline.pipeline.factors.events import ( |
19
|
|
|
BusinessDaysUntilNextEarnings, |
20
|
|
|
BusinessDaysSincePreviousEarnings, |
21
|
|
|
) |
22
|
|
|
from zipline.pipeline.loaders.earnings import EarningsCalendarLoader |
23
|
|
|
from zipline.pipeline.loaders.blaze import ( |
24
|
|
|
ANNOUNCEMENT_FIELD_NAME, |
25
|
|
|
BlazeEarningsCalendarLoader, |
26
|
|
|
SID_FIELD_NAME, |
27
|
|
|
TS_FIELD_NAME, |
28
|
|
|
) |
29
|
|
|
from zipline.utils.numpy_utils import make_datetime64D, np_NaT |
30
|
|
|
from zipline.utils.test_utils import ( |
31
|
|
|
make_simple_equity_info, |
32
|
|
|
tmp_asset_finder, |
33
|
|
|
gen_calendars, |
34
|
|
|
to_series, |
35
|
|
|
num_days_in_range, |
36
|
|
|
) |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
class EarningsCalendarLoaderTestCase(TestCase): |
40
|
|
|
""" |
41
|
|
|
Tests for loading the earnings announcement data. |
42
|
|
|
""" |
43
|
|
|
loader_type = EarningsCalendarLoader |
44
|
|
|
|
45
|
|
|
@classmethod |
46
|
|
|
def setUpClass(cls): |
47
|
|
|
cls._cleanup_stack = stack = ExitStack() |
48
|
|
|
cls.sids = A, B, C, D, E = range(5) |
49
|
|
|
equity_info = make_simple_equity_info( |
50
|
|
|
cls.sids, |
51
|
|
|
start_date=pd.Timestamp('2013-01-01', tz='UTC'), |
52
|
|
|
end_date=pd.Timestamp('2015-01-01', tz='UTC'), |
53
|
|
|
) |
54
|
|
|
cls.finder = stack.enter_context( |
55
|
|
|
tmp_asset_finder(equities=equity_info), |
56
|
|
|
) |
57
|
|
|
|
58
|
|
|
cls.earnings_dates = { |
59
|
|
|
# K1--K2--E1--E2. |
60
|
|
|
A: to_series( |
61
|
|
|
knowledge_dates=['2014-01-05', '2014-01-10'], |
62
|
|
|
earning_dates=['2014-01-15', '2014-01-20'], |
63
|
|
|
), |
64
|
|
|
# K1--K2--E2--E1. |
65
|
|
|
B: to_series( |
66
|
|
|
knowledge_dates=['2014-01-05', '2014-01-10'], |
67
|
|
|
earning_dates=['2014-01-20', '2014-01-15'] |
68
|
|
|
), |
69
|
|
|
# K1--E1--K2--E2. |
70
|
|
|
C: to_series( |
71
|
|
|
knowledge_dates=['2014-01-05', '2014-01-15'], |
72
|
|
|
earning_dates=['2014-01-10', '2014-01-20'] |
73
|
|
|
), |
74
|
|
|
# K1 == K2. |
75
|
|
|
D: to_series( |
76
|
|
|
knowledge_dates=['2014-01-05'] * 2, |
77
|
|
|
earning_dates=['2014-01-10', '2014-01-15'], |
78
|
|
|
), |
79
|
|
|
E: pd.Series( |
80
|
|
|
data=[], |
81
|
|
|
index=pd.DatetimeIndex([]), |
82
|
|
|
dtype='datetime64[ns]', |
83
|
|
|
), |
84
|
|
|
} |
85
|
|
|
|
86
|
|
|
@classmethod |
87
|
|
|
def tearDownClass(cls): |
88
|
|
|
cls._cleanup_stack.close() |
89
|
|
|
|
90
|
|
|
def loader_args(self, dates): |
91
|
|
|
"""Construct the base earnings announcements object to pass to the |
92
|
|
|
loader. |
93
|
|
|
|
94
|
|
|
Parameters |
95
|
|
|
---------- |
96
|
|
|
dates : pd.DatetimeIndex |
97
|
|
|
The dates we can serve. |
98
|
|
|
|
99
|
|
|
Returns |
100
|
|
|
------- |
101
|
|
|
args : tuple[any] |
102
|
|
|
The arguments to forward to the loader positionally. |
103
|
|
|
""" |
104
|
|
|
return dates, self.earnings_dates |
105
|
|
|
|
106
|
|
|
def setup(self, dates): |
107
|
|
|
""" |
108
|
|
|
Make a PipelineEngine and expectation functions for the given dates |
109
|
|
|
calendar. |
110
|
|
|
|
111
|
|
|
This exists to make it easy to test our various cases with critical |
112
|
|
|
dates missing from the calendar. |
113
|
|
|
""" |
114
|
|
|
A, B, C, D, E = self.sids |
115
|
|
|
|
116
|
|
|
def num_days_between(start_date, end_date): |
117
|
|
|
return num_days_in_range(dates, start_date, end_date) |
118
|
|
|
|
119
|
|
|
def zip_with_dates(dts): |
120
|
|
|
return pd.Series(pd.to_datetime(dts), index=dates) |
121
|
|
|
|
122
|
|
|
_expected_next_announce = pd.DataFrame({ |
123
|
|
|
A: zip_with_dates( |
124
|
|
|
['NaT'] * num_days_between(None, '2014-01-04') + |
125
|
|
|
['2014-01-15'] * num_days_between('2014-01-05', '2014-01-15') + |
126
|
|
|
['2014-01-20'] * num_days_between('2014-01-16', '2014-01-20') + |
127
|
|
|
['NaT'] * num_days_between('2014-01-21', None) |
128
|
|
|
), |
129
|
|
|
B: zip_with_dates( |
130
|
|
|
['NaT'] * num_days_between(None, '2014-01-04') + |
131
|
|
|
['2014-01-20'] * num_days_between('2014-01-05', '2014-01-09') + |
132
|
|
|
['2014-01-15'] * num_days_between('2014-01-10', '2014-01-15') + |
133
|
|
|
['2014-01-20'] * num_days_between('2014-01-16', '2014-01-20') + |
134
|
|
|
['NaT'] * num_days_between('2014-01-21', None) |
135
|
|
|
), |
136
|
|
|
C: zip_with_dates( |
137
|
|
|
['NaT'] * num_days_between(None, '2014-01-04') + |
138
|
|
|
['2014-01-10'] * num_days_between('2014-01-05', '2014-01-10') + |
139
|
|
|
['NaT'] * num_days_between('2014-01-11', '2014-01-14') + |
140
|
|
|
['2014-01-20'] * num_days_between('2014-01-15', '2014-01-20') + |
141
|
|
|
['NaT'] * num_days_between('2014-01-21', None) |
142
|
|
|
), |
143
|
|
|
D: zip_with_dates( |
144
|
|
|
['NaT'] * num_days_between(None, '2014-01-04') + |
145
|
|
|
['2014-01-10'] * num_days_between('2014-01-05', '2014-01-10') + |
146
|
|
|
['2014-01-15'] * num_days_between('2014-01-11', '2014-01-15') + |
147
|
|
|
['NaT'] * num_days_between('2014-01-16', None) |
148
|
|
|
), |
149
|
|
|
E: zip_with_dates(['NaT'] * len(dates)), |
150
|
|
|
}, index=dates) |
151
|
|
|
|
152
|
|
|
_expected_previous_announce = pd.DataFrame({ |
153
|
|
|
A: zip_with_dates( |
154
|
|
|
['NaT'] * num_days_between(None, '2014-01-14') + |
155
|
|
|
['2014-01-15'] * num_days_between('2014-01-15', '2014-01-19') + |
156
|
|
|
['2014-01-20'] * num_days_between('2014-01-20', None) |
157
|
|
|
), |
158
|
|
|
B: zip_with_dates( |
159
|
|
|
['NaT'] * num_days_between(None, '2014-01-14') + |
160
|
|
|
['2014-01-15'] * num_days_between('2014-01-15', '2014-01-19') + |
161
|
|
|
['2014-01-20'] * num_days_between('2014-01-20', None) |
162
|
|
|
), |
163
|
|
|
C: zip_with_dates( |
164
|
|
|
['NaT'] * num_days_between(None, '2014-01-09') + |
165
|
|
|
['2014-01-10'] * num_days_between('2014-01-10', '2014-01-19') + |
166
|
|
|
['2014-01-20'] * num_days_between('2014-01-20', None) |
167
|
|
|
), |
168
|
|
|
D: zip_with_dates( |
169
|
|
|
['NaT'] * num_days_between(None, '2014-01-09') + |
170
|
|
|
['2014-01-10'] * num_days_between('2014-01-10', '2014-01-14') + |
171
|
|
|
['2014-01-15'] * num_days_between('2014-01-15', None) |
172
|
|
|
), |
173
|
|
|
E: zip_with_dates(['NaT'] * len(dates)), |
174
|
|
|
}, index=dates) |
175
|
|
|
|
176
|
|
|
_expected_next_busday_offsets = self._compute_busday_offsets( |
177
|
|
|
_expected_next_announce |
178
|
|
|
) |
179
|
|
|
_expected_previous_busday_offsets = self._compute_busday_offsets( |
180
|
|
|
_expected_previous_announce |
181
|
|
|
) |
182
|
|
|
|
183
|
|
|
def expected_next_announce(sid): |
184
|
|
|
""" |
185
|
|
|
Return the expected next announcement dates for ``sid``. |
186
|
|
|
""" |
187
|
|
|
return _expected_next_announce[sid] |
188
|
|
|
|
189
|
|
|
def expected_next_busday_offset(sid): |
190
|
|
|
""" |
191
|
|
|
Return the expected number of days to the next announcement for |
192
|
|
|
``sid``. |
193
|
|
|
""" |
194
|
|
|
return _expected_next_busday_offsets[sid] |
195
|
|
|
|
196
|
|
|
def expected_previous_announce(sid): |
197
|
|
|
""" |
198
|
|
|
Return the expected previous announcement dates for ``sid``. |
199
|
|
|
""" |
200
|
|
|
return _expected_previous_announce[sid] |
201
|
|
|
|
202
|
|
|
def expected_previous_busday_offset(sid): |
203
|
|
|
""" |
204
|
|
|
Return the expected number of days to the next announcement for |
205
|
|
|
``sid``. |
206
|
|
|
""" |
207
|
|
|
return _expected_previous_busday_offsets[sid] |
208
|
|
|
|
209
|
|
|
loader = self.loader_type(*self.loader_args(dates)) |
210
|
|
|
engine = SimplePipelineEngine(lambda _: loader, dates, self.finder) |
211
|
|
|
return ( |
212
|
|
|
engine, |
213
|
|
|
expected_next_announce, |
214
|
|
|
expected_next_busday_offset, |
215
|
|
|
expected_previous_announce, |
216
|
|
|
expected_previous_busday_offset, |
217
|
|
|
) |
218
|
|
|
|
219
|
|
|
@staticmethod |
220
|
|
|
def _compute_busday_offsets(announcement_dates): |
221
|
|
|
""" |
222
|
|
|
Compute expected business day offsets from a DataFrame of announcement |
223
|
|
|
dates. |
224
|
|
|
""" |
225
|
|
|
# Column-vector of dates on which factor `compute` will be called. |
226
|
|
|
raw_call_dates = announcement_dates.index.values.astype( |
227
|
|
|
'datetime64[D]' |
228
|
|
|
)[:, None] |
229
|
|
|
|
230
|
|
|
# 2D array of dates containining expected nexg announcement. |
231
|
|
|
raw_announce_dates = ( |
232
|
|
|
announcement_dates.values.astype('datetime64[D]') |
233
|
|
|
) |
234
|
|
|
|
235
|
|
|
# Set NaTs to 0 temporarily because busday_count doesn't support NaT. |
236
|
|
|
# We fill these entries with NaNs later. |
237
|
|
|
whereNaT = raw_announce_dates == np_NaT |
238
|
|
|
raw_announce_dates[whereNaT] = make_datetime64D(0) |
239
|
|
|
|
240
|
|
|
# The abs call here makes it so that we can use this function to |
241
|
|
|
# compute offsets for both next and previous earnings (previous |
242
|
|
|
# earnings offsets come back negative). |
243
|
|
|
expected = abs(np.busday_count( |
244
|
|
|
raw_call_dates, |
245
|
|
|
raw_announce_dates |
246
|
|
|
).astype(float)) |
247
|
|
|
|
248
|
|
|
expected[whereNaT] = np.nan |
249
|
|
|
return pd.DataFrame( |
250
|
|
|
data=expected, |
251
|
|
|
columns=announcement_dates.columns, |
252
|
|
|
index=announcement_dates.index, |
253
|
|
|
) |
254
|
|
|
|
255
|
|
|
@parameterized.expand(gen_calendars( |
256
|
|
|
'2014-01-01', |
257
|
|
|
'2014-01-31', |
258
|
|
|
critical_dates=pd.to_datetime([ |
259
|
|
|
'2014-01-05', |
260
|
|
|
'2014-01-10', |
261
|
|
|
'2014-01-15', |
262
|
|
|
'2014-01-20', |
263
|
|
|
]), |
264
|
|
|
)) |
265
|
|
|
def test_compute_earnings(self, dates): |
266
|
|
|
|
267
|
|
|
( |
268
|
|
|
engine, |
269
|
|
|
expected_next, |
270
|
|
|
expected_next_busday_offset, |
271
|
|
|
expected_previous, |
272
|
|
|
expected_previous_busday_offset, |
273
|
|
|
) = self.setup(dates) |
274
|
|
|
|
275
|
|
|
pipe = Pipeline( |
276
|
|
|
columns={ |
277
|
|
|
'next': EarningsCalendar.next_announcement.latest, |
278
|
|
|
'previous': EarningsCalendar.previous_announcement.latest, |
279
|
|
|
'days_to_next': BusinessDaysUntilNextEarnings(), |
280
|
|
|
'days_since_prev': BusinessDaysSincePreviousEarnings(), |
281
|
|
|
} |
282
|
|
|
) |
283
|
|
|
|
284
|
|
|
result = engine.run_pipeline( |
285
|
|
|
pipe, |
286
|
|
|
start_date=dates[0], |
287
|
|
|
end_date=dates[-1], |
288
|
|
|
) |
289
|
|
|
|
290
|
|
|
computed_next = result['next'] |
291
|
|
|
computed_previous = result['previous'] |
292
|
|
|
computed_next_busday_offset = result['days_to_next'] |
293
|
|
|
computed_previous_busday_offset = result['days_since_prev'] |
294
|
|
|
|
295
|
|
|
# NaTs in next/prev should correspond to NaNs in offsets. |
296
|
|
|
assert_series_equal( |
297
|
|
|
computed_next.isnull(), |
298
|
|
|
computed_next_busday_offset.isnull(), |
299
|
|
|
) |
300
|
|
|
assert_series_equal( |
301
|
|
|
computed_previous.isnull(), |
302
|
|
|
computed_previous_busday_offset.isnull(), |
303
|
|
|
) |
304
|
|
|
|
305
|
|
|
for sid in self.sids: |
306
|
|
|
|
307
|
|
|
assert_series_equal( |
308
|
|
|
computed_next.xs(sid, level=1), |
309
|
|
|
expected_next(sid), |
310
|
|
|
sid, |
311
|
|
|
) |
312
|
|
|
|
313
|
|
|
assert_series_equal( |
314
|
|
|
computed_previous.xs(sid, level=1), |
315
|
|
|
expected_previous(sid), |
316
|
|
|
sid, |
317
|
|
|
) |
318
|
|
|
|
319
|
|
|
assert_series_equal( |
320
|
|
|
computed_next_busday_offset.xs(sid, level=1), |
321
|
|
|
expected_next_busday_offset(sid), |
322
|
|
|
sid, |
323
|
|
|
) |
324
|
|
|
|
325
|
|
|
assert_series_equal( |
326
|
|
|
computed_previous_busday_offset.xs(sid, level=1), |
327
|
|
|
expected_previous_busday_offset(sid), |
328
|
|
|
sid, |
329
|
|
|
) |
330
|
|
|
|
331
|
|
|
|
332
|
|
|
class BlazeEarningsCalendarLoaderTestCase(EarningsCalendarLoaderTestCase): |
333
|
|
|
loader_type = BlazeEarningsCalendarLoader |
334
|
|
|
|
335
|
|
|
def loader_args(self, dates): |
336
|
|
|
_, mapping = super( |
337
|
|
|
BlazeEarningsCalendarLoaderTestCase, |
338
|
|
|
self, |
339
|
|
|
).loader_args(dates) |
340
|
|
|
return (bz.Data(pd.concat( |
341
|
|
|
pd.DataFrame({ |
342
|
|
|
ANNOUNCEMENT_FIELD_NAME: earning_dates, |
343
|
|
|
TS_FIELD_NAME: earning_dates.index, |
344
|
|
|
SID_FIELD_NAME: sid, |
345
|
|
|
}) |
346
|
|
|
for sid, earning_dates in iteritems(mapping) |
347
|
|
|
).reset_index(drop=True)),) |
348
|
|
|
|
349
|
|
|
|
350
|
|
|
class BlazeEarningsCalendarLoaderNotInteractiveTestCase( |
351
|
|
|
BlazeEarningsCalendarLoaderTestCase): |
352
|
|
|
"""Test case for passing a non-interactive symbol and a dict of resources. |
353
|
|
|
""" |
354
|
|
|
def loader_args(self, dates): |
355
|
|
|
(bound_expr,) = super( |
356
|
|
|
BlazeEarningsCalendarLoaderNotInteractiveTestCase, |
357
|
|
|
self, |
358
|
|
|
).loader_args(dates) |
359
|
|
|
return swap_resources_into_scope(bound_expr, {}) |
360
|
|
|
|
361
|
|
|
|
362
|
|
|
class EarningsCalendarLoaderInferTimestampTestCase(TestCase): |
363
|
|
|
def test_infer_timestamp(self): |
364
|
|
|
dtx = pd.date_range('2014-01-01', '2014-01-10') |
365
|
|
|
announcement_dates = { |
366
|
|
|
0: dtx, |
367
|
|
|
1: pd.Series(dtx, dtx), |
368
|
|
|
} |
369
|
|
|
loader = EarningsCalendarLoader( |
370
|
|
|
dtx, |
371
|
|
|
announcement_dates, |
372
|
|
|
infer_timestamps=True, |
373
|
|
|
) |
374
|
|
|
self.assertEqual( |
375
|
|
|
loader.announcement_dates.keys(), |
376
|
|
|
announcement_dates.keys(), |
377
|
|
|
) |
378
|
|
|
assert_series_equal( |
379
|
|
|
loader.announcement_dates[0], |
380
|
|
|
pd.Series(index=[dtx[0]] * 10, data=dtx), |
381
|
|
|
) |
382
|
|
|
assert_series_equal( |
383
|
|
|
loader.announcement_dates[1], |
384
|
|
|
announcement_dates[1], |
385
|
|
|
) |
386
|
|
|
|