1
|
|
|
import datetime |
2
|
|
|
|
3
|
|
|
import pandas as pd |
4
|
|
|
from pytz import utc |
5
|
|
|
|
6
|
|
|
|
7
|
|
|
def normalize_data_query_time(dt, time, tz): |
8
|
|
|
"""Apply the correct time and timezone to a date. |
9
|
|
|
|
10
|
|
|
Parameters |
11
|
|
|
---------- |
12
|
|
|
dt : datetime.datetime |
13
|
|
|
The original datetime that represents the date. |
14
|
|
|
time : datetime.time |
15
|
|
|
The time to query before. |
16
|
|
|
tz : tzinfo |
17
|
|
|
The timezone the time applies to. |
18
|
|
|
|
19
|
|
|
Returns |
20
|
|
|
------- |
21
|
|
|
query_dt : pd.Timestamp |
22
|
|
|
The timestamp with the correct time and date in utc. |
23
|
|
|
""" |
24
|
|
|
# get the date after converting the timezone |
25
|
|
|
if dt.tzinfo is None: |
26
|
|
|
date = tz.localize(dt).date() |
27
|
|
|
else: |
28
|
|
|
date = dt.astimezone(tz).date() |
29
|
|
|
|
30
|
|
|
# merge the correct date with the time in the given timezone then convert |
31
|
|
|
# back to utc |
32
|
|
|
return pd.Timestamp( |
33
|
|
|
datetime.datetime.combine(date, time), |
34
|
|
|
tz=tz, |
35
|
|
|
).tz_convert(utc) |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
def normalize_timestamp_to_query_time(df, |
39
|
|
|
time, |
40
|
|
|
tz, |
41
|
|
|
inplace=False, |
42
|
|
|
ts_field='timestamp'): |
43
|
|
|
"""Update the timestamp field of a dataframe to normalize dates around |
44
|
|
|
some data query time/timezone. |
45
|
|
|
|
46
|
|
|
Parameters |
47
|
|
|
---------- |
48
|
|
|
df : pd.DataFrame |
49
|
|
|
The dataframe to update. This needs a column named ``ts_field``. |
50
|
|
|
time : datetime.time |
51
|
|
|
The time to query before. |
52
|
|
|
tz : tzinfo |
53
|
|
|
The timezone the time applies to. |
54
|
|
|
inplace : bool, optional |
55
|
|
|
Update the dataframe in place. |
56
|
|
|
ts_field : str, optional |
57
|
|
|
The name of the timestamp field in ``df``. |
58
|
|
|
|
59
|
|
|
Returns |
60
|
|
|
------- |
61
|
|
|
df : pd.DataFrame |
62
|
|
|
The dataframe with the timestamp field normalized. If ``inplace`` is |
63
|
|
|
true, then this will be the same object as ``df`` otherwise this will |
64
|
|
|
be a copy. |
65
|
|
|
""" |
66
|
|
|
dtidx = pd.DatetimeIndex(df[ts_field], tz='utc') |
67
|
|
|
# this mask represents the indicies where the time is greater than our |
68
|
|
|
# lookup time |
69
|
|
|
past_query_time_mask = dtidx.tz_convert(tz).time > time |
70
|
|
|
|
71
|
|
|
if not inplace: |
72
|
|
|
# don't mutate the dataframe in place |
73
|
|
|
df = df.copy() |
74
|
|
|
|
75
|
|
|
# for all of the times that are greater than our query time add 1 |
76
|
|
|
# day and truncate to the date |
77
|
|
|
df.loc[past_query_time_mask, ts_field] = ( |
78
|
|
|
dtidx[past_query_time_mask] + datetime.timedelta(days=1) |
79
|
|
|
).normalize() |
80
|
|
|
# for all of the times that are less than our query time just truncate |
81
|
|
|
# to the date |
82
|
|
|
df.loc[~past_query_time_mask, ts_field] = pd.DatetimeIndex( |
83
|
|
|
df.loc[~past_query_time_mask, ts_field], |
84
|
|
|
tz='utc', |
85
|
|
|
).normalize() |
86
|
|
|
return df |
87
|
|
|
|