1
|
|
|
# |
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
3
|
|
|
# |
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
5
|
|
|
# you may not use this file except in compliance with the License. |
6
|
|
|
# You may obtain a copy of the License at |
7
|
|
|
# |
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
9
|
|
|
# |
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13
|
|
|
# See the License for the specific language governing permissions and |
14
|
|
|
# limitations under the License. |
15
|
|
|
|
16
|
|
|
""" |
17
|
|
|
Unit tests for finance.slippage |
18
|
|
|
""" |
19
|
|
|
import datetime |
20
|
|
|
|
21
|
|
|
import pytz |
22
|
|
|
|
23
|
|
|
from unittest import TestCase |
24
|
|
|
|
25
|
|
|
from nose_parameterized import parameterized |
26
|
|
|
|
27
|
|
|
import numpy as np |
28
|
|
|
import pandas as pd |
29
|
|
|
from testfixtures import TempDirectory |
30
|
|
|
|
31
|
|
|
from zipline.finance.slippage import VolumeShareSlippage |
32
|
|
|
from zipline.finance.trading import TradingEnvironment, SimulationParameters |
33
|
|
|
|
34
|
|
|
from zipline.protocol import DATASOURCE_TYPE |
35
|
|
|
from zipline.finance.blotter import Order |
36
|
|
|
|
37
|
|
|
from zipline.data.us_equity_minutes import MinuteBarWriterFromDataFrames |
38
|
|
|
from zipline.data.us_equity_minutes import BcolzMinuteBarReader |
39
|
|
|
from zipline.data.data_portal import DataPortal |
40
|
|
|
from zipline.protocol import BarData |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
class SlippageTestCase(TestCase): |
44
|
|
|
|
45
|
|
|
@classmethod |
46
|
|
|
def setUpClass(cls): |
47
|
|
|
cls.tempdir = TempDirectory() |
48
|
|
|
cls.env = TradingEnvironment() |
49
|
|
|
|
50
|
|
|
cls.sim_params = SimulationParameters( |
51
|
|
|
period_start=pd.Timestamp("2006-01-05 14:31", tz="utc"), |
52
|
|
|
period_end=pd.Timestamp("2006-01-05 14:36", tz="utc"), |
53
|
|
|
capital_base=1.0e5, |
54
|
|
|
data_frequency="minute", |
55
|
|
|
emission_rate='daily', |
56
|
|
|
env=cls.env |
57
|
|
|
) |
58
|
|
|
|
59
|
|
|
cls.sids = [133] |
60
|
|
|
|
61
|
|
|
cls.minutes = pd.DatetimeIndex( |
62
|
|
|
start=pd.Timestamp("2006-01-05 14:31", tz="utc"), |
63
|
|
|
end=pd.Timestamp("2006-01-05 14:35", tz="utc"), |
64
|
|
|
freq="1min" |
65
|
|
|
) |
66
|
|
|
|
67
|
|
|
assets = { |
68
|
|
|
133: pd.DataFrame({ |
69
|
|
|
"open": np.array([3.0, 3.0, 3.5, 4.0, 3.5]) * 1000, |
70
|
|
|
"high": np.array([3.15, 3.15, 3.15, 3.15, 3.15]) * 1000, |
71
|
|
|
"low": np.array([2.85, 2.85, 2.85, 2.85, 2.85]) * 1000, |
72
|
|
|
"close": np.array([3.0, 3.5, 4.0, 3.5, 3.0]) * 1000, |
73
|
|
|
"volume": [2000, 2000, 2000, 2000, 2000], |
74
|
|
|
"minute": cls.minutes |
75
|
|
|
}) |
76
|
|
|
} |
77
|
|
|
|
78
|
|
|
MinuteBarWriterFromDataFrames( |
79
|
|
|
pd.Timestamp('2002-01-02', tz='UTC') |
80
|
|
|
).write(cls.tempdir.path, assets) |
81
|
|
|
|
82
|
|
|
cls.env.write_data(equities_data={ |
83
|
|
|
133: { |
84
|
|
|
"start_date": pd.Timestamp("2006-01-05", tz='utc'), |
85
|
|
|
"end_date": pd.Timestamp("2006-01-07", tz='utc') |
86
|
|
|
} |
87
|
|
|
}) |
88
|
|
|
|
89
|
|
|
cls.data_portal = DataPortal( |
90
|
|
|
cls.env, |
91
|
|
|
equity_minute_reader=BcolzMinuteBarReader(cls.tempdir.path), |
92
|
|
|
) |
93
|
|
|
|
94
|
|
|
@classmethod |
95
|
|
|
def tearDownClass(cls): |
96
|
|
|
cls.tempdir.cleanup() |
97
|
|
|
del cls.env |
98
|
|
|
|
99
|
|
|
def test_volume_share_slippage(self): |
100
|
|
|
tempdir = TempDirectory() |
101
|
|
|
|
102
|
|
|
try: |
103
|
|
|
assets = { |
104
|
|
|
133: pd.DataFrame({ |
105
|
|
|
"open": [3000], |
106
|
|
|
"high": [3150], |
107
|
|
|
"low": [2850], |
108
|
|
|
"close": [3000], |
109
|
|
|
"volume": [200], |
110
|
|
|
"minute": [self.minutes[0]] |
111
|
|
|
}) |
112
|
|
|
} |
113
|
|
|
|
114
|
|
|
MinuteBarWriterFromDataFrames( |
115
|
|
|
pd.Timestamp('2002-01-02', tz='UTC') |
116
|
|
|
).write(tempdir.path, assets) |
117
|
|
|
|
118
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
119
|
|
|
|
120
|
|
|
data_portal = DataPortal( |
121
|
|
|
self.env, |
122
|
|
|
equity_minute_reader=equity_minute_reader, |
123
|
|
|
) |
124
|
|
|
|
125
|
|
|
slippage_model = VolumeShareSlippage() |
126
|
|
|
|
127
|
|
|
open_orders = [ |
128
|
|
|
Order( |
129
|
|
|
dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
130
|
|
|
amount=100, |
131
|
|
|
filled=0, |
132
|
|
|
sid=133 |
133
|
|
|
) |
134
|
|
|
] |
135
|
|
|
|
136
|
|
|
bar_data = BarData(data_portal, |
137
|
|
|
lambda: self.minutes[0], |
138
|
|
|
'minute') |
139
|
|
|
|
140
|
|
|
orders_txns = list(slippage_model.simulate( |
141
|
|
|
bar_data[133], |
142
|
|
|
open_orders, |
143
|
|
|
)) |
144
|
|
|
|
145
|
|
|
self.assertEquals(len(orders_txns), 1) |
146
|
|
|
_, txn = orders_txns[0] |
147
|
|
|
|
148
|
|
|
expected_txn = { |
149
|
|
|
'price': float(3.0001875), |
150
|
|
|
'dt': datetime.datetime( |
151
|
|
|
2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
152
|
|
|
'amount': int(5), |
153
|
|
|
'sid': int(133), |
154
|
|
|
'commission': None, |
155
|
|
|
'type': DATASOURCE_TYPE.TRANSACTION, |
156
|
|
|
'order_id': open_orders[0].id |
157
|
|
|
} |
158
|
|
|
|
159
|
|
|
self.assertIsNotNone(txn) |
160
|
|
|
|
161
|
|
|
# TODO: Make expected_txn an Transaction object and ensure there |
162
|
|
|
# is a __eq__ for that class. |
163
|
|
|
self.assertEquals(expected_txn, txn.__dict__) |
164
|
|
|
finally: |
165
|
|
|
tempdir.cleanup() |
166
|
|
|
|
167
|
|
|
def test_orders_limit(self): |
168
|
|
|
slippage_model = VolumeShareSlippage() |
169
|
|
|
slippage_model.data_portal = self.data_portal |
170
|
|
|
|
171
|
|
|
# long, does not trade |
172
|
|
|
open_orders = [ |
173
|
|
|
Order(**{ |
174
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
175
|
|
|
'amount': 100, |
176
|
|
|
'filled': 0, |
177
|
|
|
'sid': 133, |
178
|
|
|
'limit': 3.5}) |
179
|
|
|
] |
180
|
|
|
|
181
|
|
|
bar_data = BarData(self.data_portal, |
182
|
|
|
lambda: self.minutes[3], |
183
|
|
|
self.sim_params.data_frequency) |
184
|
|
|
|
185
|
|
|
orders_txns = list(slippage_model.simulate( |
186
|
|
|
bar_data[133], |
187
|
|
|
open_orders, |
188
|
|
|
)) |
189
|
|
|
|
190
|
|
|
self.assertEquals(len(orders_txns), 0) |
191
|
|
|
|
192
|
|
|
# long, does not trade - impacted price worse than limit price |
193
|
|
|
open_orders = [ |
194
|
|
|
Order(**{ |
195
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
196
|
|
|
'amount': 100, |
197
|
|
|
'filled': 0, |
198
|
|
|
'sid': 133, |
199
|
|
|
'limit': 3.5}) |
200
|
|
|
] |
201
|
|
|
|
202
|
|
|
bar_data = BarData(self.data_portal, |
203
|
|
|
lambda: self.minutes[3], |
204
|
|
|
self.sim_params.data_frequency) |
205
|
|
|
|
206
|
|
|
orders_txns = list(slippage_model.simulate( |
207
|
|
|
bar_data[133], |
208
|
|
|
open_orders, |
209
|
|
|
)) |
210
|
|
|
|
211
|
|
|
self.assertEquals(len(orders_txns), 0) |
212
|
|
|
|
213
|
|
|
# long, does trade |
214
|
|
|
open_orders = [ |
215
|
|
|
Order(**{ |
216
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
217
|
|
|
'amount': 100, |
218
|
|
|
'filled': 0, |
219
|
|
|
'sid': 133, |
220
|
|
|
'limit': 3.6}) |
221
|
|
|
] |
222
|
|
|
|
223
|
|
|
bar_data = BarData(self.data_portal, |
224
|
|
|
lambda: self.minutes[3], |
225
|
|
|
self.sim_params.data_frequency) |
226
|
|
|
|
227
|
|
|
orders_txns = list(slippage_model.simulate( |
228
|
|
|
bar_data[133], |
229
|
|
|
open_orders, |
230
|
|
|
)) |
231
|
|
|
|
232
|
|
|
self.assertEquals(len(orders_txns), 1) |
233
|
|
|
txn = orders_txns[0][1] |
234
|
|
|
|
235
|
|
|
expected_txn = { |
236
|
|
|
'price': float(3.50021875), |
237
|
|
|
'dt': datetime.datetime( |
238
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
239
|
|
|
# we ordered 100 shares, but default volume slippage only allows |
240
|
|
|
# for 2.5% of the volume. 2.5% * 2000 = 50 shares |
241
|
|
|
'amount': int(50), |
242
|
|
|
'sid': int(133), |
243
|
|
|
'order_id': open_orders[0].id |
244
|
|
|
} |
245
|
|
|
|
246
|
|
|
self.assertIsNotNone(txn) |
247
|
|
|
|
248
|
|
|
for key, value in expected_txn.items(): |
249
|
|
|
self.assertEquals(value, txn[key]) |
250
|
|
|
|
251
|
|
|
# short, does not trade |
252
|
|
|
open_orders = [ |
253
|
|
|
Order(**{ |
254
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
255
|
|
|
'amount': -100, |
256
|
|
|
'filled': 0, |
257
|
|
|
'sid': 133, |
258
|
|
|
'limit': 3.5}) |
259
|
|
|
] |
260
|
|
|
|
261
|
|
|
bar_data = BarData(self.data_portal, |
262
|
|
|
lambda: self.minutes[0], |
263
|
|
|
self.sim_params.data_frequency) |
264
|
|
|
|
265
|
|
|
orders_txns = list(slippage_model.simulate( |
266
|
|
|
bar_data[133], |
267
|
|
|
open_orders, |
268
|
|
|
)) |
269
|
|
|
|
270
|
|
|
self.assertEquals(len(orders_txns), 0) |
271
|
|
|
|
272
|
|
|
# short, does not trade - impacted price worse than limit price |
273
|
|
|
open_orders = [ |
274
|
|
|
Order(**{ |
275
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
276
|
|
|
'amount': -100, |
277
|
|
|
'filled': 0, |
278
|
|
|
'sid': 133, |
279
|
|
|
'limit': 3.5}) |
280
|
|
|
] |
281
|
|
|
|
282
|
|
|
bar_data = BarData(self.data_portal, |
283
|
|
|
lambda: self.minutes[0], |
284
|
|
|
self.sim_params.data_frequency) |
285
|
|
|
|
286
|
|
|
orders_txns = list(slippage_model.simulate( |
287
|
|
|
bar_data[133], |
288
|
|
|
open_orders, |
289
|
|
|
)) |
290
|
|
|
|
291
|
|
|
self.assertEquals(len(orders_txns), 0) |
292
|
|
|
|
293
|
|
|
# short, does trade |
294
|
|
|
open_orders = [ |
295
|
|
|
Order(**{ |
296
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
297
|
|
|
'amount': -100, |
298
|
|
|
'filled': 0, |
299
|
|
|
'sid': 133, |
300
|
|
|
'limit': 3.4}) |
301
|
|
|
] |
302
|
|
|
|
303
|
|
|
bar_data = BarData(self.data_portal, |
304
|
|
|
lambda: self.minutes[1], |
305
|
|
|
self.sim_params.data_frequency) |
306
|
|
|
|
307
|
|
|
orders_txns = list(slippage_model.simulate( |
308
|
|
|
bar_data[133], |
309
|
|
|
open_orders, |
310
|
|
|
)) |
311
|
|
|
|
312
|
|
|
self.assertEquals(len(orders_txns), 1) |
313
|
|
|
_, txn = orders_txns[0] |
314
|
|
|
|
315
|
|
|
expected_txn = { |
316
|
|
|
'price': float(3.49978125), |
317
|
|
|
'dt': datetime.datetime( |
318
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
319
|
|
|
'amount': int(-50), |
320
|
|
|
'sid': int(133) |
321
|
|
|
} |
322
|
|
|
|
323
|
|
|
self.assertIsNotNone(txn) |
324
|
|
|
|
325
|
|
|
for key, value in expected_txn.items(): |
326
|
|
|
self.assertEquals(value, txn[key]) |
327
|
|
|
|
328
|
|
|
STOP_ORDER_CASES = { |
329
|
|
|
# Stop orders can be long/short and have their price greater or |
330
|
|
|
# less than the stop. |
331
|
|
|
# |
332
|
|
|
# A stop being reached is conditional on the order direction. |
333
|
|
|
# Long orders reach the stop when the price is greater than the stop. |
334
|
|
|
# Short orders reach the stop when the price is less than the stop. |
335
|
|
|
# |
336
|
|
|
# Which leads to the following 4 cases: |
337
|
|
|
# |
338
|
|
|
# | long | short | |
339
|
|
|
# | price > stop | | | |
340
|
|
|
# | price < stop | | | |
341
|
|
|
# |
342
|
|
|
# Currently the slippage module acts according to the following table, |
343
|
|
|
# where 'X' represents triggering a transaction |
344
|
|
|
# | long | short | |
345
|
|
|
# | price > stop | | X | |
346
|
|
|
# | price < stop | X | | |
347
|
|
|
# |
348
|
|
|
# However, the following behavior *should* be followed. |
349
|
|
|
# |
350
|
|
|
# | long | short | |
351
|
|
|
# | price > stop | X | | |
352
|
|
|
# | price < stop | | X | |
353
|
|
|
|
354
|
|
|
'long | price gt stop': { |
355
|
|
|
'order': { |
356
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
357
|
|
|
'amount': 100, |
358
|
|
|
'filled': 0, |
359
|
|
|
'sid': 133, |
360
|
|
|
'stop': 3.5 |
361
|
|
|
}, |
362
|
|
|
'event': { |
363
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
364
|
|
|
'volume': 2000, |
365
|
|
|
'price': 4.0, |
366
|
|
|
'high': 3.15, |
367
|
|
|
'low': 2.85, |
368
|
|
|
'sid': 133, |
369
|
|
|
'close': 4.0, |
370
|
|
|
'open': 3.5 |
371
|
|
|
}, |
372
|
|
|
'expected': { |
373
|
|
|
'transaction': { |
374
|
|
|
'price': 4.00025, |
375
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
376
|
|
|
'amount': 50, |
377
|
|
|
'sid': 133, |
378
|
|
|
} |
379
|
|
|
} |
380
|
|
|
}, |
381
|
|
|
'long | price lt stop': { |
382
|
|
|
'order': { |
383
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
384
|
|
|
'amount': 100, |
385
|
|
|
'filled': 0, |
386
|
|
|
'sid': 133, |
387
|
|
|
'stop': 3.6 |
388
|
|
|
}, |
389
|
|
|
'event': { |
390
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
391
|
|
|
'volume': 2000, |
392
|
|
|
'price': 3.5, |
393
|
|
|
'high': 3.15, |
394
|
|
|
'low': 2.85, |
395
|
|
|
'sid': 133, |
396
|
|
|
'close': 3.5, |
397
|
|
|
'open': 4.0 |
398
|
|
|
}, |
399
|
|
|
'expected': { |
400
|
|
|
'transaction': None |
401
|
|
|
} |
402
|
|
|
}, |
403
|
|
|
'short | price gt stop': { |
404
|
|
|
'order': { |
405
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
406
|
|
|
'amount': -100, |
407
|
|
|
'filled': 0, |
408
|
|
|
'sid': 133, |
409
|
|
|
'stop': 3.4 |
410
|
|
|
}, |
411
|
|
|
'event': { |
412
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
413
|
|
|
'volume': 2000, |
414
|
|
|
'price': 3.5, |
415
|
|
|
'high': 3.15, |
416
|
|
|
'low': 2.85, |
417
|
|
|
'sid': 133, |
418
|
|
|
'close': 3.5, |
419
|
|
|
'open': 3.0 |
420
|
|
|
}, |
421
|
|
|
'expected': { |
422
|
|
|
'transaction': None |
423
|
|
|
} |
424
|
|
|
}, |
425
|
|
|
'short | price lt stop': { |
426
|
|
|
'order': { |
427
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
428
|
|
|
'amount': -100, |
429
|
|
|
'filled': 0, |
430
|
|
|
'sid': 133, |
431
|
|
|
'stop': 3.5 |
432
|
|
|
}, |
433
|
|
|
'event': { |
434
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
435
|
|
|
'volume': 2000, |
436
|
|
|
'price': 3.0, |
437
|
|
|
'high': 3.15, |
438
|
|
|
'low': 2.85, |
439
|
|
|
'sid': 133, |
440
|
|
|
'close': 3.0, |
441
|
|
|
'open': 3.0 |
442
|
|
|
}, |
443
|
|
|
'expected': { |
444
|
|
|
'transaction': { |
445
|
|
|
'price': 2.9998125, |
446
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
447
|
|
|
'amount': -50, |
448
|
|
|
'sid': 133, |
449
|
|
|
} |
450
|
|
|
} |
451
|
|
|
}, |
452
|
|
|
} |
453
|
|
|
|
454
|
|
|
@parameterized.expand([ |
455
|
|
|
(name, case['order'], case['event'], case['expected']) |
456
|
|
|
for name, case in STOP_ORDER_CASES.items() |
457
|
|
|
]) |
458
|
|
|
def test_orders_stop(self, name, order_data, event_data, expected): |
459
|
|
|
tempdir = TempDirectory() |
460
|
|
|
try: |
461
|
|
|
order = Order(**order_data) |
462
|
|
|
|
463
|
|
|
assets = { |
464
|
|
|
133: pd.DataFrame({ |
465
|
|
|
"open": [event_data["open"] * 1000], |
466
|
|
|
"high": [event_data["high"] * 1000], |
467
|
|
|
"low": [event_data["low"] * 1000], |
468
|
|
|
"close": [event_data["close"] * 1000], |
469
|
|
|
"volume": [event_data["volume"]], |
470
|
|
|
"minute": [pd.Timestamp('2006-01-05 14:31', tz='UTC')] |
471
|
|
|
}) |
472
|
|
|
} |
473
|
|
|
|
474
|
|
|
MinuteBarWriterFromDataFrames( |
475
|
|
|
pd.Timestamp('2002-01-02', tz='UTC') |
476
|
|
|
).write(tempdir.path, assets) |
477
|
|
|
|
478
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
479
|
|
|
|
480
|
|
|
data_portal = DataPortal( |
481
|
|
|
self.env, |
482
|
|
|
equity_minute_reader=equity_minute_reader, |
483
|
|
|
) |
484
|
|
|
|
485
|
|
|
slippage_model = VolumeShareSlippage() |
486
|
|
|
|
487
|
|
|
try: |
488
|
|
|
dt = pd.Timestamp('2006-01-05 14:31', tz='UTC') |
489
|
|
|
bar_data = BarData(data_portal, |
490
|
|
|
lambda: dt, |
491
|
|
|
'minute') |
492
|
|
|
_, txn = next(slippage_model.simulate( |
493
|
|
|
bar_data[133], |
494
|
|
|
[order], |
495
|
|
|
)) |
496
|
|
|
except StopIteration: |
497
|
|
|
txn = None |
498
|
|
|
|
499
|
|
|
if expected['transaction'] is None: |
500
|
|
|
self.assertIsNone(txn) |
501
|
|
|
else: |
502
|
|
|
self.assertIsNotNone(txn) |
503
|
|
|
|
504
|
|
|
for key, value in expected['transaction'].items(): |
505
|
|
|
self.assertEquals(value, txn[key]) |
506
|
|
|
finally: |
507
|
|
|
tempdir.cleanup() |
508
|
|
|
|
509
|
|
|
def test_orders_stop_limit(self): |
510
|
|
|
slippage_model = VolumeShareSlippage() |
511
|
|
|
slippage_model.data_portal = self.data_portal |
512
|
|
|
|
513
|
|
|
# long, does not trade |
514
|
|
|
open_orders = [ |
515
|
|
|
Order(**{ |
516
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
517
|
|
|
'amount': 100, |
518
|
|
|
'filled': 0, |
519
|
|
|
'sid': 133, |
520
|
|
|
'stop': 4.0, |
521
|
|
|
'limit': 3.0}) |
522
|
|
|
] |
523
|
|
|
|
524
|
|
|
bar_data = BarData(self.data_portal, |
525
|
|
|
lambda: self.minutes[2], |
526
|
|
|
self.sim_params.data_frequency) |
527
|
|
|
|
528
|
|
|
orders_txns = list(slippage_model.simulate( |
529
|
|
|
bar_data[133], |
530
|
|
|
open_orders, |
531
|
|
|
)) |
532
|
|
|
|
533
|
|
|
self.assertEquals(len(orders_txns), 0) |
534
|
|
|
|
535
|
|
|
bar_data = BarData(self.data_portal, |
536
|
|
|
lambda: self.minutes[3], |
537
|
|
|
self.sim_params.data_frequency) |
538
|
|
|
|
539
|
|
|
orders_txns = list(slippage_model.simulate( |
540
|
|
|
bar_data[133], |
541
|
|
|
open_orders, |
542
|
|
|
)) |
543
|
|
|
|
544
|
|
|
self.assertEquals(len(orders_txns), 0) |
545
|
|
|
|
546
|
|
|
# long, does not trade - impacted price worse than limit price |
547
|
|
|
open_orders = [ |
548
|
|
|
Order(**{ |
549
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
550
|
|
|
'amount': 100, |
551
|
|
|
'filled': 0, |
552
|
|
|
'sid': 133, |
553
|
|
|
'stop': 4.0, |
554
|
|
|
'limit': 3.5}) |
555
|
|
|
] |
556
|
|
|
|
557
|
|
|
bar_data = BarData(self.data_portal, |
558
|
|
|
lambda: self.minutes[2], |
559
|
|
|
self.sim_params.data_frequency) |
560
|
|
|
|
561
|
|
|
orders_txns = list(slippage_model.simulate( |
562
|
|
|
bar_data[133], |
563
|
|
|
open_orders, |
564
|
|
|
)) |
565
|
|
|
|
566
|
|
|
self.assertEquals(len(orders_txns), 0) |
567
|
|
|
|
568
|
|
|
bar_data = BarData(self.data_portal, |
569
|
|
|
lambda: self.minutes[3], |
570
|
|
|
self.sim_params.data_frequency) |
571
|
|
|
|
572
|
|
|
orders_txns = list(slippage_model.simulate( |
573
|
|
|
bar_data[133], |
574
|
|
|
open_orders, |
575
|
|
|
)) |
576
|
|
|
|
577
|
|
|
self.assertEquals(len(orders_txns), 0) |
578
|
|
|
|
579
|
|
|
# long, does trade |
580
|
|
|
open_orders = [ |
581
|
|
|
Order(**{ |
582
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
583
|
|
|
'amount': 100, |
584
|
|
|
'filled': 0, |
585
|
|
|
'sid': 133, |
586
|
|
|
'stop': 4.0, |
587
|
|
|
'limit': 3.6}) |
588
|
|
|
] |
589
|
|
|
|
590
|
|
|
bar_data = BarData(self.data_portal, |
591
|
|
|
lambda: self.minutes[2], |
592
|
|
|
self.sim_params.data_frequency) |
593
|
|
|
|
594
|
|
|
orders_txns = list(slippage_model.simulate( |
595
|
|
|
bar_data[133], |
596
|
|
|
open_orders, |
597
|
|
|
)) |
598
|
|
|
|
599
|
|
|
self.assertEquals(len(orders_txns), 0) |
600
|
|
|
|
601
|
|
|
bar_data = BarData(self.data_portal, |
602
|
|
|
lambda: self.minutes[3], |
603
|
|
|
self.sim_params.data_frequency) |
604
|
|
|
|
605
|
|
|
orders_txns = list(slippage_model.simulate( |
606
|
|
|
bar_data[133], |
607
|
|
|
open_orders, |
608
|
|
|
)) |
609
|
|
|
|
610
|
|
|
self.assertEquals(len(orders_txns), 1) |
611
|
|
|
_, txn = orders_txns[0] |
612
|
|
|
|
613
|
|
|
expected_txn = { |
614
|
|
|
'price': float(3.50021875), |
615
|
|
|
'dt': datetime.datetime( |
616
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
617
|
|
|
'amount': int(50), |
618
|
|
|
'sid': int(133) |
619
|
|
|
} |
620
|
|
|
|
621
|
|
|
for key, value in expected_txn.items(): |
622
|
|
|
self.assertEquals(value, txn[key]) |
623
|
|
|
|
624
|
|
|
# short, does not trade |
625
|
|
|
|
626
|
|
|
open_orders = [ |
627
|
|
|
Order(**{ |
628
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
629
|
|
|
'amount': -100, |
630
|
|
|
'filled': 0, |
631
|
|
|
'sid': 133, |
632
|
|
|
'stop': 3.0, |
633
|
|
|
'limit': 4.0}) |
634
|
|
|
] |
635
|
|
|
|
636
|
|
|
bar_data = BarData(self.data_portal, |
637
|
|
|
lambda: self.minutes[0], |
638
|
|
|
self.sim_params.data_frequency) |
639
|
|
|
|
640
|
|
|
orders_txns = list(slippage_model.simulate( |
641
|
|
|
bar_data[133], |
642
|
|
|
open_orders, |
643
|
|
|
)) |
644
|
|
|
|
645
|
|
|
self.assertEquals(len(orders_txns), 0) |
646
|
|
|
|
647
|
|
|
bar_data = BarData(self.data_portal, |
648
|
|
|
lambda: self.minutes[1], |
649
|
|
|
self.sim_params.data_frequency) |
650
|
|
|
|
651
|
|
|
orders_txns = list(slippage_model.simulate( |
652
|
|
|
bar_data[133], |
653
|
|
|
open_orders, |
654
|
|
|
)) |
655
|
|
|
|
656
|
|
|
self.assertEquals(len(orders_txns), 0) |
657
|
|
|
|
658
|
|
|
# short, does not trade - impacted price worse than limit price |
659
|
|
|
open_orders = [ |
660
|
|
|
Order(**{ |
661
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
662
|
|
|
'amount': -100, |
663
|
|
|
'filled': 0, |
664
|
|
|
'sid': 133, |
665
|
|
|
'stop': 3.0, |
666
|
|
|
'limit': 3.5}) |
667
|
|
|
] |
668
|
|
|
|
669
|
|
|
bar_data = BarData(self.data_portal, |
670
|
|
|
lambda: self.minutes[0], |
671
|
|
|
self.sim_params.data_frequency) |
672
|
|
|
|
673
|
|
|
orders_txns = list(slippage_model.simulate( |
674
|
|
|
bar_data[133], |
675
|
|
|
open_orders, |
676
|
|
|
)) |
677
|
|
|
|
678
|
|
|
self.assertEquals(len(orders_txns), 0) |
679
|
|
|
|
680
|
|
|
bar_data = BarData(self.data_portal, |
681
|
|
|
lambda: self.minutes[1], |
682
|
|
|
self.sim_params.data_frequency) |
683
|
|
|
|
684
|
|
|
orders_txns = list(slippage_model.simulate( |
685
|
|
|
bar_data[133], |
686
|
|
|
open_orders, |
687
|
|
|
)) |
688
|
|
|
|
689
|
|
|
self.assertEquals(len(orders_txns), 0) |
690
|
|
|
|
691
|
|
|
# short, does trade |
692
|
|
|
open_orders = [ |
693
|
|
|
Order(**{ |
694
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
695
|
|
|
'amount': -100, |
696
|
|
|
'filled': 0, |
697
|
|
|
'sid': 133, |
698
|
|
|
'stop': 3.0, |
699
|
|
|
'limit': 3.4}) |
700
|
|
|
] |
701
|
|
|
|
702
|
|
|
bar_data = BarData(self.data_portal, |
703
|
|
|
lambda: self.minutes[0], |
704
|
|
|
self.sim_params.data_frequency) |
705
|
|
|
|
706
|
|
|
orders_txns = list(slippage_model.simulate( |
707
|
|
|
bar_data[133], |
708
|
|
|
open_orders, |
709
|
|
|
)) |
710
|
|
|
|
711
|
|
|
self.assertEquals(len(orders_txns), 0) |
712
|
|
|
|
713
|
|
|
bar_data = BarData(self.data_portal, |
714
|
|
|
lambda: self.minutes[1], |
715
|
|
|
self.sim_params.data_frequency) |
716
|
|
|
|
717
|
|
|
orders_txns = list(slippage_model.simulate( |
718
|
|
|
bar_data[133], |
719
|
|
|
open_orders, |
720
|
|
|
)) |
721
|
|
|
|
722
|
|
|
self.assertEquals(len(orders_txns), 1) |
723
|
|
|
_, txn = orders_txns[0] |
724
|
|
|
|
725
|
|
|
expected_txn = { |
726
|
|
|
'price': float(3.49978125), |
727
|
|
|
'dt': datetime.datetime( |
728
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
729
|
|
|
'amount': int(-50), |
730
|
|
|
'sid': int(133) |
731
|
|
|
} |
732
|
|
|
|
733
|
|
|
for key, value in expected_txn.items(): |
734
|
|
|
self.assertEquals(value, txn[key]) |
735
|
|
|
|