|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
|
|
16
|
|
|
""" |
|
17
|
|
|
Unit tests for finance.slippage |
|
18
|
|
|
""" |
|
19
|
|
|
import datetime |
|
20
|
|
|
|
|
21
|
|
|
import pytz |
|
22
|
|
|
|
|
23
|
|
|
from unittest import TestCase |
|
24
|
|
|
|
|
25
|
|
|
from nose_parameterized import parameterized |
|
26
|
|
|
|
|
27
|
|
|
import numpy as np |
|
28
|
|
|
import pandas as pd |
|
29
|
|
|
from testfixtures import TempDirectory |
|
30
|
|
|
|
|
31
|
|
|
from zipline.finance.slippage import VolumeShareSlippage |
|
32
|
|
|
from zipline.finance.trading import TradingEnvironment, SimulationParameters |
|
33
|
|
|
|
|
34
|
|
|
from zipline.protocol import DATASOURCE_TYPE |
|
35
|
|
|
from zipline.finance.blotter import Order |
|
36
|
|
|
|
|
37
|
|
|
from zipline.data.us_equity_minutes import MinuteBarWriterFromDataFrames |
|
38
|
|
|
from zipline.data.us_equity_minutes import BcolzMinuteBarReader |
|
39
|
|
|
from zipline.data.data_portal import DataPortal |
|
40
|
|
|
from zipline.protocol import BarData |
|
41
|
|
|
|
|
42
|
|
|
|
|
43
|
|
|
class SlippageTestCase(TestCase): |
|
44
|
|
|
|
|
45
|
|
|
@classmethod |
|
46
|
|
|
def setUpClass(cls): |
|
47
|
|
|
cls.tempdir = TempDirectory() |
|
48
|
|
|
cls.env = TradingEnvironment() |
|
49
|
|
|
|
|
50
|
|
|
cls.sim_params = SimulationParameters( |
|
51
|
|
|
period_start=pd.Timestamp("2006-01-05 14:31", tz="utc"), |
|
52
|
|
|
period_end=pd.Timestamp("2006-01-05 14:36", tz="utc"), |
|
53
|
|
|
capital_base=1.0e5, |
|
54
|
|
|
data_frequency="minute", |
|
55
|
|
|
emission_rate='daily', |
|
56
|
|
|
env=cls.env |
|
57
|
|
|
) |
|
58
|
|
|
|
|
59
|
|
|
cls.sids = [133] |
|
60
|
|
|
|
|
61
|
|
|
cls.minutes = pd.DatetimeIndex( |
|
62
|
|
|
start=pd.Timestamp("2006-01-05 14:31", tz="utc"), |
|
63
|
|
|
end=pd.Timestamp("2006-01-05 14:35", tz="utc"), |
|
64
|
|
|
freq="1min" |
|
65
|
|
|
) |
|
66
|
|
|
|
|
67
|
|
|
assets = { |
|
68
|
|
|
133: pd.DataFrame({ |
|
69
|
|
|
"open": np.array([3.0, 3.0, 3.5, 4.0, 3.5]) * 1000, |
|
70
|
|
|
"high": np.array([3.15, 3.15, 3.15, 3.15, 3.15]) * 1000, |
|
71
|
|
|
"low": np.array([2.85, 2.85, 2.85, 2.85, 2.85]) * 1000, |
|
72
|
|
|
"close": np.array([3.0, 3.5, 4.0, 3.5, 3.0]) * 1000, |
|
73
|
|
|
"volume": [2000, 2000, 2000, 2000, 2000], |
|
74
|
|
|
"minute": cls.minutes |
|
75
|
|
|
}) |
|
76
|
|
|
} |
|
77
|
|
|
|
|
78
|
|
|
MinuteBarWriterFromDataFrames( |
|
79
|
|
|
pd.Timestamp('2002-01-02', tz='UTC') |
|
80
|
|
|
).write(cls.tempdir.path, assets) |
|
81
|
|
|
|
|
82
|
|
|
cls.env.write_data(equities_data={ |
|
83
|
|
|
133: { |
|
84
|
|
|
"start_date": pd.Timestamp("2006-01-05", tz='utc'), |
|
85
|
|
|
"end_date": pd.Timestamp("2006-01-07", tz='utc') |
|
86
|
|
|
} |
|
87
|
|
|
}) |
|
88
|
|
|
|
|
89
|
|
|
cls.data_portal = DataPortal( |
|
90
|
|
|
cls.env, |
|
91
|
|
|
equity_minute_reader=BcolzMinuteBarReader(cls.tempdir.path), |
|
92
|
|
|
) |
|
93
|
|
|
|
|
94
|
|
|
@classmethod |
|
95
|
|
|
def tearDownClass(cls): |
|
96
|
|
|
cls.tempdir.cleanup() |
|
97
|
|
|
del cls.env |
|
98
|
|
|
|
|
99
|
|
|
def test_volume_share_slippage(self): |
|
100
|
|
|
tempdir = TempDirectory() |
|
101
|
|
|
|
|
102
|
|
|
try: |
|
103
|
|
|
assets = { |
|
104
|
|
|
133: pd.DataFrame({ |
|
105
|
|
|
"open": [3000], |
|
106
|
|
|
"high": [3150], |
|
107
|
|
|
"low": [2850], |
|
108
|
|
|
"close": [3000], |
|
109
|
|
|
"volume": [200], |
|
110
|
|
|
"minute": [self.minutes[0]] |
|
111
|
|
|
}) |
|
112
|
|
|
} |
|
113
|
|
|
|
|
114
|
|
|
MinuteBarWriterFromDataFrames( |
|
115
|
|
|
pd.Timestamp('2002-01-02', tz='UTC') |
|
116
|
|
|
).write(tempdir.path, assets) |
|
117
|
|
|
|
|
118
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
|
119
|
|
|
|
|
120
|
|
|
data_portal = DataPortal( |
|
121
|
|
|
self.env, |
|
122
|
|
|
equity_minute_reader=equity_minute_reader, |
|
123
|
|
|
) |
|
124
|
|
|
|
|
125
|
|
|
slippage_model = VolumeShareSlippage() |
|
126
|
|
|
|
|
127
|
|
|
open_orders = [ |
|
128
|
|
|
Order( |
|
129
|
|
|
dt=datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
130
|
|
|
amount=100, |
|
131
|
|
|
filled=0, |
|
132
|
|
|
sid=133 |
|
133
|
|
|
) |
|
134
|
|
|
] |
|
135
|
|
|
|
|
136
|
|
|
bar_data = BarData(data_portal, |
|
137
|
|
|
lambda: self.minutes[0], |
|
138
|
|
|
'minute') |
|
139
|
|
|
|
|
140
|
|
|
orders_txns = list(slippage_model.simulate( |
|
141
|
|
|
bar_data[133], |
|
142
|
|
|
open_orders, |
|
143
|
|
|
)) |
|
144
|
|
|
|
|
145
|
|
|
self.assertEquals(len(orders_txns), 1) |
|
146
|
|
|
_, txn = orders_txns[0] |
|
147
|
|
|
|
|
148
|
|
|
expected_txn = { |
|
149
|
|
|
'price': float(3.0001875), |
|
150
|
|
|
'dt': datetime.datetime( |
|
151
|
|
|
2006, 1, 5, 14, 31, tzinfo=pytz.utc), |
|
152
|
|
|
'amount': int(5), |
|
153
|
|
|
'sid': int(133), |
|
154
|
|
|
'commission': None, |
|
155
|
|
|
'type': DATASOURCE_TYPE.TRANSACTION, |
|
156
|
|
|
'order_id': open_orders[0].id |
|
157
|
|
|
} |
|
158
|
|
|
|
|
159
|
|
|
self.assertIsNotNone(txn) |
|
160
|
|
|
|
|
161
|
|
|
# TODO: Make expected_txn an Transaction object and ensure there |
|
162
|
|
|
# is a __eq__ for that class. |
|
163
|
|
|
self.assertEquals(expected_txn, txn.__dict__) |
|
164
|
|
|
finally: |
|
165
|
|
|
tempdir.cleanup() |
|
166
|
|
|
|
|
167
|
|
|
def test_orders_limit(self): |
|
168
|
|
|
slippage_model = VolumeShareSlippage() |
|
169
|
|
|
slippage_model.data_portal = self.data_portal |
|
170
|
|
|
|
|
171
|
|
|
# long, does not trade |
|
172
|
|
|
open_orders = [ |
|
173
|
|
|
Order(**{ |
|
174
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
175
|
|
|
'amount': 100, |
|
176
|
|
|
'filled': 0, |
|
177
|
|
|
'sid': 133, |
|
178
|
|
|
'limit': 3.5}) |
|
179
|
|
|
] |
|
180
|
|
|
|
|
181
|
|
|
bar_data = BarData(self.data_portal, |
|
182
|
|
|
lambda: self.minutes[3], |
|
183
|
|
|
self.sim_params.data_frequency) |
|
184
|
|
|
|
|
185
|
|
|
orders_txns = list(slippage_model.simulate( |
|
186
|
|
|
bar_data[133], |
|
187
|
|
|
open_orders, |
|
188
|
|
|
)) |
|
189
|
|
|
|
|
190
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
191
|
|
|
|
|
192
|
|
|
# long, does not trade - impacted price worse than limit price |
|
193
|
|
|
open_orders = [ |
|
194
|
|
|
Order(**{ |
|
195
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
196
|
|
|
'amount': 100, |
|
197
|
|
|
'filled': 0, |
|
198
|
|
|
'sid': 133, |
|
199
|
|
|
'limit': 3.5}) |
|
200
|
|
|
] |
|
201
|
|
|
|
|
202
|
|
|
bar_data = BarData(self.data_portal, |
|
203
|
|
|
lambda: self.minutes[3], |
|
204
|
|
|
self.sim_params.data_frequency) |
|
205
|
|
|
|
|
206
|
|
|
orders_txns = list(slippage_model.simulate( |
|
207
|
|
|
bar_data[133], |
|
208
|
|
|
open_orders, |
|
209
|
|
|
)) |
|
210
|
|
|
|
|
211
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
212
|
|
|
|
|
213
|
|
|
# long, does trade |
|
214
|
|
|
open_orders = [ |
|
215
|
|
|
Order(**{ |
|
216
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
217
|
|
|
'amount': 100, |
|
218
|
|
|
'filled': 0, |
|
219
|
|
|
'sid': 133, |
|
220
|
|
|
'limit': 3.6}) |
|
221
|
|
|
] |
|
222
|
|
|
|
|
223
|
|
|
bar_data = BarData(self.data_portal, |
|
224
|
|
|
lambda: self.minutes[3], |
|
225
|
|
|
self.sim_params.data_frequency) |
|
226
|
|
|
|
|
227
|
|
|
orders_txns = list(slippage_model.simulate( |
|
228
|
|
|
bar_data[133], |
|
229
|
|
|
open_orders, |
|
230
|
|
|
)) |
|
231
|
|
|
|
|
232
|
|
|
self.assertEquals(len(orders_txns), 1) |
|
233
|
|
|
txn = orders_txns[0][1] |
|
234
|
|
|
|
|
235
|
|
|
expected_txn = { |
|
236
|
|
|
'price': float(3.50021875), |
|
237
|
|
|
'dt': datetime.datetime( |
|
238
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
|
239
|
|
|
# we ordered 100 shares, but default volume slippage only allows |
|
240
|
|
|
# for 2.5% of the volume. 2.5% * 2000 = 50 shares |
|
241
|
|
|
'amount': int(50), |
|
242
|
|
|
'sid': int(133), |
|
243
|
|
|
'order_id': open_orders[0].id |
|
244
|
|
|
} |
|
245
|
|
|
|
|
246
|
|
|
self.assertIsNotNone(txn) |
|
247
|
|
|
|
|
248
|
|
|
for key, value in expected_txn.items(): |
|
249
|
|
|
self.assertEquals(value, txn[key]) |
|
250
|
|
|
|
|
251
|
|
|
# short, does not trade |
|
252
|
|
|
open_orders = [ |
|
253
|
|
|
Order(**{ |
|
254
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
255
|
|
|
'amount': -100, |
|
256
|
|
|
'filled': 0, |
|
257
|
|
|
'sid': 133, |
|
258
|
|
|
'limit': 3.5}) |
|
259
|
|
|
] |
|
260
|
|
|
|
|
261
|
|
|
bar_data = BarData(self.data_portal, |
|
262
|
|
|
lambda: self.minutes[0], |
|
263
|
|
|
self.sim_params.data_frequency) |
|
264
|
|
|
|
|
265
|
|
|
orders_txns = list(slippage_model.simulate( |
|
266
|
|
|
bar_data[133], |
|
267
|
|
|
open_orders, |
|
268
|
|
|
)) |
|
269
|
|
|
|
|
270
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
271
|
|
|
|
|
272
|
|
|
# short, does not trade - impacted price worse than limit price |
|
273
|
|
|
open_orders = [ |
|
274
|
|
|
Order(**{ |
|
275
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
276
|
|
|
'amount': -100, |
|
277
|
|
|
'filled': 0, |
|
278
|
|
|
'sid': 133, |
|
279
|
|
|
'limit': 3.5}) |
|
280
|
|
|
] |
|
281
|
|
|
|
|
282
|
|
|
bar_data = BarData(self.data_portal, |
|
283
|
|
|
lambda: self.minutes[0], |
|
284
|
|
|
self.sim_params.data_frequency) |
|
285
|
|
|
|
|
286
|
|
|
orders_txns = list(slippage_model.simulate( |
|
287
|
|
|
bar_data[133], |
|
288
|
|
|
open_orders, |
|
289
|
|
|
)) |
|
290
|
|
|
|
|
291
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
292
|
|
|
|
|
293
|
|
|
# short, does trade |
|
294
|
|
|
open_orders = [ |
|
295
|
|
|
Order(**{ |
|
296
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
297
|
|
|
'amount': -100, |
|
298
|
|
|
'filled': 0, |
|
299
|
|
|
'sid': 133, |
|
300
|
|
|
'limit': 3.4}) |
|
301
|
|
|
] |
|
302
|
|
|
|
|
303
|
|
|
bar_data = BarData(self.data_portal, |
|
304
|
|
|
lambda: self.minutes[1], |
|
305
|
|
|
self.sim_params.data_frequency) |
|
306
|
|
|
|
|
307
|
|
|
orders_txns = list(slippage_model.simulate( |
|
308
|
|
|
bar_data[133], |
|
309
|
|
|
open_orders, |
|
310
|
|
|
)) |
|
311
|
|
|
|
|
312
|
|
|
self.assertEquals(len(orders_txns), 1) |
|
313
|
|
|
_, txn = orders_txns[0] |
|
314
|
|
|
|
|
315
|
|
|
expected_txn = { |
|
316
|
|
|
'price': float(3.49978125), |
|
317
|
|
|
'dt': datetime.datetime( |
|
318
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
|
319
|
|
|
'amount': int(-50), |
|
320
|
|
|
'sid': int(133) |
|
321
|
|
|
} |
|
322
|
|
|
|
|
323
|
|
|
self.assertIsNotNone(txn) |
|
324
|
|
|
|
|
325
|
|
|
for key, value in expected_txn.items(): |
|
326
|
|
|
self.assertEquals(value, txn[key]) |
|
327
|
|
|
|
|
328
|
|
|
STOP_ORDER_CASES = { |
|
329
|
|
|
# Stop orders can be long/short and have their price greater or |
|
330
|
|
|
# less than the stop. |
|
331
|
|
|
# |
|
332
|
|
|
# A stop being reached is conditional on the order direction. |
|
333
|
|
|
# Long orders reach the stop when the price is greater than the stop. |
|
334
|
|
|
# Short orders reach the stop when the price is less than the stop. |
|
335
|
|
|
# |
|
336
|
|
|
# Which leads to the following 4 cases: |
|
337
|
|
|
# |
|
338
|
|
|
# | long | short | |
|
339
|
|
|
# | price > stop | | | |
|
340
|
|
|
# | price < stop | | | |
|
341
|
|
|
# |
|
342
|
|
|
# Currently the slippage module acts according to the following table, |
|
343
|
|
|
# where 'X' represents triggering a transaction |
|
344
|
|
|
# | long | short | |
|
345
|
|
|
# | price > stop | | X | |
|
346
|
|
|
# | price < stop | X | | |
|
347
|
|
|
# |
|
348
|
|
|
# However, the following behavior *should* be followed. |
|
349
|
|
|
# |
|
350
|
|
|
# | long | short | |
|
351
|
|
|
# | price > stop | X | | |
|
352
|
|
|
# | price < stop | | X | |
|
353
|
|
|
|
|
354
|
|
|
'long | price gt stop': { |
|
355
|
|
|
'order': { |
|
356
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
|
357
|
|
|
'amount': 100, |
|
358
|
|
|
'filled': 0, |
|
359
|
|
|
'sid': 133, |
|
360
|
|
|
'stop': 3.5 |
|
361
|
|
|
}, |
|
362
|
|
|
'event': { |
|
363
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
|
364
|
|
|
'volume': 2000, |
|
365
|
|
|
'price': 4.0, |
|
366
|
|
|
'high': 3.15, |
|
367
|
|
|
'low': 2.85, |
|
368
|
|
|
'sid': 133, |
|
369
|
|
|
'close': 4.0, |
|
370
|
|
|
'open': 3.5 |
|
371
|
|
|
}, |
|
372
|
|
|
'expected': { |
|
373
|
|
|
'transaction': { |
|
374
|
|
|
'price': 4.00025, |
|
375
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
|
376
|
|
|
'amount': 50, |
|
377
|
|
|
'sid': 133, |
|
378
|
|
|
} |
|
379
|
|
|
} |
|
380
|
|
|
}, |
|
381
|
|
|
'long | price lt stop': { |
|
382
|
|
|
'order': { |
|
383
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
|
384
|
|
|
'amount': 100, |
|
385
|
|
|
'filled': 0, |
|
386
|
|
|
'sid': 133, |
|
387
|
|
|
'stop': 3.6 |
|
388
|
|
|
}, |
|
389
|
|
|
'event': { |
|
390
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
|
391
|
|
|
'volume': 2000, |
|
392
|
|
|
'price': 3.5, |
|
393
|
|
|
'high': 3.15, |
|
394
|
|
|
'low': 2.85, |
|
395
|
|
|
'sid': 133, |
|
396
|
|
|
'close': 3.5, |
|
397
|
|
|
'open': 4.0 |
|
398
|
|
|
}, |
|
399
|
|
|
'expected': { |
|
400
|
|
|
'transaction': None |
|
401
|
|
|
} |
|
402
|
|
|
}, |
|
403
|
|
|
'short | price gt stop': { |
|
404
|
|
|
'order': { |
|
405
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
|
406
|
|
|
'amount': -100, |
|
407
|
|
|
'filled': 0, |
|
408
|
|
|
'sid': 133, |
|
409
|
|
|
'stop': 3.4 |
|
410
|
|
|
}, |
|
411
|
|
|
'event': { |
|
412
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
|
413
|
|
|
'volume': 2000, |
|
414
|
|
|
'price': 3.5, |
|
415
|
|
|
'high': 3.15, |
|
416
|
|
|
'low': 2.85, |
|
417
|
|
|
'sid': 133, |
|
418
|
|
|
'close': 3.5, |
|
419
|
|
|
'open': 3.0 |
|
420
|
|
|
}, |
|
421
|
|
|
'expected': { |
|
422
|
|
|
'transaction': None |
|
423
|
|
|
} |
|
424
|
|
|
}, |
|
425
|
|
|
'short | price lt stop': { |
|
426
|
|
|
'order': { |
|
427
|
|
|
'dt': pd.Timestamp('2006-01-05 14:30', tz='UTC'), |
|
428
|
|
|
'amount': -100, |
|
429
|
|
|
'filled': 0, |
|
430
|
|
|
'sid': 133, |
|
431
|
|
|
'stop': 3.5 |
|
432
|
|
|
}, |
|
433
|
|
|
'event': { |
|
434
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
|
435
|
|
|
'volume': 2000, |
|
436
|
|
|
'price': 3.0, |
|
437
|
|
|
'high': 3.15, |
|
438
|
|
|
'low': 2.85, |
|
439
|
|
|
'sid': 133, |
|
440
|
|
|
'close': 3.0, |
|
441
|
|
|
'open': 3.0 |
|
442
|
|
|
}, |
|
443
|
|
|
'expected': { |
|
444
|
|
|
'transaction': { |
|
445
|
|
|
'price': 2.9998125, |
|
446
|
|
|
'dt': pd.Timestamp('2006-01-05 14:31', tz='UTC'), |
|
447
|
|
|
'amount': -50, |
|
448
|
|
|
'sid': 133, |
|
449
|
|
|
} |
|
450
|
|
|
} |
|
451
|
|
|
}, |
|
452
|
|
|
} |
|
453
|
|
|
|
|
454
|
|
|
@parameterized.expand([ |
|
455
|
|
|
(name, case['order'], case['event'], case['expected']) |
|
456
|
|
|
for name, case in STOP_ORDER_CASES.items() |
|
457
|
|
|
]) |
|
458
|
|
|
def test_orders_stop(self, name, order_data, event_data, expected): |
|
459
|
|
|
tempdir = TempDirectory() |
|
460
|
|
|
try: |
|
461
|
|
|
order = Order(**order_data) |
|
462
|
|
|
|
|
463
|
|
|
assets = { |
|
464
|
|
|
133: pd.DataFrame({ |
|
465
|
|
|
"open": [event_data["open"] * 1000], |
|
466
|
|
|
"high": [event_data["high"] * 1000], |
|
467
|
|
|
"low": [event_data["low"] * 1000], |
|
468
|
|
|
"close": [event_data["close"] * 1000], |
|
469
|
|
|
"volume": [event_data["volume"]], |
|
470
|
|
|
"minute": [pd.Timestamp('2006-01-05 14:31', tz='UTC')] |
|
471
|
|
|
}) |
|
472
|
|
|
} |
|
473
|
|
|
|
|
474
|
|
|
MinuteBarWriterFromDataFrames( |
|
475
|
|
|
pd.Timestamp('2002-01-02', tz='UTC') |
|
476
|
|
|
).write(tempdir.path, assets) |
|
477
|
|
|
|
|
478
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
|
479
|
|
|
|
|
480
|
|
|
data_portal = DataPortal( |
|
481
|
|
|
self.env, |
|
482
|
|
|
equity_minute_reader=equity_minute_reader, |
|
483
|
|
|
) |
|
484
|
|
|
|
|
485
|
|
|
slippage_model = VolumeShareSlippage() |
|
486
|
|
|
|
|
487
|
|
|
try: |
|
488
|
|
|
dt = pd.Timestamp('2006-01-05 14:31', tz='UTC') |
|
489
|
|
|
bar_data = BarData(data_portal, |
|
490
|
|
|
lambda: dt, |
|
491
|
|
|
'minute') |
|
492
|
|
|
_, txn = next(slippage_model.simulate( |
|
493
|
|
|
bar_data[133], |
|
494
|
|
|
[order], |
|
495
|
|
|
)) |
|
496
|
|
|
except StopIteration: |
|
497
|
|
|
txn = None |
|
498
|
|
|
|
|
499
|
|
|
if expected['transaction'] is None: |
|
500
|
|
|
self.assertIsNone(txn) |
|
501
|
|
|
else: |
|
502
|
|
|
self.assertIsNotNone(txn) |
|
503
|
|
|
|
|
504
|
|
|
for key, value in expected['transaction'].items(): |
|
505
|
|
|
self.assertEquals(value, txn[key]) |
|
506
|
|
|
finally: |
|
507
|
|
|
tempdir.cleanup() |
|
508
|
|
|
|
|
509
|
|
|
def test_orders_stop_limit(self): |
|
510
|
|
|
slippage_model = VolumeShareSlippage() |
|
511
|
|
|
slippage_model.data_portal = self.data_portal |
|
512
|
|
|
|
|
513
|
|
|
# long, does not trade |
|
514
|
|
|
open_orders = [ |
|
515
|
|
|
Order(**{ |
|
516
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
517
|
|
|
'amount': 100, |
|
518
|
|
|
'filled': 0, |
|
519
|
|
|
'sid': 133, |
|
520
|
|
|
'stop': 4.0, |
|
521
|
|
|
'limit': 3.0}) |
|
522
|
|
|
] |
|
523
|
|
|
|
|
524
|
|
|
bar_data = BarData(self.data_portal, |
|
525
|
|
|
lambda: self.minutes[2], |
|
526
|
|
|
self.sim_params.data_frequency) |
|
527
|
|
|
|
|
528
|
|
|
orders_txns = list(slippage_model.simulate( |
|
529
|
|
|
bar_data[133], |
|
530
|
|
|
open_orders, |
|
531
|
|
|
)) |
|
532
|
|
|
|
|
533
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
534
|
|
|
|
|
535
|
|
|
bar_data = BarData(self.data_portal, |
|
536
|
|
|
lambda: self.minutes[3], |
|
537
|
|
|
self.sim_params.data_frequency) |
|
538
|
|
|
|
|
539
|
|
|
orders_txns = list(slippage_model.simulate( |
|
540
|
|
|
bar_data[133], |
|
541
|
|
|
open_orders, |
|
542
|
|
|
)) |
|
543
|
|
|
|
|
544
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
545
|
|
|
|
|
546
|
|
|
# long, does not trade - impacted price worse than limit price |
|
547
|
|
|
open_orders = [ |
|
548
|
|
|
Order(**{ |
|
549
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
550
|
|
|
'amount': 100, |
|
551
|
|
|
'filled': 0, |
|
552
|
|
|
'sid': 133, |
|
553
|
|
|
'stop': 4.0, |
|
554
|
|
|
'limit': 3.5}) |
|
555
|
|
|
] |
|
556
|
|
|
|
|
557
|
|
|
bar_data = BarData(self.data_portal, |
|
558
|
|
|
lambda: self.minutes[2], |
|
559
|
|
|
self.sim_params.data_frequency) |
|
560
|
|
|
|
|
561
|
|
|
orders_txns = list(slippage_model.simulate( |
|
562
|
|
|
bar_data[133], |
|
563
|
|
|
open_orders, |
|
564
|
|
|
)) |
|
565
|
|
|
|
|
566
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
567
|
|
|
|
|
568
|
|
|
bar_data = BarData(self.data_portal, |
|
569
|
|
|
lambda: self.minutes[3], |
|
570
|
|
|
self.sim_params.data_frequency) |
|
571
|
|
|
|
|
572
|
|
|
orders_txns = list(slippage_model.simulate( |
|
573
|
|
|
bar_data[133], |
|
574
|
|
|
open_orders, |
|
575
|
|
|
)) |
|
576
|
|
|
|
|
577
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
578
|
|
|
|
|
579
|
|
|
# long, does trade |
|
580
|
|
|
open_orders = [ |
|
581
|
|
|
Order(**{ |
|
582
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
583
|
|
|
'amount': 100, |
|
584
|
|
|
'filled': 0, |
|
585
|
|
|
'sid': 133, |
|
586
|
|
|
'stop': 4.0, |
|
587
|
|
|
'limit': 3.6}) |
|
588
|
|
|
] |
|
589
|
|
|
|
|
590
|
|
|
bar_data = BarData(self.data_portal, |
|
591
|
|
|
lambda: self.minutes[2], |
|
592
|
|
|
self.sim_params.data_frequency) |
|
593
|
|
|
|
|
594
|
|
|
orders_txns = list(slippage_model.simulate( |
|
595
|
|
|
bar_data[133], |
|
596
|
|
|
open_orders, |
|
597
|
|
|
)) |
|
598
|
|
|
|
|
599
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
600
|
|
|
|
|
601
|
|
|
bar_data = BarData(self.data_portal, |
|
602
|
|
|
lambda: self.minutes[3], |
|
603
|
|
|
self.sim_params.data_frequency) |
|
604
|
|
|
|
|
605
|
|
|
orders_txns = list(slippage_model.simulate( |
|
606
|
|
|
bar_data[133], |
|
607
|
|
|
open_orders, |
|
608
|
|
|
)) |
|
609
|
|
|
|
|
610
|
|
|
self.assertEquals(len(orders_txns), 1) |
|
611
|
|
|
_, txn = orders_txns[0] |
|
612
|
|
|
|
|
613
|
|
|
expected_txn = { |
|
614
|
|
|
'price': float(3.50021875), |
|
615
|
|
|
'dt': datetime.datetime( |
|
616
|
|
|
2006, 1, 5, 14, 34, tzinfo=pytz.utc), |
|
617
|
|
|
'amount': int(50), |
|
618
|
|
|
'sid': int(133) |
|
619
|
|
|
} |
|
620
|
|
|
|
|
621
|
|
|
for key, value in expected_txn.items(): |
|
622
|
|
|
self.assertEquals(value, txn[key]) |
|
623
|
|
|
|
|
624
|
|
|
# short, does not trade |
|
625
|
|
|
|
|
626
|
|
|
open_orders = [ |
|
627
|
|
|
Order(**{ |
|
628
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
629
|
|
|
'amount': -100, |
|
630
|
|
|
'filled': 0, |
|
631
|
|
|
'sid': 133, |
|
632
|
|
|
'stop': 3.0, |
|
633
|
|
|
'limit': 4.0}) |
|
634
|
|
|
] |
|
635
|
|
|
|
|
636
|
|
|
bar_data = BarData(self.data_portal, |
|
637
|
|
|
lambda: self.minutes[0], |
|
638
|
|
|
self.sim_params.data_frequency) |
|
639
|
|
|
|
|
640
|
|
|
orders_txns = list(slippage_model.simulate( |
|
641
|
|
|
bar_data[133], |
|
642
|
|
|
open_orders, |
|
643
|
|
|
)) |
|
644
|
|
|
|
|
645
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
646
|
|
|
|
|
647
|
|
|
bar_data = BarData(self.data_portal, |
|
648
|
|
|
lambda: self.minutes[1], |
|
649
|
|
|
self.sim_params.data_frequency) |
|
650
|
|
|
|
|
651
|
|
|
orders_txns = list(slippage_model.simulate( |
|
652
|
|
|
bar_data[133], |
|
653
|
|
|
open_orders, |
|
654
|
|
|
)) |
|
655
|
|
|
|
|
656
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
657
|
|
|
|
|
658
|
|
|
# short, does not trade - impacted price worse than limit price |
|
659
|
|
|
open_orders = [ |
|
660
|
|
|
Order(**{ |
|
661
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
662
|
|
|
'amount': -100, |
|
663
|
|
|
'filled': 0, |
|
664
|
|
|
'sid': 133, |
|
665
|
|
|
'stop': 3.0, |
|
666
|
|
|
'limit': 3.5}) |
|
667
|
|
|
] |
|
668
|
|
|
|
|
669
|
|
|
bar_data = BarData(self.data_portal, |
|
670
|
|
|
lambda: self.minutes[0], |
|
671
|
|
|
self.sim_params.data_frequency) |
|
672
|
|
|
|
|
673
|
|
|
orders_txns = list(slippage_model.simulate( |
|
674
|
|
|
bar_data[133], |
|
675
|
|
|
open_orders, |
|
676
|
|
|
)) |
|
677
|
|
|
|
|
678
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
679
|
|
|
|
|
680
|
|
|
bar_data = BarData(self.data_portal, |
|
681
|
|
|
lambda: self.minutes[1], |
|
682
|
|
|
self.sim_params.data_frequency) |
|
683
|
|
|
|
|
684
|
|
|
orders_txns = list(slippage_model.simulate( |
|
685
|
|
|
bar_data[133], |
|
686
|
|
|
open_orders, |
|
687
|
|
|
)) |
|
688
|
|
|
|
|
689
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
690
|
|
|
|
|
691
|
|
|
# short, does trade |
|
692
|
|
|
open_orders = [ |
|
693
|
|
|
Order(**{ |
|
694
|
|
|
'dt': datetime.datetime(2006, 1, 5, 14, 30, tzinfo=pytz.utc), |
|
695
|
|
|
'amount': -100, |
|
696
|
|
|
'filled': 0, |
|
697
|
|
|
'sid': 133, |
|
698
|
|
|
'stop': 3.0, |
|
699
|
|
|
'limit': 3.4}) |
|
700
|
|
|
] |
|
701
|
|
|
|
|
702
|
|
|
bar_data = BarData(self.data_portal, |
|
703
|
|
|
lambda: self.minutes[0], |
|
704
|
|
|
self.sim_params.data_frequency) |
|
705
|
|
|
|
|
706
|
|
|
orders_txns = list(slippage_model.simulate( |
|
707
|
|
|
bar_data[133], |
|
708
|
|
|
open_orders, |
|
709
|
|
|
)) |
|
710
|
|
|
|
|
711
|
|
|
self.assertEquals(len(orders_txns), 0) |
|
712
|
|
|
|
|
713
|
|
|
bar_data = BarData(self.data_portal, |
|
714
|
|
|
lambda: self.minutes[1], |
|
715
|
|
|
self.sim_params.data_frequency) |
|
716
|
|
|
|
|
717
|
|
|
orders_txns = list(slippage_model.simulate( |
|
718
|
|
|
bar_data[133], |
|
719
|
|
|
open_orders, |
|
720
|
|
|
)) |
|
721
|
|
|
|
|
722
|
|
|
self.assertEquals(len(orders_txns), 1) |
|
723
|
|
|
_, txn = orders_txns[0] |
|
724
|
|
|
|
|
725
|
|
|
expected_txn = { |
|
726
|
|
|
'price': float(3.49978125), |
|
727
|
|
|
'dt': datetime.datetime( |
|
728
|
|
|
2006, 1, 5, 14, 32, tzinfo=pytz.utc), |
|
729
|
|
|
'amount': int(-50), |
|
730
|
|
|
'sid': int(133) |
|
731
|
|
|
} |
|
732
|
|
|
|
|
733
|
|
|
for key, value in expected_txn.items(): |
|
734
|
|
|
self.assertEquals(value, txn[key]) |
|
735
|
|
|
|