| Total Complexity | 160 |
| Total Lines | 1251 |
| Duplicated Lines | 0 % |
Complex classes like zipline.data.DataPortal often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | # |
||
| 51 | class DataPortal(object): |
||
| 52 | def __init__(self, |
||
| 53 | env, |
||
| 54 | equity_daily_reader=None, |
||
| 55 | equity_minute_reader=None, |
||
| 56 | future_daily_reader=None, |
||
| 57 | future_minute_reader=None, |
||
| 58 | adjustment_reader=None): |
||
| 59 | self.env = env |
||
| 60 | |||
| 61 | self.views = {} |
||
| 62 | |||
| 63 | self._asset_finder = env.asset_finder |
||
| 64 | |||
| 65 | self._carrays = { |
||
| 66 | 'open': {}, |
||
| 67 | 'high': {}, |
||
| 68 | 'low': {}, |
||
| 69 | 'close': {}, |
||
| 70 | 'volume': {}, |
||
| 71 | 'sid': {}, |
||
| 72 | 'dt': {}, |
||
| 73 | } |
||
| 74 | |||
| 75 | self._adjustment_reader = adjustment_reader |
||
| 76 | |||
| 77 | # caches of sid -> adjustment list |
||
| 78 | self._splits_dict = {} |
||
| 79 | self._mergers_dict = {} |
||
| 80 | self._dividends_dict = {} |
||
| 81 | |||
| 82 | # Cache of sid -> the first trading day of an asset, even if that day |
||
| 83 | # is before 1/2/2002. |
||
| 84 | self._asset_start_dates = {} |
||
| 85 | self._asset_end_dates = {} |
||
| 86 | |||
| 87 | # Handle extra sources, like Fetcher. |
||
| 88 | self._augmented_sources_map = {} |
||
| 89 | self._extra_source_df = None |
||
| 90 | |||
| 91 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001 |
||
| 92 | |||
| 93 | self._equity_daily_reader = equity_daily_reader |
||
| 94 | self._equity_minute_reader = equity_minute_reader |
||
| 95 | self._future_daily_reader = future_daily_reader |
||
| 96 | self._future_minute_reader = future_minute_reader |
||
| 97 | |||
| 98 | def handle_extra_source(self, source_df, sim_params): |
||
| 99 | """ |
||
| 100 | Extra sources always have a sid column. |
||
| 101 | |||
| 102 | We expand the given data (by forward filling) to the full range of |
||
| 103 | the simulation dates, so that lookup is fast during simulation. |
||
| 104 | """ |
||
| 105 | if source_df is None: |
||
| 106 | return |
||
| 107 | |||
| 108 | self._extra_source_df = source_df |
||
| 109 | |||
| 110 | # source_df's sid column can either consist of assets we know about |
||
| 111 | # (such as sid(24)) or of assets we don't know about (such as |
||
| 112 | # palladium). |
||
| 113 | # |
||
| 114 | # In both cases, we break up the dataframe into individual dfs |
||
| 115 | # that only contain a single asset's information. ie, if source_df |
||
| 116 | # has data for PALLADIUM and GOLD, we split source_df into two |
||
| 117 | # dataframes, one for each. (same applies if source_df has data for |
||
| 118 | # AAPL and IBM). |
||
| 119 | # |
||
| 120 | # We then take each child df and reindex it to the simulation's date |
||
| 121 | # range by forward-filling missing values. this makes reads simpler. |
||
| 122 | # |
||
| 123 | # Finally, we store the data. For each column, we store a mapping in |
||
| 124 | # self.augmented_sources_map from the column to a dictionary of |
||
| 125 | # asset -> df. In other words, |
||
| 126 | # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df |
||
| 127 | # holding that data. |
||
| 128 | |||
| 129 | if sim_params.emission_rate == "daily": |
||
| 130 | source_date_index = self.env.days_in_range( |
||
| 131 | start=sim_params.period_start, |
||
| 132 | end=sim_params.period_end |
||
| 133 | ) |
||
| 134 | else: |
||
| 135 | source_date_index = self.env.minutes_for_days_in_range( |
||
| 136 | start=sim_params.period_start, |
||
| 137 | end=sim_params.period_end |
||
| 138 | ) |
||
| 139 | |||
| 140 | # Break the source_df up into one dataframe per sid. This lets |
||
| 141 | # us (more easily) calculate accurate start/end dates for each sid, |
||
| 142 | # de-dup data, and expand the data to fit the backtest start/end date. |
||
| 143 | grouped_by_sid = source_df.groupby(["sid"]) |
||
| 144 | group_names = grouped_by_sid.groups.keys() |
||
| 145 | group_dict = {} |
||
| 146 | for group_name in group_names: |
||
| 147 | group_dict[group_name] = grouped_by_sid.get_group(group_name) |
||
| 148 | |||
| 149 | for identifier, df in iteritems(group_dict): |
||
| 150 | # Before reindexing, save the earliest and latest dates |
||
| 151 | earliest_date = df.index[0] |
||
| 152 | latest_date = df.index[-1] |
||
| 153 | |||
| 154 | # Since we know this df only contains a single sid, we can safely |
||
| 155 | # de-dupe by the index (dt) |
||
| 156 | df = df.groupby(level=0).last() |
||
| 157 | |||
| 158 | # Reindex the dataframe based on the backtest start/end date. |
||
| 159 | # This makes reads easier during the backtest. |
||
| 160 | df = df.reindex(index=source_date_index, method='ffill') |
||
| 161 | |||
| 162 | if not isinstance(identifier, Asset): |
||
| 163 | # for fake assets we need to store a start/end date |
||
| 164 | self._asset_start_dates[identifier] = earliest_date |
||
| 165 | self._asset_end_dates[identifier] = latest_date |
||
| 166 | |||
| 167 | for col_name in df.columns.difference(['sid']): |
||
| 168 | if col_name not in self._augmented_sources_map: |
||
| 169 | self._augmented_sources_map[col_name] = {} |
||
| 170 | |||
| 171 | self._augmented_sources_map[col_name][identifier] = df |
||
| 172 | |||
| 173 | def _open_minute_file(self, field, asset): |
||
| 174 | sid_str = str(int(asset)) |
||
| 175 | |||
| 176 | try: |
||
| 177 | carray = self._carrays[field][sid_str] |
||
| 178 | except KeyError: |
||
| 179 | carray = self._carrays[field][sid_str] = \ |
||
| 180 | self._get_ctable(asset)[field] |
||
| 181 | |||
| 182 | return carray |
||
| 183 | |||
| 184 | def _get_ctable(self, asset): |
||
| 185 | sid = int(asset) |
||
| 186 | |||
| 187 | if isinstance(asset, Future): |
||
| 188 | if self._future_minute_reader.sid_path_func is not None: |
||
| 189 | path = self._future_minute_reader.sid_path_func( |
||
| 190 | self._future_minute_reader.rootdir, sid |
||
| 191 | ) |
||
| 192 | else: |
||
| 193 | path = "{0}/{1}.bcolz".format( |
||
| 194 | self._future_minute_reader.rootdir, sid) |
||
| 195 | elif isinstance(asset, Equity): |
||
| 196 | if self._equity_minute_reader.sid_path_func is not None: |
||
| 197 | path = self._equity_minute_reader.sid_path_func( |
||
| 198 | self._equity_minute_reader.rootdir, sid |
||
| 199 | ) |
||
| 200 | else: |
||
| 201 | path = "{0}/{1}.bcolz".format( |
||
| 202 | self._equity_minute_reader.rootdir, sid) |
||
| 203 | |||
| 204 | else: |
||
| 205 | # TODO: Figure out if assets should be allowed if neither, and |
||
| 206 | # why this code path is being hit. |
||
| 207 | if self._equity_minute_reader.sid_path_func is not None: |
||
| 208 | path = self._equity_minute_reader.sid_path_func( |
||
| 209 | self._equity_minute_reader.rootdir, sid |
||
| 210 | ) |
||
| 211 | else: |
||
| 212 | path = "{0}/{1}.bcolz".format( |
||
| 213 | self._equity_minute_reader.rootdir, sid) |
||
| 214 | |||
| 215 | return bcolz.open(path, mode='r') |
||
| 216 | |||
| 217 | def get_last_traded_dt(self, asset, dt, data_frequency): |
||
| 218 | """ |
||
| 219 | Given an asset and dt, returns the last traded dt from the viewpoint |
||
| 220 | of the given dt. |
||
| 221 | |||
| 222 | If there is a trade on the dt, the answer is dt provided. |
||
| 223 | """ |
||
| 224 | if data_frequency == 'minute': |
||
| 225 | return self._equity_minute_reader.get_last_traded_dt(asset, dt) |
||
| 226 | elif data_frequency == 'daily': |
||
| 227 | return self._equity_daily_reader.get_last_traded_dt(asset, dt) |
||
| 228 | |||
| 229 | def get_previous_value(self, asset, field, dt, data_frequency): |
||
| 230 | """ |
||
| 231 | Given an asset and a column and a dt, returns the previous value for |
||
| 232 | the same asset/column pair. If this data portal is in minute mode, |
||
| 233 | it's the previous minute value, otherwise it's the previous day's |
||
| 234 | value. |
||
| 235 | |||
| 236 | Parameters |
||
| 237 | --------- |
||
| 238 | asset : Asset |
||
| 239 | The asset whose data is desired. |
||
| 240 | |||
| 241 | field: string |
||
| 242 | The desired field of the asset. Valid values are "open", |
||
| 243 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
| 244 | "price". |
||
| 245 | |||
| 246 | dt: pd.Timestamp |
||
| 247 | The timestamp from which to go back in time one slot. |
||
| 248 | |||
| 249 | data_frequency: string |
||
| 250 | The frequency of the data to query; i.e. whether the data is |
||
| 251 | 'daily' or 'minute' bars |
||
| 252 | |||
| 253 | Returns |
||
| 254 | ------- |
||
| 255 | The value of the desired field at the desired time. |
||
| 256 | """ |
||
| 257 | if data_frequency == 'daily': |
||
| 258 | prev_dt = self.env.previous_trading_day(dt) |
||
| 259 | elif data_frequency == 'minute': |
||
| 260 | prev_dt = self.env.previous_market_minute(dt) |
||
| 261 | |||
| 262 | return self.get_spot_value(asset, field, prev_dt, data_frequency) |
||
| 263 | |||
| 264 | def _check_extra_sources(self, asset, column, day): |
||
| 265 | # If we have an extra source with a column called "price", only look |
||
| 266 | # at it if it's on something like palladium and not AAPL (since our |
||
| 267 | # own price data always wins when dealing with assets). |
||
| 268 | look_in_augmented_sources = column in self._augmented_sources_map and \ |
||
| 269 | not (column in BASE_FIELDS and isinstance(asset, Asset)) |
||
| 270 | |||
| 271 | if look_in_augmented_sources: |
||
| 272 | # we're being asked for a field in an extra source |
||
| 273 | try: |
||
| 274 | return self._augmented_sources_map[column][asset].\ |
||
| 275 | loc[day, column] |
||
| 276 | except: |
||
| 277 | log.error( |
||
| 278 | "Could not find value for asset={0}, day={1}," |
||
| 279 | "column={2}".format( |
||
| 280 | str(asset), |
||
| 281 | str(day), |
||
| 282 | str(column))) |
||
| 283 | |||
| 284 | raise KeyError |
||
| 285 | |||
| 286 | def get_spot_value(self, asset, field, dt, data_frequency): |
||
| 287 | """ |
||
| 288 | Public API method that returns a scalar value representing the value |
||
| 289 | of the desired asset's field at either the given dt. |
||
| 290 | |||
| 291 | Parameters |
||
| 292 | --------- |
||
| 293 | asset : Asset |
||
| 294 | The asset whose data is desired. |
||
| 295 | |||
| 296 | field: string |
||
| 297 | The desired field of the asset. Valid values are "open", |
||
| 298 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
| 299 | "price". |
||
| 300 | |||
| 301 | dt: pd.Timestamp |
||
| 302 | The timestamp for the desired value. |
||
| 303 | |||
| 304 | data_frequency: string |
||
| 305 | The frequency of the data to query; i.e. whether the data is |
||
| 306 | 'daily' or 'minute' bars |
||
| 307 | |||
| 308 | Returns |
||
| 309 | ------- |
||
| 310 | The value of the desired field at the desired time. |
||
| 311 | """ |
||
| 312 | extra_source_val = self._check_extra_sources( |
||
| 313 | asset, |
||
| 314 | field, |
||
| 315 | dt, |
||
| 316 | ) |
||
| 317 | |||
| 318 | if extra_source_val is not None: |
||
| 319 | return extra_source_val |
||
| 320 | |||
| 321 | if field not in BASE_FIELDS: |
||
| 322 | raise KeyError("Invalid column: " + str(field)) |
||
| 323 | |||
| 324 | column_to_use = BASE_FIELDS[field] |
||
| 325 | |||
| 326 | if isinstance(asset, int): |
||
| 327 | asset = self._asset_finder.retrieve_asset(asset) |
||
| 328 | |||
| 329 | self._check_is_currently_alive(asset, dt) |
||
| 330 | |||
| 331 | if data_frequency == "daily": |
||
| 332 | day_to_use = dt |
||
| 333 | day_to_use = normalize_date(day_to_use) |
||
| 334 | return self._get_daily_data(asset, column_to_use, day_to_use) |
||
| 335 | else: |
||
| 336 | if isinstance(asset, Future): |
||
| 337 | return self._get_minute_spot_value_future( |
||
| 338 | asset, column_to_use, dt) |
||
| 339 | else: |
||
| 340 | return self._get_minute_spot_value( |
||
| 341 | asset, column_to_use, dt) |
||
| 342 | |||
| 343 | def _get_adjusted_value(self, asset, field, dt, |
||
| 344 | perspective_dt, |
||
| 345 | data_frequency): |
||
| 346 | """ |
||
| 347 | Private method that returns a scalar value representing the value |
||
| 348 | of the desired asset's field at the given dt with adjustments applied. |
||
| 349 | |||
| 350 | Parameters |
||
| 351 | --------- |
||
| 352 | asset : Asset |
||
| 353 | The asset whose data is desired. |
||
| 354 | |||
| 355 | field: string |
||
| 356 | The desired field of the asset. Valid values are "open", |
||
| 357 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
| 358 | "price". |
||
| 359 | |||
| 360 | dt: pd.Timestamp |
||
| 361 | The timestamp for the desired value. |
||
| 362 | |||
| 363 | perspective_dt : pd.Timestamp |
||
| 364 | The timestamp from which the data is being viewed back from. |
||
| 365 | |||
| 366 | data_frequency: string |
||
| 367 | The frequency of the data to query; i.e. whether the data is |
||
| 368 | 'daily' or 'minute' bars |
||
| 369 | |||
| 370 | Returns |
||
| 371 | ------- |
||
| 372 | The value of the desired field at the desired time. |
||
| 373 | """ |
||
| 374 | if isinstance(asset, int): |
||
| 375 | asset = self._asset_finder.retrieve_asset(asset) |
||
| 376 | |||
| 377 | spot_value = self.get_spot_value(asset, field, dt, data_frequency) |
||
| 378 | |||
| 379 | if isinstance(asset, Equity): |
||
| 380 | adjs = [] |
||
| 381 | split_adjustments = self._get_adjustment_list( |
||
| 382 | asset, self._splits_dict, "SPLITS" |
||
| 383 | ) |
||
| 384 | for adj_dt, adj in split_adjustments: |
||
| 385 | if adj_dt < dt: |
||
| 386 | if field != 'volume': |
||
| 387 | adjs.append(adj) |
||
| 388 | else: |
||
| 389 | adjs.append(1.0 / adj) |
||
| 390 | if adj_dt >= perspective_dt: |
||
| 391 | break |
||
| 392 | |||
| 393 | if field != 'volume': |
||
| 394 | merger_adjustments = self._get_adjustment_list( |
||
| 395 | asset, self._mergers_dict, "MERGERS" |
||
| 396 | ) |
||
| 397 | for adj_dt, adj in merger_adjustments: |
||
| 398 | if adj_dt < dt: |
||
| 399 | adjs.append(adj) |
||
| 400 | if adj_dt >= perspective_dt: |
||
| 401 | break |
||
| 402 | div_adjustments = self._get_adjustment_list( |
||
| 403 | asset, self._dividends_dict, "DIVIDENDS", |
||
| 404 | ) |
||
| 405 | for adj_dt, adj in div_adjustments: |
||
| 406 | if adj_dt < dt: |
||
| 407 | adjs.append(adj) |
||
| 408 | if adj_dt >= perspective_dt: |
||
| 409 | break |
||
| 410 | |||
| 411 | ratio = reduce(mul, adjs, 1.0) |
||
| 412 | |||
| 413 | spot_value *= ratio |
||
| 414 | |||
| 415 | return spot_value |
||
| 416 | |||
| 417 | def _get_minute_spot_value_future(self, asset, column, dt): |
||
| 418 | # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week. |
||
| 419 | # The file attributes contain the "start_dt" and "last_dt" fields, |
||
| 420 | # which represent the time period for this bcolz file. |
||
| 421 | |||
| 422 | # The start_dt is midnight of the first day that this future started |
||
| 423 | # trading. |
||
| 424 | |||
| 425 | # figure out the # of minutes between dt and this asset's start_dt |
||
| 426 | start_date = self._get_asset_start_date(asset) |
||
| 427 | minute_offset = int((dt - start_date).total_seconds() / 60) |
||
| 428 | |||
| 429 | if minute_offset < 0: |
||
| 430 | # asking for a date that is before the asset's start date, no dice |
||
| 431 | return 0.0 |
||
| 432 | |||
| 433 | # then just index into the bcolz carray at that offset |
||
| 434 | carray = self._open_minute_file(column, asset) |
||
| 435 | result = carray[minute_offset] |
||
| 436 | |||
| 437 | # if there's missing data, go backwards until we run out of file |
||
| 438 | while result == 0 and minute_offset > 0: |
||
| 439 | minute_offset -= 1 |
||
| 440 | result = carray[minute_offset] |
||
| 441 | |||
| 442 | if column != 'volume': |
||
| 443 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
| 444 | else: |
||
| 445 | return result |
||
| 446 | |||
| 447 | def _get_minute_spot_value(self, asset, column, dt): |
||
| 448 | # if dt is before the first market minute, minute_index |
||
| 449 | # will be 0. if it's after the last market minute, it'll |
||
| 450 | # be len(minutes_for_day) |
||
| 451 | minute_offset_to_use = \ |
||
| 452 | self._equity_minute_reader._find_position_of_minute(dt) |
||
| 453 | |||
| 454 | carray = self._equity_minute_reader._open_minute_file(column, asset) |
||
| 455 | result = carray[minute_offset_to_use] |
||
| 456 | |||
| 457 | if result == 0: |
||
| 458 | # if the given minute doesn't have data, we need to seek |
||
| 459 | # backwards until we find data. This makes the data |
||
| 460 | # forward-filled. |
||
| 461 | |||
| 462 | # get this asset's start date, so that we don't look before it. |
||
| 463 | start_date = self._get_asset_start_date(asset) |
||
| 464 | start_date_idx = self._equity_minute_reader.trading_days.\ |
||
| 465 | searchsorted(start_date) |
||
| 466 | start_day_offset = start_date_idx * 390 |
||
| 467 | |||
| 468 | original_start = minute_offset_to_use |
||
| 469 | |||
| 470 | while result == 0 and minute_offset_to_use > start_day_offset: |
||
| 471 | minute_offset_to_use -= 1 |
||
| 472 | result = carray[minute_offset_to_use] |
||
| 473 | |||
| 474 | # once we've found data, we need to check whether it needs |
||
| 475 | # to be adjusted. |
||
| 476 | if result != 0: |
||
| 477 | minutes = self.env.market_minute_window( |
||
| 478 | start=dt, |
||
| 479 | count=(original_start - minute_offset_to_use + 1), |
||
| 480 | step=-1 |
||
| 481 | ).order() |
||
| 482 | |||
| 483 | # only need to check for adjustments if we've gone back |
||
| 484 | # far enough to cross the day boundary. |
||
| 485 | if minutes[0].date() != minutes[-1].date(): |
||
| 486 | # create a np array of size minutes, fill it all with |
||
| 487 | # the same value. and adjust the array. |
||
| 488 | arr = np.array([result] * len(minutes), |
||
| 489 | dtype=np.float64) |
||
| 490 | self._apply_all_adjustments( |
||
| 491 | data=arr, |
||
| 492 | asset=asset, |
||
| 493 | dts=minutes, |
||
| 494 | field=column |
||
| 495 | ) |
||
| 496 | |||
| 497 | # The first value of the adjusted array is the value |
||
| 498 | # we want. |
||
| 499 | result = arr[0] |
||
| 500 | |||
| 501 | if column != 'volume': |
||
| 502 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
| 503 | else: |
||
| 504 | return result |
||
| 505 | |||
| 506 | def _get_daily_data(self, asset, column, dt): |
||
| 507 | while True: |
||
| 508 | try: |
||
| 509 | value = self._equity_daily_reader.spot_price(asset, dt, column) |
||
| 510 | if value != -1: |
||
| 511 | return value |
||
| 512 | else: |
||
| 513 | dt -= tradingcalendar.trading_day |
||
| 514 | except NoDataOnDate: |
||
| 515 | return 0 |
||
| 516 | |||
| 517 | def _get_history_daily_window(self, assets, end_dt, bar_count, |
||
| 518 | field_to_use): |
||
| 519 | """ |
||
| 520 | Internal method that returns a dataframe containing history bars |
||
| 521 | of daily frequency for the given sids. |
||
| 522 | """ |
||
| 523 | day_idx = tradingcalendar.trading_days.searchsorted(end_dt.date()) |
||
| 524 | days_for_window = tradingcalendar.trading_days[ |
||
| 525 | (day_idx - bar_count + 1):(day_idx + 1)] |
||
| 526 | |||
| 527 | if len(assets) == 0: |
||
| 528 | return pd.DataFrame(None, |
||
| 529 | index=days_for_window, |
||
| 530 | columns=None) |
||
| 531 | |||
| 532 | data = [] |
||
| 533 | |||
| 534 | for asset in assets: |
||
| 535 | if isinstance(asset, Future): |
||
| 536 | data.append(self._get_history_daily_window_future( |
||
| 537 | asset, days_for_window, end_dt, field_to_use |
||
| 538 | )) |
||
| 539 | else: |
||
| 540 | data.append(self._get_history_daily_window_equity( |
||
| 541 | asset, days_for_window, end_dt, field_to_use |
||
| 542 | )) |
||
| 543 | |||
| 544 | return pd.DataFrame( |
||
| 545 | np.array(data).T, |
||
| 546 | index=days_for_window, |
||
| 547 | columns=assets |
||
| 548 | ) |
||
| 549 | |||
| 550 | def _get_history_daily_window_future(self, asset, days_for_window, |
||
| 551 | end_dt, column): |
||
| 552 | # Since we don't have daily bcolz files for futures (yet), use minute |
||
| 553 | # bars to calculate the daily values. |
||
| 554 | data = [] |
||
| 555 | data_groups = [] |
||
| 556 | |||
| 557 | # get all the minutes for the days NOT including today |
||
| 558 | for day in days_for_window[:-1]: |
||
| 559 | minutes = self.env.market_minutes_for_day(day) |
||
| 560 | |||
| 561 | values_for_day = np.zeros(len(minutes), dtype=np.float64) |
||
| 562 | |||
| 563 | for idx, minute in enumerate(minutes): |
||
| 564 | minute_val = self._get_minute_spot_value_future( |
||
| 565 | asset, column, minute |
||
| 566 | ) |
||
| 567 | |||
| 568 | values_for_day[idx] = minute_val |
||
| 569 | |||
| 570 | data_groups.append(values_for_day) |
||
| 571 | |||
| 572 | # get the minutes for today |
||
| 573 | last_day_minutes = pd.date_range( |
||
| 574 | start=self.env.get_open_and_close(end_dt)[0], |
||
| 575 | end=end_dt, |
||
| 576 | freq="T" |
||
| 577 | ) |
||
| 578 | |||
| 579 | values_for_last_day = np.zeros(len(last_day_minutes), dtype=np.float64) |
||
| 580 | |||
| 581 | for idx, minute in enumerate(last_day_minutes): |
||
| 582 | minute_val = self._get_minute_spot_value_future( |
||
| 583 | asset, column, minute |
||
| 584 | ) |
||
| 585 | |||
| 586 | values_for_last_day[idx] = minute_val |
||
| 587 | |||
| 588 | data_groups.append(values_for_last_day) |
||
| 589 | |||
| 590 | for group in data_groups: |
||
| 591 | if len(group) == 0: |
||
| 592 | continue |
||
| 593 | |||
| 594 | if column == 'volume': |
||
| 595 | data.append(np.sum(group)) |
||
| 596 | elif column == 'open': |
||
| 597 | data.append(group[0]) |
||
| 598 | elif column == 'close': |
||
| 599 | data.append(group[-1]) |
||
| 600 | elif column == 'high': |
||
| 601 | data.append(np.amax(group)) |
||
| 602 | elif column == 'low': |
||
| 603 | data.append(np.amin(group)) |
||
| 604 | |||
| 605 | return data |
||
| 606 | |||
| 607 | def _get_history_daily_window_equity(self, asset, days_for_window, |
||
| 608 | end_dt, field_to_use): |
||
| 609 | sid = int(asset) |
||
| 610 | ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0 |
||
| 611 | |||
| 612 | # get the start and end dates for this sid |
||
| 613 | end_date = self._get_asset_end_date(asset) |
||
| 614 | |||
| 615 | if ends_at_midnight or (days_for_window[-1] > end_date): |
||
| 616 | # two cases where we use daily data for the whole range: |
||
| 617 | # 1) the history window ends at midnight utc. |
||
| 618 | # 2) the last desired day of the window is after the |
||
| 619 | # last trading day, use daily data for the whole range. |
||
| 620 | return self._get_daily_window_for_sid( |
||
| 621 | asset, |
||
| 622 | field_to_use, |
||
| 623 | days_for_window, |
||
| 624 | extra_slot=False |
||
| 625 | ) |
||
| 626 | else: |
||
| 627 | # for the last day of the desired window, use minute |
||
| 628 | # data and aggregate it. |
||
| 629 | all_minutes_for_day = self.env.market_minutes_for_day( |
||
| 630 | pd.Timestamp(end_dt.date())) |
||
| 631 | |||
| 632 | last_minute_idx = all_minutes_for_day.searchsorted(end_dt) |
||
| 633 | |||
| 634 | # these are the minutes for the partial day |
||
| 635 | minutes_for_partial_day =\ |
||
| 636 | all_minutes_for_day[0:(last_minute_idx + 1)] |
||
| 637 | |||
| 638 | daily_data = self._get_daily_window_for_sid( |
||
| 639 | sid, |
||
| 640 | field_to_use, |
||
| 641 | days_for_window[0:-1] |
||
| 642 | ) |
||
| 643 | |||
| 644 | minute_data = self._get_minute_window_for_equity( |
||
| 645 | sid, |
||
| 646 | field_to_use, |
||
| 647 | minutes_for_partial_day |
||
| 648 | ) |
||
| 649 | |||
| 650 | if field_to_use == 'volume': |
||
| 651 | minute_value = np.sum(minute_data) |
||
| 652 | elif field_to_use == 'open': |
||
| 653 | minute_value = minute_data[0] |
||
| 654 | elif field_to_use == 'close': |
||
| 655 | minute_value = minute_data[-1] |
||
| 656 | elif field_to_use == 'high': |
||
| 657 | minute_value = np.amax(minute_data) |
||
| 658 | elif field_to_use == 'low': |
||
| 659 | minute_value = np.amin(minute_data) |
||
| 660 | |||
| 661 | # append the partial day. |
||
| 662 | daily_data[-1] = minute_value |
||
| 663 | |||
| 664 | return daily_data |
||
| 665 | |||
| 666 | def _get_history_minute_window(self, assets, end_dt, bar_count, |
||
| 667 | field_to_use): |
||
| 668 | """ |
||
| 669 | Internal method that returns a dataframe containing history bars |
||
| 670 | of minute frequency for the given sids. |
||
| 671 | """ |
||
| 672 | # get all the minutes for this window |
||
| 673 | minutes_for_window = self.env.market_minute_window( |
||
| 674 | end_dt, bar_count, step=-1)[::-1] |
||
| 675 | |||
| 676 | first_trading_day = self._equity_minute_reader.first_trading_day |
||
| 677 | |||
| 678 | # but then cut it down to only the minutes after |
||
| 679 | # the first trading day. |
||
| 680 | modified_minutes_for_window = minutes_for_window[ |
||
| 681 | minutes_for_window.slice_indexer(first_trading_day)] |
||
| 682 | |||
| 683 | modified_minutes_length = len(modified_minutes_for_window) |
||
| 684 | |||
| 685 | if modified_minutes_length == 0: |
||
| 686 | raise ValueError("Cannot calculate history window that ends" |
||
| 687 | "before 2002-01-02 14:31 UTC!") |
||
| 688 | |||
| 689 | data = [] |
||
| 690 | bars_to_prepend = 0 |
||
| 691 | nans_to_prepend = None |
||
| 692 | |||
| 693 | if modified_minutes_length < bar_count: |
||
| 694 | first_trading_date = first_trading_day.date() |
||
| 695 | if modified_minutes_for_window[0].date() == first_trading_date: |
||
| 696 | # the beginning of the window goes before our global trading |
||
| 697 | # start date |
||
| 698 | bars_to_prepend = bar_count - modified_minutes_length |
||
| 699 | nans_to_prepend = np.repeat(np.nan, bars_to_prepend) |
||
| 700 | |||
| 701 | if len(assets) == 0: |
||
| 702 | return pd.DataFrame( |
||
| 703 | None, |
||
| 704 | index=modified_minutes_for_window, |
||
| 705 | columns=None |
||
| 706 | ) |
||
| 707 | |||
| 708 | for asset in assets: |
||
| 709 | asset_minute_data = self._get_minute_window_for_asset( |
||
| 710 | asset, |
||
| 711 | field_to_use, |
||
| 712 | modified_minutes_for_window |
||
| 713 | ) |
||
| 714 | |||
| 715 | if bars_to_prepend != 0: |
||
| 716 | asset_minute_data = np.insert(asset_minute_data, 0, |
||
| 717 | nans_to_prepend) |
||
| 718 | |||
| 719 | data.append(asset_minute_data) |
||
| 720 | |||
| 721 | return pd.DataFrame( |
||
| 722 | np.array(data).T, |
||
| 723 | index=minutes_for_window, |
||
| 724 | columns=assets |
||
| 725 | ) |
||
| 726 | |||
| 727 | def get_history_window(self, assets, end_dt, bar_count, frequency, field, |
||
| 728 | ffill=True): |
||
| 729 | """ |
||
| 730 | Public API method that returns a dataframe containing the requested |
||
| 731 | history window. Data is fully adjusted. |
||
| 732 | |||
| 733 | Parameters |
||
| 734 | --------- |
||
| 735 | assets : list of zipline.data.Asset objects |
||
| 736 | The assets whose data is desired. |
||
| 737 | |||
| 738 | bar_count: int |
||
| 739 | The number of bars desired. |
||
| 740 | |||
| 741 | frequency: string |
||
| 742 | "1d" or "1m" |
||
| 743 | |||
| 744 | field: string |
||
| 745 | The desired field of the asset. |
||
| 746 | |||
| 747 | ffill: boolean |
||
| 748 | Forward-fill missing values. Only has effect if field |
||
| 749 | is 'price'. |
||
| 750 | |||
| 751 | Returns |
||
| 752 | ------- |
||
| 753 | A dataframe containing the requested data. |
||
| 754 | """ |
||
| 755 | try: |
||
| 756 | field_to_use = BASE_FIELDS[field] |
||
| 757 | except KeyError: |
||
| 758 | raise ValueError("Invalid history field: " + str(field)) |
||
| 759 | |||
| 760 | # sanity check in case sids were passed in |
||
| 761 | assets = np.array([ |
||
| 762 | (self.env.asset_finder.retrieve_asset(asset) if |
||
| 763 | isinstance(asset, int) else asset) for asset in assets]) |
||
| 764 | |||
| 765 | if frequency == "1d": |
||
| 766 | df = self._get_history_daily_window(assets, end_dt, bar_count, |
||
| 767 | field_to_use) |
||
| 768 | elif frequency == "1m": |
||
| 769 | df = self._get_history_minute_window(assets, end_dt, bar_count, |
||
| 770 | field_to_use) |
||
| 771 | else: |
||
| 772 | raise ValueError("Invalid frequency: {0}".format(frequency)) |
||
| 773 | |||
| 774 | # forward-fill if needed |
||
| 775 | if field == "price" and ffill: |
||
| 776 | if frequency == "1m": |
||
| 777 | data_frequency = 'minute' |
||
| 778 | elif frequency == "1d": |
||
| 779 | data_frequency = 'daily' |
||
| 780 | else: |
||
| 781 | raise Exception( |
||
| 782 | "Only 1d and 1m are supported for forward-filling.") |
||
| 783 | |||
| 784 | dt_to_fill = df.index[0] |
||
| 785 | |||
| 786 | perspective_dt = df.index[-1] |
||
| 787 | assets_with_leading_nan = np.where(pd.isnull(df.iloc[0]))[0] |
||
| 788 | for missing_loc in assets_with_leading_nan: |
||
| 789 | asset = assets[missing_loc] |
||
| 790 | previous_dt = self.get_last_traded_dt( |
||
| 791 | asset, dt_to_fill, data_frequency) |
||
| 792 | if pd.isnull(previous_dt): |
||
| 793 | continue |
||
| 794 | previous_value = self._get_adjusted_value( |
||
| 795 | asset, |
||
| 796 | field, |
||
| 797 | previous_dt, |
||
| 798 | perspective_dt, |
||
| 799 | data_frequency, |
||
| 800 | ) |
||
| 801 | df.iloc[0, missing_loc] = previous_value |
||
| 802 | |||
| 803 | df.fillna(method='ffill', inplace=True) |
||
| 804 | |||
| 805 | return df |
||
| 806 | |||
| 807 | def _get_minute_window_for_asset(self, asset, field, minutes_for_window): |
||
| 808 | """ |
||
| 809 | Internal method that gets a window of adjusted minute data for an asset |
||
| 810 | and specified date range. Used to support the history API method for |
||
| 811 | minute bars. |
||
| 812 | |||
| 813 | Missing bars are filled with NaN. |
||
| 814 | |||
| 815 | Parameters |
||
| 816 | ---------- |
||
| 817 | asset : Asset |
||
| 818 | The asset whose data is desired. |
||
| 819 | |||
| 820 | field: string |
||
| 821 | The specific field to return. "open", "high", "close_price", etc. |
||
| 822 | |||
| 823 | minutes_for_window: pd.DateTimeIndex |
||
| 824 | The list of minutes representing the desired window. Each minute |
||
| 825 | is a pd.Timestamp. |
||
| 826 | |||
| 827 | Returns |
||
| 828 | ------- |
||
| 829 | A numpy array with requested values. |
||
| 830 | """ |
||
| 831 | if isinstance(asset, int): |
||
| 832 | asset = self.env.asset_finder.retrieve_asset(asset) |
||
| 833 | |||
| 834 | if isinstance(asset, Future): |
||
| 835 | return self._get_minute_window_for_future(asset, field, |
||
| 836 | minutes_for_window) |
||
| 837 | else: |
||
| 838 | return self._get_minute_window_for_equity(asset, field, |
||
| 839 | minutes_for_window) |
||
| 840 | |||
| 841 | def _get_minute_window_for_future(self, asset, field, minutes_for_window): |
||
| 842 | # THIS IS TEMPORARY. For now, we are only exposing futures within |
||
| 843 | # equity trading hours (9:30 am to 4pm, Eastern). The easiest way to |
||
| 844 | # do this is to simply do a spot lookup for each desired minute. |
||
| 845 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
||
| 846 | for idx, minute in enumerate(minutes_for_window): |
||
| 847 | return_data[idx] = \ |
||
| 848 | self._get_minute_spot_value_future(asset, field, minute) |
||
| 849 | |||
| 850 | # Note: an improvement could be to find the consecutive runs within |
||
| 851 | # minutes_for_window, and use them to read the underlying ctable |
||
| 852 | # more efficiently. |
||
| 853 | |||
| 854 | # Once futures are on 24-hour clock, then we can just grab all the |
||
| 855 | # requested minutes in one shot from the ctable. |
||
| 856 | |||
| 857 | # no adjustments for futures, yay. |
||
| 858 | return return_data |
||
| 859 | |||
| 860 | def _get_minute_window_for_equity(self, asset, field, minutes_for_window): |
||
| 861 | # each sid's minutes are stored in a bcolz file |
||
| 862 | # the bcolz file has 390 bars per day, starting at 1/2/2002, regardless |
||
| 863 | # of when the asset started trading and regardless of half days. |
||
| 864 | # for a half day, the second half is filled with zeroes. |
||
| 865 | |||
| 866 | # find the position of start_dt in the entire timeline, go back |
||
| 867 | # bar_count bars, and that's the unadjusted data |
||
| 868 | raw_data = self._equity_minute_reader._open_minute_file(field, asset) |
||
| 869 | |||
| 870 | try: |
||
| 871 | start_idx = self._equity_minute_reader._find_position_of_minute( |
||
| 872 | minutes_for_window[0]) |
||
| 873 | except KeyError: |
||
| 874 | start_idx = 0 |
||
| 875 | |||
| 876 | try: |
||
| 877 | end_idx = self._equity_minute_reader._find_position_of_minute( |
||
| 878 | minutes_for_window[-1]) + 1 |
||
| 879 | except KeyError: |
||
| 880 | end_idx = 0 |
||
| 881 | |||
| 882 | if end_idx == 0: |
||
| 883 | # No data to return for minute window. |
||
| 884 | return np.full(len(minutes_for_window), np.nan) |
||
| 885 | |||
| 886 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
||
| 887 | |||
| 888 | data_to_copy = raw_data[start_idx:end_idx] |
||
| 889 | |||
| 890 | num_minutes = len(minutes_for_window) |
||
| 891 | |||
| 892 | # data_to_copy contains all the zeros (from 1pm to 4pm of an early |
||
| 893 | # close). num_minutes is the number of actual trading minutes. if |
||
| 894 | # these two have different lengths, that means that we need to trim |
||
| 895 | # away data due to early closes. |
||
| 896 | if len(data_to_copy) != num_minutes: |
||
| 897 | # get a copy of the minutes in Eastern time, since we depend on |
||
| 898 | # an early close being at 1pm Eastern. |
||
| 899 | eastern_minutes = minutes_for_window.tz_convert("US/Eastern") |
||
| 900 | |||
| 901 | # accumulate a list of indices of the last minute of an early |
||
| 902 | # close day. For example, if data_to_copy starts at 12:55 pm, and |
||
| 903 | # there are five minutes of real data before 180 zeroes, we would |
||
| 904 | # put 5 into last_minute_idx_of_early_close_day, because the fifth |
||
| 905 | # minute is the last "real" minute of the day. |
||
| 906 | last_minute_idx_of_early_close_day = [] |
||
| 907 | for minute_idx, minute_dt in enumerate(eastern_minutes): |
||
| 908 | if minute_idx == (num_minutes - 1): |
||
| 909 | break |
||
| 910 | |||
| 911 | if minute_dt.hour == 13 and minute_dt.minute == 0: |
||
| 912 | next_minute = eastern_minutes[minute_idx + 1] |
||
| 913 | if next_minute.hour != 13: |
||
| 914 | # minute_dt is the last minute of an early close day |
||
| 915 | last_minute_idx_of_early_close_day.append(minute_idx) |
||
| 916 | |||
| 917 | # spin through the list of early close markers, and use them to |
||
| 918 | # chop off 180 minutes at a time from data_to_copy. |
||
| 919 | for idx, early_close_minute_idx in \ |
||
| 920 | enumerate(last_minute_idx_of_early_close_day): |
||
| 921 | early_close_minute_idx -= (180 * idx) |
||
| 922 | data_to_copy = np.delete( |
||
| 923 | data_to_copy, |
||
| 924 | range( |
||
| 925 | early_close_minute_idx + 1, |
||
| 926 | early_close_minute_idx + 181 |
||
| 927 | ) |
||
| 928 | ) |
||
| 929 | |||
| 930 | return_data[0:len(data_to_copy)] = data_to_copy |
||
| 931 | |||
| 932 | self._apply_all_adjustments( |
||
| 933 | return_data, |
||
| 934 | asset, |
||
| 935 | minutes_for_window, |
||
| 936 | field, |
||
| 937 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
| 938 | ) |
||
| 939 | |||
| 940 | return return_data |
||
| 941 | |||
| 942 | def _apply_all_adjustments(self, data, asset, dts, field, |
||
| 943 | price_adj_factor=1.0): |
||
| 944 | """ |
||
| 945 | Internal method that applies all the necessary adjustments on the |
||
| 946 | given data array. |
||
| 947 | |||
| 948 | The adjustments are: |
||
| 949 | - splits |
||
| 950 | - if field != "volume": |
||
| 951 | - mergers |
||
| 952 | - dividends |
||
| 953 | - * 0.001 |
||
| 954 | - any zero fields replaced with NaN |
||
| 955 | - all values rounded to 3 digits after the decimal point. |
||
| 956 | |||
| 957 | Parameters |
||
| 958 | ---------- |
||
| 959 | data : np.array |
||
| 960 | The data to be adjusted. |
||
| 961 | |||
| 962 | asset: Asset |
||
| 963 | The asset whose data is being adjusted. |
||
| 964 | |||
| 965 | dts: pd.DateTimeIndex |
||
| 966 | The list of minutes or days representing the desired window. |
||
| 967 | |||
| 968 | field: string |
||
| 969 | The field whose values are in the data array. |
||
| 970 | |||
| 971 | price_adj_factor: float |
||
| 972 | Factor with which to adjust OHLC values. |
||
| 973 | Returns |
||
| 974 | ------- |
||
| 975 | None. The data array is modified in place. |
||
| 976 | """ |
||
| 977 | self._apply_adjustments_to_window( |
||
| 978 | self._get_adjustment_list( |
||
| 979 | asset, self._splits_dict, "SPLITS" |
||
| 980 | ), |
||
| 981 | data, |
||
| 982 | dts, |
||
| 983 | field != 'volume' |
||
| 984 | ) |
||
| 985 | |||
| 986 | if field != 'volume': |
||
| 987 | self._apply_adjustments_to_window( |
||
| 988 | self._get_adjustment_list( |
||
| 989 | asset, self._mergers_dict, "MERGERS" |
||
| 990 | ), |
||
| 991 | data, |
||
| 992 | dts, |
||
| 993 | True |
||
| 994 | ) |
||
| 995 | |||
| 996 | self._apply_adjustments_to_window( |
||
| 997 | self._get_adjustment_list( |
||
| 998 | asset, self._dividends_dict, "DIVIDENDS" |
||
| 999 | ), |
||
| 1000 | data, |
||
| 1001 | dts, |
||
| 1002 | True |
||
| 1003 | ) |
||
| 1004 | |||
| 1005 | data *= price_adj_factor |
||
| 1006 | |||
| 1007 | # if anything is zero, it's a missing bar, so replace it with NaN. |
||
| 1008 | # we only want to do this for non-volume fields, because a missing |
||
| 1009 | # volume should be 0. |
||
| 1010 | data[data == 0] = np.NaN |
||
| 1011 | |||
| 1012 | np.around(data, 3, out=data) |
||
| 1013 | |||
| 1014 | def _get_daily_window_for_sid(self, asset, field, days_in_window, |
||
| 1015 | extra_slot=True): |
||
| 1016 | """ |
||
| 1017 | Internal method that gets a window of adjusted daily data for a sid |
||
| 1018 | and specified date range. Used to support the history API method for |
||
| 1019 | daily bars. |
||
| 1020 | |||
| 1021 | Parameters |
||
| 1022 | ---------- |
||
| 1023 | asset : Asset |
||
| 1024 | The asset whose data is desired. |
||
| 1025 | |||
| 1026 | start_dt: pandas.Timestamp |
||
| 1027 | The start of the desired window of data. |
||
| 1028 | |||
| 1029 | bar_count: int |
||
| 1030 | The number of days of data to return. |
||
| 1031 | |||
| 1032 | field: string |
||
| 1033 | The specific field to return. "open", "high", "close_price", etc. |
||
| 1034 | |||
| 1035 | extra_slot: boolean |
||
| 1036 | Whether to allocate an extra slot in the returned numpy array. |
||
| 1037 | This extra slot will hold the data for the last partial day. It's |
||
| 1038 | much better to create it here than to create a copy of the array |
||
| 1039 | later just to add a slot. |
||
| 1040 | |||
| 1041 | Returns |
||
| 1042 | ------- |
||
| 1043 | A numpy array with requested values. Any missing slots filled with |
||
| 1044 | nan. |
||
| 1045 | |||
| 1046 | """ |
||
| 1047 | bar_count = len(days_in_window) |
||
| 1048 | # create an np.array of size bar_count |
||
| 1049 | if extra_slot: |
||
| 1050 | return_array = np.zeros((bar_count + 1,)) |
||
| 1051 | else: |
||
| 1052 | return_array = np.zeros((bar_count,)) |
||
| 1053 | |||
| 1054 | return_array[:] = np.NAN |
||
| 1055 | |||
| 1056 | start_date = self._get_asset_start_date(asset) |
||
| 1057 | end_date = self._get_asset_end_date(asset) |
||
| 1058 | day_slice = days_in_window.slice_indexer(start_date, end_date) |
||
| 1059 | active_days = days_in_window[day_slice] |
||
| 1060 | |||
| 1061 | if active_days.shape[0]: |
||
| 1062 | data = self._equity_daily_reader.history_window(field, |
||
| 1063 | active_days[0], |
||
| 1064 | active_days[-1], |
||
| 1065 | asset) |
||
| 1066 | return_array[day_slice] = data |
||
| 1067 | self._apply_all_adjustments( |
||
| 1068 | return_array, |
||
| 1069 | asset, |
||
| 1070 | active_days, |
||
| 1071 | field, |
||
| 1072 | ) |
||
| 1073 | |||
| 1074 | return return_array |
||
| 1075 | |||
| 1076 | @staticmethod |
||
| 1077 | def _apply_adjustments_to_window(adjustments_list, window_data, |
||
| 1078 | dts_in_window, multiply): |
||
| 1079 | if len(adjustments_list) == 0: |
||
| 1080 | return |
||
| 1081 | |||
| 1082 | # advance idx to the correct spot in the adjustments list, based on |
||
| 1083 | # when the window starts |
||
| 1084 | idx = 0 |
||
| 1085 | |||
| 1086 | while idx < len(adjustments_list) and dts_in_window[0] >\ |
||
| 1087 | adjustments_list[idx][0]: |
||
| 1088 | idx += 1 |
||
| 1089 | |||
| 1090 | # if we've advanced through all the adjustments, then there's nothing |
||
| 1091 | # to do. |
||
| 1092 | if idx == len(adjustments_list): |
||
| 1093 | return |
||
| 1094 | |||
| 1095 | while idx < len(adjustments_list): |
||
| 1096 | adjustment_to_apply = adjustments_list[idx] |
||
| 1097 | |||
| 1098 | if adjustment_to_apply[0] > dts_in_window[-1]: |
||
| 1099 | break |
||
| 1100 | |||
| 1101 | range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) |
||
| 1102 | if multiply: |
||
| 1103 | window_data[0:range_end] *= adjustment_to_apply[1] |
||
| 1104 | else: |
||
| 1105 | window_data[0:range_end] /= adjustment_to_apply[1] |
||
| 1106 | |||
| 1107 | idx += 1 |
||
| 1108 | |||
| 1109 | def _get_adjustment_list(self, asset, adjustments_dict, table_name): |
||
| 1110 | """ |
||
| 1111 | Internal method that returns a list of adjustments for the given sid. |
||
| 1112 | |||
| 1113 | Parameters |
||
| 1114 | ---------- |
||
| 1115 | asset : Asset |
||
| 1116 | The asset for which to return adjustments. |
||
| 1117 | |||
| 1118 | adjustments_dict: dict |
||
| 1119 | A dictionary of sid -> list that is used as a cache. |
||
| 1120 | |||
| 1121 | table_name: string |
||
| 1122 | The table that contains this data in the adjustments db. |
||
| 1123 | |||
| 1124 | Returns |
||
| 1125 | ------- |
||
| 1126 | adjustments: list |
||
| 1127 | A list of [multiplier, pd.Timestamp], earliest first |
||
| 1128 | |||
| 1129 | """ |
||
| 1130 | if self._adjustment_reader is None: |
||
| 1131 | return [] |
||
| 1132 | |||
| 1133 | sid = int(asset) |
||
| 1134 | |||
| 1135 | try: |
||
| 1136 | adjustments = adjustments_dict[sid] |
||
| 1137 | except KeyError: |
||
| 1138 | adjustments = adjustments_dict[sid] = self._adjustment_reader.\ |
||
| 1139 | get_adjustments_for_sid(table_name, sid) |
||
| 1140 | |||
| 1141 | return adjustments |
||
| 1142 | |||
| 1143 | def _check_is_currently_alive(self, asset, dt): |
||
| 1144 | sid = int(asset) |
||
| 1145 | |||
| 1146 | if sid not in self._asset_start_dates: |
||
| 1147 | self._get_asset_start_date(asset) |
||
| 1148 | |||
| 1149 | start_date = self._asset_start_dates[sid] |
||
| 1150 | if self._asset_start_dates[sid] > dt: |
||
| 1151 | raise NoTradeDataAvailableTooEarly( |
||
| 1152 | sid=sid, |
||
| 1153 | dt=normalize_date(dt), |
||
| 1154 | start_dt=start_date |
||
| 1155 | ) |
||
| 1156 | |||
| 1157 | end_date = self._asset_end_dates[sid] |
||
| 1158 | if self._asset_end_dates[sid] < dt: |
||
| 1159 | raise NoTradeDataAvailableTooLate( |
||
| 1160 | sid=sid, |
||
| 1161 | dt=normalize_date(dt), |
||
| 1162 | end_dt=end_date |
||
| 1163 | ) |
||
| 1164 | |||
| 1165 | def _get_asset_start_date(self, asset): |
||
| 1166 | self._ensure_asset_dates(asset) |
||
| 1167 | return self._asset_start_dates[asset] |
||
| 1168 | |||
| 1169 | def _get_asset_end_date(self, asset): |
||
| 1170 | self._ensure_asset_dates(asset) |
||
| 1171 | return self._asset_end_dates[asset] |
||
| 1172 | |||
| 1173 | def _ensure_asset_dates(self, asset): |
||
| 1174 | sid = int(asset) |
||
| 1175 | |||
| 1176 | if sid not in self._asset_start_dates: |
||
| 1177 | self._asset_start_dates[sid] = asset.start_date |
||
| 1178 | self._asset_end_dates[sid] = asset.end_date |
||
| 1179 | |||
| 1180 | def get_splits(self, sids, dt): |
||
| 1181 | """ |
||
| 1182 | Returns any splits for the given sids and the given dt. |
||
| 1183 | |||
| 1184 | Parameters |
||
| 1185 | ---------- |
||
| 1186 | sids : list |
||
| 1187 | Sids for which we want splits. |
||
| 1188 | |||
| 1189 | dt: pd.Timestamp |
||
| 1190 | The date for which we are checking for splits. Note: this is |
||
| 1191 | expected to be midnight UTC. |
||
| 1192 | |||
| 1193 | Returns |
||
| 1194 | ------- |
||
| 1195 | list: List of splits, where each split is a (sid, ratio) tuple. |
||
| 1196 | """ |
||
| 1197 | if self._adjustment_reader is None or len(sids) == 0: |
||
| 1198 | return {} |
||
| 1199 | |||
| 1200 | # convert dt to # of seconds since epoch, because that's what we use |
||
| 1201 | # in the adjustments db |
||
| 1202 | seconds = int(dt.value / 1e9) |
||
| 1203 | |||
| 1204 | splits = self._adjustment_reader.conn.execute( |
||
| 1205 | "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?", |
||
| 1206 | (seconds,)).fetchall() |
||
| 1207 | |||
| 1208 | sids_set = set(sids) |
||
| 1209 | splits = [split for split in splits if split[0] in sids_set] |
||
| 1210 | |||
| 1211 | return splits |
||
| 1212 | |||
| 1213 | def get_stock_dividends(self, sid, trading_days): |
||
| 1214 | """ |
||
| 1215 | Returns all the stock dividends for a specific sid that occur |
||
| 1216 | in the given trading range. |
||
| 1217 | |||
| 1218 | Parameters |
||
| 1219 | ---------- |
||
| 1220 | sid: int |
||
| 1221 | The asset whose stock dividends should be returned. |
||
| 1222 | |||
| 1223 | trading_days: pd.DatetimeIndex |
||
| 1224 | The trading range. |
||
| 1225 | |||
| 1226 | Returns |
||
| 1227 | ------- |
||
| 1228 | list: A list of objects with all relevant attributes populated. |
||
| 1229 | All timestamp fields are converted to pd.Timestamps. |
||
| 1230 | """ |
||
| 1231 | |||
| 1232 | if self._adjustment_reader is None: |
||
| 1233 | return [] |
||
| 1234 | |||
| 1235 | if len(trading_days) == 0: |
||
| 1236 | return [] |
||
| 1237 | |||
| 1238 | start_dt = trading_days[0].value / 1e9 |
||
| 1239 | end_dt = trading_days[-1].value / 1e9 |
||
| 1240 | |||
| 1241 | dividends = self._adjustment_reader.conn.execute( |
||
| 1242 | "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND " |
||
| 1243 | "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\ |
||
| 1244 | fetchall() |
||
| 1245 | |||
| 1246 | dividend_info = [] |
||
| 1247 | for dividend_tuple in dividends: |
||
| 1248 | dividend_info.append({ |
||
| 1249 | "declared_date": dividend_tuple[1], |
||
| 1250 | "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"), |
||
| 1251 | "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"), |
||
| 1252 | "payment_sid": dividend_tuple[4], |
||
| 1253 | "ratio": dividend_tuple[5], |
||
| 1254 | "record_date": pd.Timestamp(dividend_tuple[6], unit="s"), |
||
| 1255 | "sid": dividend_tuple[7] |
||
| 1256 | }) |
||
| 1257 | |||
| 1258 | return dividend_info |
||
| 1259 | |||
| 1260 | def contains(self, asset, field): |
||
| 1261 | return field in BASE_FIELDS or \ |
||
| 1262 | (field in self._augmented_sources_map and |
||
| 1263 | asset in self._augmented_sources_map[field]) |
||
| 1264 | |||
| 1265 | def get_fetcher_assets(self, day): |
||
| 1266 | """ |
||
| 1267 | Returns a list of assets for the current date, as defined by the |
||
| 1268 | fetcher data. |
||
| 1269 | |||
| 1270 | Notes |
||
| 1271 | ----- |
||
| 1272 | Data is forward-filled. If there is no fetcher data defined for day |
||
| 1273 | N, we use day N-1's data (if available, otherwise we keep going back). |
||
| 1274 | |||
| 1275 | Returns |
||
| 1276 | ------- |
||
| 1277 | list: a list of Asset objects. |
||
| 1278 | """ |
||
| 1279 | # return a list of assets for the current date, as defined by the |
||
| 1280 | # fetcher source |
||
| 1281 | if self._extra_source_df is None: |
||
| 1282 | return [] |
||
| 1283 | |||
| 1284 | if day in self._extra_source_df.index: |
||
| 1285 | date_to_use = day |
||
| 1286 | else: |
||
| 1287 | # current day isn't in the fetcher df, go back the last |
||
| 1288 | # available day |
||
| 1289 | idx = self._extra_source_df.index.searchsorted(day) |
||
| 1290 | if idx == 0: |
||
| 1291 | return [] |
||
| 1292 | |||
| 1293 | date_to_use = self._extra_source_df.index[idx - 1] |
||
| 1294 | |||
| 1295 | asset_list = self._extra_source_df.loc[date_to_use]["sid"] |
||
| 1296 | |||
| 1297 | # make sure they're actually assets |
||
| 1298 | asset_list = [asset for asset in asset_list |
||
| 1299 | if isinstance(asset, Asset)] |
||
| 1300 | |||
| 1301 | return asset_list |
||
| 1302 |