|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2015 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
import os |
|
16
|
|
|
from datetime import timedelta |
|
17
|
|
|
import bcolz |
|
18
|
|
|
import numpy as np |
|
19
|
|
|
import pandas as pd |
|
20
|
|
|
|
|
21
|
|
|
from unittest import TestCase |
|
22
|
|
|
from pandas.tslib import normalize_date |
|
23
|
|
|
from testfixtures import TempDirectory |
|
24
|
|
|
from zipline.data.data_portal import DataPortal |
|
25
|
|
|
from zipline.data.us_equity_pricing import SQLiteAdjustmentWriter, \ |
|
26
|
|
|
SQLiteAdjustmentReader |
|
27
|
|
|
from zipline.finance.trading import TradingEnvironment, SimulationParameters |
|
28
|
|
|
from zipline.data.us_equity_pricing import BcolzDailyBarReader |
|
29
|
|
|
from zipline.data.us_equity_minutes import ( |
|
30
|
|
|
MinuteBarWriterFromDataFrames, |
|
31
|
|
|
BcolzMinuteBarReader |
|
32
|
|
|
) |
|
33
|
|
|
from zipline.data.future_pricing import FutureMinuteReader |
|
34
|
|
|
from .utils.daily_bar_writer import DailyBarWriterFromDataFrames |
|
35
|
|
|
|
|
36
|
|
|
|
|
37
|
|
|
class TestDataPortal(TestCase): |
|
38
|
|
|
def test_forward_fill_minute(self): |
|
39
|
|
|
tempdir = TempDirectory() |
|
40
|
|
|
try: |
|
41
|
|
|
env = TradingEnvironment() |
|
42
|
|
|
env.write_data( |
|
43
|
|
|
equities_data={ |
|
44
|
|
|
0: { |
|
45
|
|
|
'start_date': pd.Timestamp("2015-09-28", tz='UTC'), |
|
46
|
|
|
'end_date': pd.Timestamp("2015-09-29", tz='UTC') |
|
47
|
|
|
+ timedelta(days=1) |
|
48
|
|
|
} |
|
49
|
|
|
} |
|
50
|
|
|
) |
|
51
|
|
|
|
|
52
|
|
|
minutes = env.minutes_for_days_in_range( |
|
53
|
|
|
start=pd.Timestamp("2015-09-28", tz='UTC'), |
|
54
|
|
|
end=pd.Timestamp("2015-09-29", tz='UTC') |
|
55
|
|
|
) |
|
56
|
|
|
|
|
57
|
|
|
df = pd.DataFrame({ |
|
58
|
|
|
# one missing bar, then 200 bars of real data, |
|
59
|
|
|
# then 1.5 days of missing data |
|
60
|
|
|
"open": np.array([0] + list(range(0, 200)) + [0] * 579) |
|
61
|
|
|
* 1000, |
|
62
|
|
|
"high": np.array([0] + list(range(1000, 1200)) + [0] * 579) |
|
63
|
|
|
* 1000, |
|
64
|
|
|
"low": np.array([0] + list(range(2000, 2200)) + [0] * 579) |
|
65
|
|
|
* 1000, |
|
66
|
|
|
"close": np.array([0] + list(range(3000, 3200)) + [0] * 579) |
|
67
|
|
|
* 1000, |
|
68
|
|
|
"volume": [0] + list(range(4000, 4200)) + [0] * 579, |
|
69
|
|
|
"minute": minutes |
|
70
|
|
|
}) |
|
71
|
|
|
|
|
72
|
|
|
MinuteBarWriterFromDataFrames( |
|
73
|
|
|
pd.Timestamp('2002-01-02', tz='UTC')).write( |
|
74
|
|
|
tempdir.path, {0: df}) |
|
75
|
|
|
|
|
76
|
|
|
sim_params = SimulationParameters( |
|
77
|
|
|
period_start=minutes[0], |
|
78
|
|
|
period_end=minutes[-1], |
|
79
|
|
|
data_frequency="minute", |
|
80
|
|
|
env=env, |
|
81
|
|
|
) |
|
82
|
|
|
|
|
83
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
|
84
|
|
|
|
|
85
|
|
|
dp = DataPortal( |
|
86
|
|
|
env, |
|
87
|
|
|
equity_minute_reader=equity_minute_reader, |
|
88
|
|
|
) |
|
89
|
|
|
|
|
90
|
|
|
for minute_idx, minute in enumerate(minutes): |
|
91
|
|
|
for field_idx, field in enumerate( |
|
92
|
|
|
["open", "high", "low", "close", "volume"]): |
|
93
|
|
|
val = dp.get_spot_value( |
|
94
|
|
|
0, field, |
|
95
|
|
|
dt=minute, |
|
96
|
|
|
data_frequency=sim_params.data_frequency) |
|
97
|
|
|
if minute_idx == 0: |
|
98
|
|
|
self.assertEqual(0, val) |
|
99
|
|
|
elif minute_idx < 200: |
|
100
|
|
|
self.assertEqual((minute_idx - 1) + |
|
101
|
|
|
(field_idx * 1000), val) |
|
102
|
|
|
else: |
|
103
|
|
|
self.assertEqual(199 + (field_idx * 1000), val) |
|
104
|
|
|
finally: |
|
105
|
|
|
tempdir.cleanup() |
|
106
|
|
|
|
|
107
|
|
|
def test_forward_fill_daily(self): |
|
108
|
|
|
tempdir = TempDirectory() |
|
109
|
|
|
try: |
|
110
|
|
|
# 17 trading days |
|
111
|
|
|
start_day = pd.Timestamp("2015-09-07", tz='UTC') |
|
112
|
|
|
end_day = pd.Timestamp("2015-09-30", tz='UTC') |
|
113
|
|
|
|
|
114
|
|
|
env = TradingEnvironment() |
|
115
|
|
|
env.write_data( |
|
116
|
|
|
equities_data={ |
|
117
|
|
|
0: { |
|
118
|
|
|
'start_date': start_day, |
|
119
|
|
|
'end_date': end_day |
|
120
|
|
|
} |
|
121
|
|
|
} |
|
122
|
|
|
) |
|
123
|
|
|
|
|
124
|
|
|
days = env.days_in_range(start_day, end_day) |
|
125
|
|
|
|
|
126
|
|
|
# first bar is missing. then 8 real bars. then 8 more missing |
|
127
|
|
|
# bars. |
|
128
|
|
|
df = pd.DataFrame({ |
|
129
|
|
|
"open": [0] + list(range(0, 8)) + [0] * 8, |
|
130
|
|
|
"high": [0] + list(range(10, 18)) + [0] * 8, |
|
131
|
|
|
"low": [0] + list(range(20, 28)) + [0] * 8, |
|
132
|
|
|
"close": [0] + list(range(30, 38)) + [0] * 8, |
|
133
|
|
|
"volume": [0] + list(range(40, 48)) + [0] * 8, |
|
134
|
|
|
"day": [day.value for day in days] |
|
135
|
|
|
}, index=days) |
|
136
|
|
|
|
|
137
|
|
|
assets = {0: df} |
|
138
|
|
|
path = os.path.join(tempdir.path, "testdaily.bcolz") |
|
139
|
|
|
|
|
140
|
|
|
DailyBarWriterFromDataFrames(assets).write( |
|
141
|
|
|
path, |
|
142
|
|
|
days, |
|
143
|
|
|
assets |
|
144
|
|
|
) |
|
145
|
|
|
|
|
146
|
|
|
sim_params = SimulationParameters( |
|
147
|
|
|
period_start=days[0], |
|
148
|
|
|
period_end=days[-1], |
|
149
|
|
|
data_frequency="daily" |
|
150
|
|
|
) |
|
151
|
|
|
|
|
152
|
|
|
equity_daily_reader = BcolzDailyBarReader(path) |
|
153
|
|
|
|
|
154
|
|
|
dp = DataPortal( |
|
155
|
|
|
env, |
|
156
|
|
|
equity_daily_reader=equity_daily_reader, |
|
157
|
|
|
) |
|
158
|
|
|
|
|
159
|
|
|
for day_idx, day in enumerate(days): |
|
160
|
|
|
for field_idx, field in enumerate( |
|
161
|
|
|
["open", "high", "low", "close", "volume"]): |
|
162
|
|
|
val = dp.get_spot_value( |
|
163
|
|
|
0, field, |
|
164
|
|
|
dt=day, |
|
165
|
|
|
data_frequency=sim_params.data_frequency) |
|
166
|
|
|
if day_idx == 0: |
|
167
|
|
|
self.assertEqual(0, val) |
|
168
|
|
|
elif day_idx < 9: |
|
169
|
|
|
self.assertEqual((day_idx - 1) + (field_idx * 10), val) |
|
170
|
|
|
else: |
|
171
|
|
|
self.assertEqual(7 + (field_idx * 10), val) |
|
172
|
|
|
finally: |
|
173
|
|
|
tempdir.cleanup() |
|
174
|
|
|
|
|
175
|
|
|
def test_adjust_forward_fill_minute(self): |
|
176
|
|
|
tempdir = TempDirectory() |
|
177
|
|
|
try: |
|
178
|
|
|
start_day = pd.Timestamp("2013-06-21", tz='UTC') |
|
179
|
|
|
end_day = pd.Timestamp("2013-06-24", tz='UTC') |
|
180
|
|
|
|
|
181
|
|
|
env = TradingEnvironment() |
|
182
|
|
|
env.write_data( |
|
183
|
|
|
equities_data={ |
|
184
|
|
|
0: { |
|
185
|
|
|
'start_date': start_day, |
|
186
|
|
|
'end_date': env.next_trading_day(end_day) |
|
187
|
|
|
} |
|
188
|
|
|
} |
|
189
|
|
|
) |
|
190
|
|
|
|
|
191
|
|
|
minutes = env.minutes_for_days_in_range( |
|
192
|
|
|
start=start_day, |
|
193
|
|
|
end=end_day |
|
194
|
|
|
) |
|
195
|
|
|
|
|
196
|
|
|
df = pd.DataFrame({ |
|
197
|
|
|
# 390 bars of real data, then 100 missing bars, then 290 |
|
198
|
|
|
# bars of data again |
|
199
|
|
|
"open": np.array(list(range(0, 390)) + [0] * 100 + |
|
200
|
|
|
list(range(390, 680))) * 1000, |
|
201
|
|
|
"high": np.array(list(range(1000, 1390)) + [0] * 100 + |
|
202
|
|
|
list(range(1390, 1680))) * 1000, |
|
203
|
|
|
"low": np.array(list(range(2000, 2390)) + [0] * 100 + |
|
204
|
|
|
list(range(2390, 2680))) * 1000, |
|
205
|
|
|
"close": np.array(list(range(3000, 3390)) + [0] * 100 + |
|
206
|
|
|
list(range(3390, 3680))) * 1000, |
|
207
|
|
|
"volume": np.array(list(range(4000, 4390)) + [0] * 100 + |
|
208
|
|
|
list(range(4390, 4680))), |
|
209
|
|
|
"minute": minutes |
|
210
|
|
|
}) |
|
211
|
|
|
|
|
212
|
|
|
MinuteBarWriterFromDataFrames( |
|
213
|
|
|
pd.Timestamp('2002-01-02', tz='UTC')).write( |
|
214
|
|
|
tempdir.path, {0: df}) |
|
215
|
|
|
|
|
216
|
|
|
sim_params = SimulationParameters( |
|
217
|
|
|
period_start=minutes[0], |
|
218
|
|
|
period_end=minutes[-1], |
|
219
|
|
|
data_frequency="minute", |
|
220
|
|
|
env=env |
|
221
|
|
|
) |
|
222
|
|
|
|
|
223
|
|
|
# create a split for 6/24 |
|
224
|
|
|
adjustments_path = os.path.join(tempdir.path, "adjustments.db") |
|
225
|
|
|
writer = SQLiteAdjustmentWriter(adjustments_path, |
|
226
|
|
|
pd.date_range(start=start_day, |
|
227
|
|
|
end=end_day), |
|
228
|
|
|
None) |
|
229
|
|
|
|
|
230
|
|
|
splits = pd.DataFrame([{ |
|
231
|
|
|
'effective_date': int(end_day.value / 1e9), |
|
232
|
|
|
'ratio': 0.5, |
|
233
|
|
|
'sid': 0 |
|
234
|
|
|
}]) |
|
235
|
|
|
|
|
236
|
|
|
dividend_data = { |
|
237
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
238
|
|
|
'ex_date': np.array([], dtype='datetime64[ns]'), |
|
239
|
|
|
'pay_date': np.array([], dtype='datetime64[ns]'), |
|
240
|
|
|
'record_date': np.array([], dtype='datetime64[ns]'), |
|
241
|
|
|
'declared_date': np.array([], dtype='datetime64[ns]'), |
|
242
|
|
|
'amount': np.array([], dtype=float), |
|
243
|
|
|
'sid': np.array([], dtype=int), |
|
244
|
|
|
} |
|
245
|
|
|
dividends = pd.DataFrame( |
|
246
|
|
|
dividend_data, |
|
247
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
248
|
|
|
columns=['ex_date', |
|
249
|
|
|
'pay_date', |
|
250
|
|
|
'record_date', |
|
251
|
|
|
'declared_date', |
|
252
|
|
|
'amount', |
|
253
|
|
|
'sid'] |
|
254
|
|
|
) |
|
255
|
|
|
|
|
256
|
|
|
merger_data = { |
|
257
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
258
|
|
|
'effective_date': np.array([], dtype=int), |
|
259
|
|
|
'ratio': np.array([], dtype=float), |
|
260
|
|
|
'sid': np.array([], dtype=int), |
|
261
|
|
|
} |
|
262
|
|
|
mergers = pd.DataFrame( |
|
263
|
|
|
merger_data, |
|
264
|
|
|
index=pd.DatetimeIndex([], tz='UTC') |
|
265
|
|
|
) |
|
266
|
|
|
|
|
267
|
|
|
writer.write(splits, mergers, dividends) |
|
268
|
|
|
|
|
269
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
|
270
|
|
|
|
|
271
|
|
|
dp = DataPortal( |
|
272
|
|
|
env, |
|
273
|
|
|
equity_minute_reader=equity_minute_reader, |
|
274
|
|
|
adjustment_reader=SQLiteAdjustmentReader(adjustments_path) |
|
275
|
|
|
) |
|
276
|
|
|
|
|
277
|
|
|
# phew, finally ready to start testing. |
|
278
|
|
|
for idx, minute in enumerate(minutes[:390]): |
|
279
|
|
|
for field_idx, field in enumerate(["open", "high", "low", |
|
280
|
|
|
"close", "volume"]): |
|
281
|
|
|
self.assertEqual( |
|
282
|
|
|
dp.get_spot_value( |
|
283
|
|
|
0, field, |
|
284
|
|
|
dt=minute, |
|
285
|
|
|
data_frequency=sim_params.data_frequency), |
|
286
|
|
|
idx + (1000 * field_idx) |
|
287
|
|
|
) |
|
288
|
|
|
|
|
289
|
|
|
for idx, minute in enumerate(minutes[390:490]): |
|
290
|
|
|
# no actual data for this part, so we'll forward-fill. |
|
291
|
|
|
# make sure the forward-filled values are adjusted. |
|
292
|
|
|
for field_idx, field in enumerate(["open", "high", "low", |
|
293
|
|
|
"close"]): |
|
294
|
|
|
self.assertEqual( |
|
295
|
|
|
dp.get_spot_value( |
|
296
|
|
|
0, field, |
|
297
|
|
|
dt=minute, |
|
298
|
|
|
data_frequency=sim_params.data_frequency), |
|
299
|
|
|
(389 + (1000 * field_idx)) / 2.0 |
|
300
|
|
|
) |
|
301
|
|
|
|
|
302
|
|
|
self.assertEqual( |
|
303
|
|
|
dp.get_spot_value( |
|
304
|
|
|
0, "volume", |
|
305
|
|
|
dt=minute, |
|
306
|
|
|
data_frequency=sim_params.data_frequency), |
|
307
|
|
|
8778 # 4389 * 2 |
|
308
|
|
|
) |
|
309
|
|
|
|
|
310
|
|
|
for idx, minute in enumerate(minutes[490:]): |
|
311
|
|
|
# back to real data |
|
312
|
|
|
for field_idx, field in enumerate(["open", "high", "low", |
|
313
|
|
|
"close", "volume"]): |
|
314
|
|
|
self.assertEqual( |
|
315
|
|
|
dp.get_spot_value( |
|
316
|
|
|
0, field, |
|
317
|
|
|
dt=minute, |
|
318
|
|
|
data_frequency=sim_params.data_frequency |
|
319
|
|
|
), |
|
320
|
|
|
(390 + idx + (1000 * field_idx)) |
|
321
|
|
|
) |
|
322
|
|
|
finally: |
|
323
|
|
|
tempdir.cleanup() |
|
324
|
|
|
|
|
325
|
|
|
def test_last_traded_dt(self): |
|
326
|
|
|
tempdir = TempDirectory() |
|
327
|
|
|
try: |
|
328
|
|
|
start_day = pd.Timestamp("2013-06-21", tz='UTC') |
|
329
|
|
|
end_day = pd.Timestamp("2013-06-24", tz='UTC') |
|
330
|
|
|
|
|
331
|
|
|
env = TradingEnvironment() |
|
332
|
|
|
env.write_data( |
|
333
|
|
|
equities_data={ |
|
334
|
|
|
0: { |
|
335
|
|
|
'start_date': start_day, |
|
336
|
|
|
'end_date': env.next_trading_day(end_day) |
|
337
|
|
|
} |
|
338
|
|
|
} |
|
339
|
|
|
) |
|
340
|
|
|
|
|
341
|
|
|
minutes = env.minutes_for_days_in_range( |
|
342
|
|
|
start=start_day, |
|
343
|
|
|
end=end_day |
|
344
|
|
|
) |
|
345
|
|
|
|
|
346
|
|
|
df = pd.DataFrame({ |
|
347
|
|
|
# 390 bars of real data, then 100 missing bars, then 290 |
|
348
|
|
|
# bars of data again |
|
349
|
|
|
"open": np.array(list(range(0, 390)) + [0] * 100 + |
|
350
|
|
|
list(range(390, 680))) * 1000, |
|
351
|
|
|
"high": np.array(list(range(1000, 1390)) + [0] * 100 + |
|
352
|
|
|
list(range(1390, 1680))) * 1000, |
|
353
|
|
|
"low": np.array(list(range(2000, 2390)) + [0] * 100 + |
|
354
|
|
|
list(range(2390, 2680))) * 1000, |
|
355
|
|
|
"close": np.array(list(range(3000, 3390)) + [0] * 100 + |
|
356
|
|
|
list(range(3390, 3680))) * 1000, |
|
357
|
|
|
"volume": np.array(list(range(4000, 4390)) + [0] * 100 + |
|
358
|
|
|
list(range(4390, 4680))), |
|
359
|
|
|
"minute": minutes |
|
360
|
|
|
}) |
|
361
|
|
|
|
|
362
|
|
|
MinuteBarWriterFromDataFrames( |
|
363
|
|
|
pd.Timestamp('2002-01-02', tz='UTC')).write( |
|
364
|
|
|
tempdir.path, {0: df}) |
|
365
|
|
|
|
|
366
|
|
|
equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
|
367
|
|
|
|
|
368
|
|
|
dp = DataPortal( |
|
369
|
|
|
env, |
|
370
|
|
|
equity_minute_reader=equity_minute_reader, |
|
371
|
|
|
) |
|
372
|
|
|
|
|
373
|
|
|
asset = env.asset_finder.retrieve_asset(0) |
|
374
|
|
|
|
|
375
|
|
|
minute_with_trade = minutes[389] |
|
376
|
|
|
|
|
377
|
|
|
minute_without_trade = minutes[390] |
|
378
|
|
|
|
|
379
|
|
|
last_traded = dp.get_last_traded_dt(asset, minute_with_trade, |
|
380
|
|
|
'minute') |
|
381
|
|
|
|
|
382
|
|
|
self.assertEqual(last_traded, minute_with_trade) |
|
383
|
|
|
|
|
384
|
|
|
last_traded = dp.get_last_traded_dt(asset, minute_without_trade, |
|
385
|
|
|
'minute') |
|
386
|
|
|
|
|
387
|
|
|
minute_without_trade = minutes[489] |
|
388
|
|
|
|
|
389
|
|
|
last_traded = dp.get_last_traded_dt(asset, minute_without_trade, |
|
390
|
|
|
'minute') |
|
391
|
|
|
|
|
392
|
|
|
self.assertEqual(last_traded, minute_with_trade) |
|
393
|
|
|
finally: |
|
394
|
|
|
tempdir.cleanup() |
|
395
|
|
|
|
|
396
|
|
|
def test_last_traded_dt_daily(self): |
|
397
|
|
|
tempdir = TempDirectory() |
|
398
|
|
|
try: |
|
399
|
|
|
# 17 trading days |
|
400
|
|
|
start_day = pd.Timestamp("2015-09-07", tz='UTC') |
|
401
|
|
|
end_day = pd.Timestamp("2015-09-30", tz='UTC') |
|
402
|
|
|
|
|
403
|
|
|
env = TradingEnvironment() |
|
404
|
|
|
env.write_data( |
|
405
|
|
|
equities_data={ |
|
406
|
|
|
0: { |
|
407
|
|
|
'start_date': start_day, |
|
408
|
|
|
'end_date': end_day |
|
409
|
|
|
}, |
|
410
|
|
|
1: { |
|
411
|
|
|
'start_date': env.next_trading_day(start_day), |
|
412
|
|
|
'end_date': end_day |
|
413
|
|
|
} |
|
414
|
|
|
} |
|
415
|
|
|
) |
|
416
|
|
|
|
|
417
|
|
|
days = env.days_in_range(start_day, end_day) |
|
418
|
|
|
|
|
419
|
|
|
# first bar is missing. then 8 real bars. then 8 more missing |
|
420
|
|
|
# bars. |
|
421
|
|
|
df = pd.DataFrame({ |
|
422
|
|
|
"open": [0] + list(range(0, 8)) + [0] * 8, |
|
423
|
|
|
"high": [0] + list(range(10, 18)) + [0] * 8, |
|
424
|
|
|
"low": [0] + list(range(20, 28)) + [0] * 8, |
|
425
|
|
|
"close": [0] + list(range(30, 38)) + [0] * 8, |
|
426
|
|
|
"volume": [0] + list(range(40, 48)) + [0] * 8, |
|
427
|
|
|
"day": [day.value for day in days] |
|
428
|
|
|
}, index=days) |
|
429
|
|
|
# Test a second sid, so that edge condition with very first sid |
|
430
|
|
|
# in calendar, as well as a sid with a start date after the |
|
431
|
|
|
# calendar start are tested for the 'no leading data case' |
|
432
|
|
|
df_sid_1 = pd.DataFrame({ |
|
433
|
|
|
"open": [0] + list(range(0, 8)) + [0] * 7, |
|
434
|
|
|
"high": [0] + list(range(10, 18)) + [0] * 7, |
|
435
|
|
|
"low": [0] + list(range(20, 28)) + [0] * 7, |
|
436
|
|
|
"close": [0] + list(range(30, 38)) + [0] * 7, |
|
437
|
|
|
"volume": [0] + list(range(40, 48)) + [0] * 7, |
|
438
|
|
|
"day": [day.value for day in days[1:]] |
|
439
|
|
|
}, index=days[1:]) |
|
440
|
|
|
|
|
441
|
|
|
assets = {0: df, 1: df_sid_1} |
|
442
|
|
|
path = os.path.join(tempdir.path, "testdaily.bcolz") |
|
443
|
|
|
|
|
444
|
|
|
DailyBarWriterFromDataFrames(assets).write( |
|
445
|
|
|
path, |
|
446
|
|
|
days, |
|
447
|
|
|
assets |
|
448
|
|
|
) |
|
449
|
|
|
|
|
450
|
|
|
equity_daily_reader = BcolzDailyBarReader(path) |
|
451
|
|
|
|
|
452
|
|
|
dp = DataPortal( |
|
453
|
|
|
env, |
|
454
|
|
|
equity_daily_reader=equity_daily_reader, |
|
455
|
|
|
) |
|
456
|
|
|
|
|
457
|
|
|
asset = env.asset_finder.retrieve_asset(0) |
|
458
|
|
|
|
|
459
|
|
|
# Day with trades. |
|
460
|
|
|
day_with_trade = df.index[8] |
|
461
|
|
|
last_traded = dp.get_last_traded_dt(asset, day_with_trade, |
|
462
|
|
|
'daily') |
|
463
|
|
|
|
|
464
|
|
|
self.assertEqual(last_traded, day_with_trade) |
|
465
|
|
|
|
|
466
|
|
|
# Day with no trades, should return most recent with trade. |
|
467
|
|
|
day_without_trade = df.index[11] |
|
468
|
|
|
last_traded = dp.get_last_traded_dt(asset, day_without_trade, |
|
469
|
|
|
'daily') |
|
470
|
|
|
|
|
471
|
|
|
self.assertEqual(last_traded, day_with_trade) |
|
472
|
|
|
|
|
473
|
|
|
first_day_also_no_trade = df.index[0] |
|
474
|
|
|
|
|
475
|
|
|
# Beginning bar, should return None. |
|
476
|
|
|
last_traded = dp.get_last_traded_dt(asset, first_day_also_no_trade, |
|
477
|
|
|
'daily') |
|
478
|
|
|
|
|
479
|
|
|
self.assertEqual(last_traded, None) |
|
480
|
|
|
|
|
481
|
|
|
asset = env.asset_finder.retrieve_asset(1) |
|
482
|
|
|
|
|
483
|
|
|
# Day with trades. |
|
484
|
|
|
day_with_trade = df_sid_1.index[8] |
|
485
|
|
|
last_traded = dp.get_last_traded_dt(asset, day_with_trade, |
|
486
|
|
|
'daily') |
|
487
|
|
|
|
|
488
|
|
|
self.assertEqual(last_traded, day_with_trade) |
|
489
|
|
|
|
|
490
|
|
|
# Day with no trades, should return most recent with trade. |
|
491
|
|
|
day_without_trade = df_sid_1.index[10] |
|
492
|
|
|
last_traded = dp.get_last_traded_dt(asset, day_without_trade, |
|
493
|
|
|
'daily') |
|
494
|
|
|
|
|
495
|
|
|
self.assertEqual(last_traded, day_with_trade) |
|
496
|
|
|
|
|
497
|
|
|
first_day_also_no_trade = df_sid_1.index[0] |
|
498
|
|
|
|
|
499
|
|
|
# Beginning bar, should return None. |
|
500
|
|
|
last_traded = dp.get_last_traded_dt(asset, first_day_also_no_trade, |
|
501
|
|
|
'daily') |
|
502
|
|
|
|
|
503
|
|
|
self.assertEqual(last_traded, None) |
|
504
|
|
|
|
|
505
|
|
|
finally: |
|
506
|
|
|
tempdir.cleanup() |
|
507
|
|
|
|
|
508
|
|
|
def test_spot_value_futures(self): |
|
509
|
|
|
tempdir = TempDirectory() |
|
510
|
|
|
try: |
|
511
|
|
|
start_dt = pd.Timestamp("2015-11-20 20:11", tz='UTC') |
|
512
|
|
|
end_dt = pd.Timestamp(start_dt + timedelta(minutes=10000)) |
|
513
|
|
|
|
|
514
|
|
|
zeroes_buffer = \ |
|
515
|
|
|
[0] * int((start_dt - |
|
516
|
|
|
normalize_date(start_dt)).total_seconds() / 60) |
|
517
|
|
|
|
|
518
|
|
|
df = pd.DataFrame({ |
|
519
|
|
|
"open": np.array(zeroes_buffer + list(range(0, 10000))) * 1000, |
|
520
|
|
|
"high": np.array( |
|
521
|
|
|
zeroes_buffer + list(range(10000, 20000))) * 1000, |
|
522
|
|
|
"low": np.array( |
|
523
|
|
|
zeroes_buffer + list(range(20000, 30000))) * 1000, |
|
524
|
|
|
"close": np.array( |
|
525
|
|
|
zeroes_buffer + list(range(30000, 40000))) * 1000, |
|
526
|
|
|
"volume": np.array(zeroes_buffer + list(range(40000, 50000))) |
|
527
|
|
|
}) |
|
528
|
|
|
|
|
529
|
|
|
path = os.path.join(tempdir.path, "123.bcolz") |
|
530
|
|
|
ctable = bcolz.ctable.fromdataframe(df, rootdir=path) |
|
531
|
|
|
ctable.attrs["start_dt"] = start_dt.value / 1e9 |
|
532
|
|
|
ctable.attrs["last_dt"] = end_dt.value / 1e9 |
|
533
|
|
|
|
|
534
|
|
|
env = TradingEnvironment() |
|
535
|
|
|
env.write_data(futures_data={ |
|
536
|
|
|
123: { |
|
537
|
|
|
"start_date": normalize_date(start_dt), |
|
538
|
|
|
"end_date": env.next_trading_day(normalize_date(end_dt)), |
|
539
|
|
|
'symbol': 'TEST_FUTURE', |
|
540
|
|
|
'asset_type': 'future', |
|
541
|
|
|
} |
|
542
|
|
|
}) |
|
543
|
|
|
|
|
544
|
|
|
future_minute_reader = FutureMinuteReader(tempdir.path) |
|
545
|
|
|
|
|
546
|
|
|
dp = DataPortal( |
|
547
|
|
|
env, |
|
548
|
|
|
future_minute_reader=future_minute_reader |
|
549
|
|
|
) |
|
550
|
|
|
|
|
551
|
|
|
future123 = env.asset_finder.retrieve_asset(123) |
|
552
|
|
|
|
|
553
|
|
|
data_frequency = 'minute' |
|
554
|
|
|
|
|
555
|
|
|
for i in range(0, 10000): |
|
556
|
|
|
dt = pd.Timestamp(start_dt + timedelta(minutes=i)) |
|
557
|
|
|
|
|
558
|
|
|
self.assertEqual(i, |
|
559
|
|
|
dp.get_spot_value( |
|
560
|
|
|
future123, "open", dt, data_frequency)) |
|
561
|
|
|
self.assertEqual(i + 10000, |
|
562
|
|
|
dp.get_spot_value( |
|
563
|
|
|
future123, "high", dt, data_frequency)) |
|
564
|
|
|
self.assertEqual(i + 20000, |
|
565
|
|
|
dp.get_spot_value( |
|
566
|
|
|
future123, "low", dt, data_frequency)) |
|
567
|
|
|
self.assertEqual(i + 30000, |
|
568
|
|
|
dp.get_spot_value( |
|
569
|
|
|
future123, "close", dt, data_frequency)) |
|
570
|
|
|
self.assertEqual(i + 40000, |
|
571
|
|
|
dp.get_spot_value( |
|
572
|
|
|
future123, "volume", dt, data_frequency)) |
|
573
|
|
|
|
|
574
|
|
|
finally: |
|
575
|
|
|
tempdir.cleanup() |
|
576
|
|
|
|