|
1
|
|
|
""" |
|
2
|
|
|
Technical Analysis Factors |
|
3
|
|
|
-------------------------- |
|
4
|
|
|
""" |
|
5
|
|
|
from bottleneck import ( |
|
6
|
|
|
nanargmax, |
|
7
|
|
|
nanmax, |
|
8
|
|
|
nanmean, |
|
9
|
|
|
nansum, |
|
10
|
|
|
) |
|
11
|
|
|
from numbers import Number |
|
12
|
|
|
from numpy import ( |
|
13
|
|
|
abs, |
|
14
|
|
|
arange, |
|
15
|
|
|
average, |
|
16
|
|
|
clip, |
|
17
|
|
|
diff, |
|
18
|
|
|
exp, |
|
19
|
|
|
fmax, |
|
20
|
|
|
full, |
|
21
|
|
|
inf, |
|
22
|
|
|
isnan, |
|
23
|
|
|
log, |
|
24
|
|
|
NINF, |
|
25
|
|
|
sqrt, |
|
26
|
|
|
sum as np_sum, |
|
27
|
|
|
) |
|
28
|
|
|
from numexpr import evaluate |
|
29
|
|
|
|
|
30
|
|
|
from zipline.pipeline.data import USEquityPricing |
|
31
|
|
|
from zipline.pipeline.mixins import SingleInputMixin |
|
32
|
|
|
from zipline.utils.control_flow import ignore_nanwarnings |
|
33
|
|
|
from zipline.utils.input_validation import expect_types |
|
34
|
|
|
from .factor import CustomFactor |
|
35
|
|
|
|
|
36
|
|
|
|
|
37
|
|
|
class Returns(CustomFactor): |
|
38
|
|
|
""" |
|
39
|
|
|
Calculates the percent change in close price over the given window_length. |
|
40
|
|
|
|
|
41
|
|
|
**Default Inputs**: [USEquityPricing.close] |
|
42
|
|
|
""" |
|
43
|
|
|
inputs = [USEquityPricing.close] |
|
44
|
|
|
|
|
45
|
|
|
def compute(self, today, assets, out, close): |
|
46
|
|
|
out[:] = (close[-1] - close[0]) / close[0] |
|
47
|
|
|
|
|
48
|
|
|
|
|
49
|
|
|
class RSI(CustomFactor, SingleInputMixin): |
|
50
|
|
|
""" |
|
51
|
|
|
Relative Strength Index |
|
52
|
|
|
|
|
53
|
|
|
**Default Inputs**: [USEquityPricing.close] |
|
54
|
|
|
|
|
55
|
|
|
**Default Window Length**: 15 |
|
56
|
|
|
""" |
|
57
|
|
|
window_length = 15 |
|
58
|
|
|
inputs = (USEquityPricing.close,) |
|
59
|
|
|
|
|
60
|
|
|
def compute(self, today, assets, out, closes): |
|
61
|
|
|
diffs = diff(closes, axis=0) |
|
62
|
|
|
ups = nanmean(clip(diffs, 0, inf), axis=0) |
|
63
|
|
|
downs = abs(nanmean(clip(diffs, -inf, 0), axis=0)) |
|
64
|
|
|
return evaluate( |
|
65
|
|
|
"100 - (100 / (1 + (ups / downs)))", |
|
66
|
|
|
local_dict={'ups': ups, 'downs': downs}, |
|
67
|
|
|
global_dict={}, |
|
68
|
|
|
out=out, |
|
69
|
|
|
) |
|
70
|
|
|
|
|
71
|
|
|
|
|
72
|
|
|
class SimpleMovingAverage(CustomFactor, SingleInputMixin): |
|
73
|
|
|
""" |
|
74
|
|
|
Average Value of an arbitrary column |
|
75
|
|
|
|
|
76
|
|
|
**Default Inputs**: None |
|
77
|
|
|
|
|
78
|
|
|
**Default Window Length**: None |
|
79
|
|
|
""" |
|
80
|
|
|
# numpy's nan functions throw warnings when passed an array containing only |
|
81
|
|
|
# nans, but they still returns the desired value (nan), so we ignore the |
|
82
|
|
|
# warning. |
|
83
|
|
|
ctx = ignore_nanwarnings() |
|
84
|
|
|
|
|
85
|
|
|
def compute(self, today, assets, out, data): |
|
86
|
|
|
out[:] = nanmean(data, axis=0) |
|
87
|
|
|
|
|
88
|
|
|
|
|
89
|
|
|
class WeightedAverageValue(CustomFactor): |
|
90
|
|
|
""" |
|
91
|
|
|
Helper for VWAP-like computations. |
|
92
|
|
|
|
|
93
|
|
|
**Default Inputs:** None |
|
94
|
|
|
|
|
95
|
|
|
**Default Window Length:** None |
|
96
|
|
|
""" |
|
97
|
|
|
def compute(self, today, assets, out, base, weight): |
|
98
|
|
|
out[:] = nansum(base * weight, axis=0) / nansum(weight, axis=0) |
|
99
|
|
|
|
|
100
|
|
|
|
|
101
|
|
|
class VWAP(WeightedAverageValue): |
|
102
|
|
|
""" |
|
103
|
|
|
Volume Weighted Average Price |
|
104
|
|
|
|
|
105
|
|
|
**Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] |
|
106
|
|
|
|
|
107
|
|
|
**Default Window Length:** None |
|
108
|
|
|
""" |
|
109
|
|
|
inputs = (USEquityPricing.close, USEquityPricing.volume) |
|
110
|
|
|
|
|
111
|
|
|
|
|
112
|
|
|
class MaxDrawdown(CustomFactor, SingleInputMixin): |
|
113
|
|
|
""" |
|
114
|
|
|
Max Drawdown |
|
115
|
|
|
|
|
116
|
|
|
**Default Inputs:** None |
|
117
|
|
|
|
|
118
|
|
|
**Default Window Length:** None |
|
119
|
|
|
""" |
|
120
|
|
|
ctx = ignore_nanwarnings() |
|
121
|
|
|
|
|
122
|
|
|
def compute(self, today, assets, out, data): |
|
123
|
|
|
drawdowns = fmax.accumulate(data, axis=0) - data |
|
124
|
|
|
drawdowns[isnan(drawdowns)] = NINF |
|
125
|
|
|
drawdown_ends = nanargmax(drawdowns, axis=0) |
|
126
|
|
|
|
|
127
|
|
|
# TODO: Accelerate this loop in Cython or Numba. |
|
128
|
|
|
for i, end in enumerate(drawdown_ends): |
|
129
|
|
|
peak = nanmax(data[:end + 1, i]) |
|
130
|
|
|
out[i] = (peak - data[end, i]) / data[end, i] |
|
131
|
|
|
|
|
132
|
|
|
|
|
133
|
|
|
class AverageDollarVolume(CustomFactor): |
|
134
|
|
|
""" |
|
135
|
|
|
Average Daily Dollar Volume |
|
136
|
|
|
|
|
137
|
|
|
**Default Inputs:** [USEquityPricing.close, USEquityPricing.volume] |
|
138
|
|
|
|
|
139
|
|
|
**Default Window Length:** None |
|
140
|
|
|
""" |
|
141
|
|
|
inputs = [USEquityPricing.close, USEquityPricing.volume] |
|
142
|
|
|
|
|
143
|
|
|
def compute(self, today, assets, out, close, volume): |
|
144
|
|
|
out[:] = nanmean(close * volume, axis=0) |
|
145
|
|
|
|
|
146
|
|
|
|
|
147
|
|
|
class _ExponentialWeightedFactor(SingleInputMixin, CustomFactor): |
|
148
|
|
|
""" |
|
149
|
|
|
Base class for factors implementing exponential-weighted operations. |
|
150
|
|
|
|
|
151
|
|
|
**Default Inputs:** None |
|
152
|
|
|
|
|
153
|
|
|
**Default Window Length:** None |
|
154
|
|
|
|
|
155
|
|
|
Parameters |
|
156
|
|
|
---------- |
|
157
|
|
|
inputs : length-1 list or tuple of BoundColumn |
|
158
|
|
|
The expression over which to compute the average. |
|
159
|
|
|
window_length : int > 0 |
|
160
|
|
|
Length of the lookback window over which to compute the average. |
|
161
|
|
|
decay_rate : float, 0 < decay_rate <= 1 |
|
162
|
|
|
Weighting factor by which to discount past observations. |
|
163
|
|
|
|
|
164
|
|
|
When calculating historical averages, rows are multiplied by the |
|
165
|
|
|
sequence:: |
|
166
|
|
|
|
|
167
|
|
|
decay_rate, decay_rate ** 2, decay_rate ** 3, ... |
|
168
|
|
|
|
|
169
|
|
|
Methods |
|
170
|
|
|
------- |
|
171
|
|
|
weights |
|
172
|
|
|
from_span |
|
173
|
|
|
from_halflife |
|
174
|
|
|
from_center_of_mass |
|
175
|
|
|
""" |
|
176
|
|
|
params = ('decay_rate',) |
|
177
|
|
|
|
|
178
|
|
|
@staticmethod |
|
179
|
|
|
def weights(length, decay_rate): |
|
180
|
|
|
""" |
|
181
|
|
|
Return weighting vector for an exponential moving statistic on `length` |
|
182
|
|
|
rows with a decay rate of `decay_rate`. |
|
183
|
|
|
""" |
|
184
|
|
|
return full(length, decay_rate) ** arange(length + 1, 1, -1) |
|
185
|
|
|
|
|
186
|
|
|
@classmethod |
|
187
|
|
|
@expect_types(span=Number) |
|
188
|
|
|
def from_span(cls, inputs, window_length, span): |
|
189
|
|
|
""" |
|
190
|
|
|
Convenience constructor for passing `decay_rate` in terms of `span`. |
|
191
|
|
|
|
|
192
|
|
|
Forwards `decay_rate` as `1 - (2.0 / (1 + span))`. This provides the |
|
193
|
|
|
behavior equivalent to passing `span` to pandas.ewma. |
|
194
|
|
|
|
|
195
|
|
|
Example |
|
196
|
|
|
------- |
|
197
|
|
|
.. code-block:: python |
|
198
|
|
|
|
|
199
|
|
|
# Equivalent to: |
|
200
|
|
|
# my_ewma = EWMA( |
|
201
|
|
|
# inputs=[USEquityPricing.close], |
|
202
|
|
|
# window_length=30, |
|
203
|
|
|
# decay_rate=(1 - (2.0 / (1 + 15.0))), |
|
204
|
|
|
# ) |
|
205
|
|
|
my_ewma = EWMA.from_span( |
|
206
|
|
|
inputs=[USEquityPricing.close], |
|
207
|
|
|
window_length=30, |
|
208
|
|
|
span=15, |
|
209
|
|
|
) |
|
210
|
|
|
|
|
211
|
|
|
Note |
|
212
|
|
|
---- |
|
213
|
|
|
This classmethod is provided by both |
|
214
|
|
|
:class:`ExponentialWeightedMovingAverage` and |
|
215
|
|
|
:class:`ExponentialWeightedMovingStdDev`. |
|
216
|
|
|
""" |
|
217
|
|
|
if span <= 1: |
|
218
|
|
|
raise ValueError( |
|
219
|
|
|
"`span` must be a positive number. %s was passed." % span |
|
220
|
|
|
) |
|
221
|
|
|
|
|
222
|
|
|
decay_rate = (1.0 - (2.0 / (1.0 + span))) |
|
223
|
|
|
assert 0.0 < decay_rate <= 1.0 |
|
224
|
|
|
|
|
225
|
|
|
return cls( |
|
226
|
|
|
inputs=inputs, |
|
227
|
|
|
window_length=window_length, |
|
228
|
|
|
decay_rate=decay_rate, |
|
229
|
|
|
) |
|
230
|
|
|
|
|
231
|
|
|
@classmethod |
|
232
|
|
|
@expect_types(halflife=Number) |
|
233
|
|
|
def from_halflife(cls, inputs, window_length, halflife): |
|
234
|
|
|
""" |
|
235
|
|
|
Convenience constructor for passing ``decay_rate`` in terms of half |
|
236
|
|
|
life. |
|
237
|
|
|
|
|
238
|
|
|
Forwards ``decay_rate`` as ``exp(log(.5) / halflife)``. This provides |
|
239
|
|
|
the behavior equivalent to passing `halflife` to pandas.ewma. |
|
240
|
|
|
|
|
241
|
|
|
Example |
|
242
|
|
|
------- |
|
243
|
|
|
.. code-block:: python |
|
244
|
|
|
|
|
245
|
|
|
# Equivalent to: |
|
246
|
|
|
# my_ewma = EWMA( |
|
247
|
|
|
# inputs=[USEquityPricing.close], |
|
248
|
|
|
# window_length=30, |
|
249
|
|
|
# decay_rate=np.exp(np.log(0.5) / 15), |
|
250
|
|
|
# ) |
|
251
|
|
|
my_ewma = EWMA.from_halflife( |
|
252
|
|
|
inputs=[USEquityPricing.close], |
|
253
|
|
|
window_length=30, |
|
254
|
|
|
halflife=15, |
|
255
|
|
|
) |
|
256
|
|
|
|
|
257
|
|
|
Note |
|
258
|
|
|
---- |
|
259
|
|
|
This classmethod is provided by both |
|
260
|
|
|
:class:`ExponentialWeightedMovingAverage` and |
|
261
|
|
|
:class:`ExponentialWeightedMovingStdDev`. |
|
262
|
|
|
""" |
|
263
|
|
|
if halflife <= 0: |
|
264
|
|
|
raise ValueError( |
|
265
|
|
|
"`span` must be a positive number. %s was passed." % halflife |
|
266
|
|
|
) |
|
267
|
|
|
decay_rate = exp(log(.5) / halflife) |
|
268
|
|
|
assert 0.0 < decay_rate <= 1.0 |
|
269
|
|
|
|
|
270
|
|
|
return cls( |
|
271
|
|
|
inputs=inputs, |
|
272
|
|
|
window_length=window_length, |
|
273
|
|
|
decay_rate=decay_rate, |
|
274
|
|
|
) |
|
275
|
|
|
|
|
276
|
|
|
@classmethod |
|
277
|
|
|
def from_center_of_mass(cls, inputs, window_length, center_of_mass): |
|
278
|
|
|
""" |
|
279
|
|
|
Convenience constructor for passing `decay_rate` in terms of center of |
|
280
|
|
|
mass. |
|
281
|
|
|
|
|
282
|
|
|
Forwards `decay_rate` as `1 - (1 / 1 + center_of_mass)`. This provides |
|
283
|
|
|
behavior equivalent to passing `center_of_mass` to pandas.ewma. |
|
284
|
|
|
|
|
285
|
|
|
Example |
|
286
|
|
|
------- |
|
287
|
|
|
.. code-block:: python |
|
288
|
|
|
|
|
289
|
|
|
# Equivalent to: |
|
290
|
|
|
# my_ewma = EWMA( |
|
291
|
|
|
# inputs=[USEquityPricing.close], |
|
292
|
|
|
# window_length=30, |
|
293
|
|
|
# decay_rate=(1 - (1 / 15.0)), |
|
294
|
|
|
# ) |
|
295
|
|
|
my_ewma = EWMA.from_center_of_mass( |
|
296
|
|
|
inputs=[USEquityPricing.close], |
|
297
|
|
|
window_length=30, |
|
298
|
|
|
center_of_mass=15, |
|
299
|
|
|
) |
|
300
|
|
|
|
|
301
|
|
|
Note |
|
302
|
|
|
---- |
|
303
|
|
|
This classmethod is provided by both |
|
304
|
|
|
:class:`ExponentialWeightedMovingAverage` and |
|
305
|
|
|
:class:`ExponentialWeightedMovingStdDev`. |
|
306
|
|
|
""" |
|
307
|
|
|
return cls( |
|
308
|
|
|
inputs=inputs, |
|
309
|
|
|
window_length=window_length, |
|
310
|
|
|
decay_rate=(1.0 - (1.0 / (1.0 + center_of_mass))), |
|
311
|
|
|
) |
|
312
|
|
|
|
|
313
|
|
|
|
|
314
|
|
|
class ExponentialWeightedMovingAverage(_ExponentialWeightedFactor): |
|
315
|
|
|
""" |
|
316
|
|
|
Exponentially Weighted Moving Average |
|
317
|
|
|
|
|
318
|
|
|
**Default Inputs:** None |
|
319
|
|
|
|
|
320
|
|
|
**Default Window Length:** None |
|
321
|
|
|
|
|
322
|
|
|
Parameters |
|
323
|
|
|
---------- |
|
324
|
|
|
inputs : length-1 list/tuple of BoundColumn |
|
325
|
|
|
The expression over which to compute the average. |
|
326
|
|
|
window_length : int > 0 |
|
327
|
|
|
Length of the lookback window over which to compute the average. |
|
328
|
|
|
decay_rate : float, 0 < decay_rate <= 1 |
|
329
|
|
|
Weighting factor by which to discount past observations. |
|
330
|
|
|
|
|
331
|
|
|
When calculating historical averages, rows are multiplied by the |
|
332
|
|
|
sequence:: |
|
333
|
|
|
|
|
334
|
|
|
decay_rate, decay_rate ** 2, decay_rate ** 3, ... |
|
335
|
|
|
|
|
336
|
|
|
Notes |
|
337
|
|
|
----- |
|
338
|
|
|
- This class can also be imported under the name ``EWMA``. |
|
339
|
|
|
|
|
340
|
|
|
See Also |
|
341
|
|
|
-------- |
|
342
|
|
|
:func:`pandas.ewma` |
|
343
|
|
|
""" |
|
344
|
|
|
def compute(self, today, assets, out, data, decay_rate): |
|
345
|
|
|
out[:] = average( |
|
346
|
|
|
data, |
|
347
|
|
|
axis=0, |
|
348
|
|
|
weights=self.weights(len(data), decay_rate), |
|
349
|
|
|
) |
|
350
|
|
|
|
|
351
|
|
|
|
|
352
|
|
|
class ExponentialWeightedMovingStdDev(_ExponentialWeightedFactor): |
|
353
|
|
|
""" |
|
354
|
|
|
Exponentially Weighted Moving Standard Deviation |
|
355
|
|
|
|
|
356
|
|
|
**Default Inputs:** None |
|
357
|
|
|
|
|
358
|
|
|
**Default Window Length:** None |
|
359
|
|
|
|
|
360
|
|
|
Parameters |
|
361
|
|
|
---------- |
|
362
|
|
|
inputs : length-1 list/tuple of BoundColumn |
|
363
|
|
|
The expression over which to compute the average. |
|
364
|
|
|
window_length : int > 0 |
|
365
|
|
|
Length of the lookback window over which to compute the average. |
|
366
|
|
|
decay_rate : float, 0 < decay_rate <= 1 |
|
367
|
|
|
Weighting factor by which to discount past observations. |
|
368
|
|
|
|
|
369
|
|
|
When calculating historical averages, rows are multiplied by the |
|
370
|
|
|
sequence:: |
|
371
|
|
|
|
|
372
|
|
|
decay_rate, decay_rate ** 2, decay_rate ** 3, ... |
|
373
|
|
|
|
|
374
|
|
|
Notes |
|
375
|
|
|
----- |
|
376
|
|
|
- This class can also be imported under the name ``EWMSTD``. |
|
377
|
|
|
|
|
378
|
|
|
See Also |
|
379
|
|
|
-------- |
|
380
|
|
|
:func:`pandas.ewmstd` |
|
381
|
|
|
""" |
|
382
|
|
|
|
|
383
|
|
|
def compute(self, today, assets, out, data, decay_rate): |
|
384
|
|
|
weights = self.weights(len(data), decay_rate) |
|
385
|
|
|
|
|
386
|
|
|
mean = average(data, axis=0, weights=weights) |
|
387
|
|
|
variance = average((data - mean) ** 2, axis=0, weights=weights) |
|
388
|
|
|
|
|
389
|
|
|
squared_weight_sum = (np_sum(weights) ** 2) |
|
390
|
|
|
bias_correction = ( |
|
391
|
|
|
squared_weight_sum / (squared_weight_sum - np_sum(weights ** 2)) |
|
392
|
|
|
) |
|
393
|
|
|
out[:] = sqrt(variance * bias_correction) |
|
394
|
|
|
|
|
395
|
|
|
|
|
396
|
|
|
# Convenience aliases. |
|
397
|
|
|
EWMA = ExponentialWeightedMovingAverage |
|
398
|
|
|
EWMSTD = ExponentialWeightedMovingStdDev |
|
399
|
|
|
|