Total Complexity | 150 |
Total Lines | 1293 |
Duplicated Lines | 0 % |
Complex classes like zipline.data.DataPortal often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # |
||
54 | class DataPortal(object): |
||
55 | def __init__(self, |
||
56 | env, |
||
57 | sim_params=None, |
||
58 | minutes_equities_path=None, |
||
59 | daily_equities_path=None, |
||
60 | adjustment_reader=None, |
||
61 | equity_sid_path_func=None, |
||
62 | futures_sid_path_func=None): |
||
63 | self.env = env |
||
64 | |||
65 | # Internal pointers to the current dt (can be minute) and current day. |
||
66 | # In daily mode, they point to the same thing. In minute mode, it's |
||
67 | # useful to have separate pointers to the current day and to the |
||
68 | # current minute. These pointers are updated by the |
||
69 | # AlgorithmSimulator's transform loop. |
||
70 | self.current_dt = None |
||
71 | self.current_day = None |
||
72 | |||
73 | # This is a bit ugly, but is here for performance reasons. In minute |
||
74 | # simulations, we need to very quickly go from dt -> (# of minutes |
||
75 | # since Jan 1 2002 9:30 Eastern). |
||
76 | # |
||
77 | # The clock that heartbeats the simulation has all the necessary |
||
78 | # information to do this calculation very quickly. This value is |
||
79 | # calculated there, and then set here |
||
80 | self.cur_data_offset = 0 |
||
81 | |||
82 | self.views = {} |
||
83 | |||
84 | if minutes_equities_path is None and daily_equities_path is None: |
||
85 | raise ValueError("Must provide at least one of minute or " |
||
86 | "daily data path!") |
||
87 | |||
88 | self._minutes_equities_path = minutes_equities_path |
||
89 | self._daily_equities_path = daily_equities_path |
||
90 | self._asset_finder = env.asset_finder |
||
91 | |||
92 | self._carrays = { |
||
93 | 'open': {}, |
||
94 | 'high': {}, |
||
95 | 'low': {}, |
||
96 | 'close': {}, |
||
97 | 'volume': {}, |
||
98 | 'sid': {}, |
||
99 | 'dt': {}, |
||
100 | } |
||
101 | |||
102 | self._adjustment_reader = adjustment_reader |
||
103 | |||
104 | # caches of sid -> adjustment list |
||
105 | self._splits_dict = {} |
||
106 | self._mergers_dict = {} |
||
107 | self._dividends_dict = {} |
||
108 | |||
109 | # Pointer to the daily bcolz file. |
||
110 | self._daily_equities_data = None |
||
111 | |||
112 | # Cache of sid -> the first trading day of an asset, even if that day |
||
113 | # is before 1/2/2002. |
||
114 | self._asset_start_dates = {} |
||
115 | self._asset_end_dates = {} |
||
116 | |||
117 | # Fetcher state |
||
118 | self._augmented_sources_map = {} |
||
119 | self._fetcher_df = None |
||
120 | |||
121 | self._sim_params = sim_params |
||
122 | if self._sim_params is not None: |
||
123 | self._data_frequency = self._sim_params.data_frequency |
||
124 | else: |
||
125 | self._data_frequency = "minute" |
||
126 | |||
127 | self._equity_sid_path_func = equity_sid_path_func |
||
128 | self._futures_sid_path_func = futures_sid_path_func |
||
129 | |||
130 | self.DAILY_PRICE_ADJUSTMENT_FACTOR = 0.001 |
||
131 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001 |
||
132 | |||
133 | def handle_extra_source(self, source_df): |
||
134 | """ |
||
135 | Extra sources always have a sid column. |
||
136 | |||
137 | We expand the given data (by forward filling) to the full range of |
||
138 | the simulation dates, so that lookup is fast during simulation. |
||
139 | """ |
||
140 | if source_df is None: |
||
141 | return |
||
142 | |||
143 | self._fetcher_df = source_df |
||
144 | |||
145 | # source_df's sid column can either consist of assets we know about |
||
146 | # (such as sid(24)) or of assets we don't know about (such as |
||
147 | # palladium). |
||
148 | # |
||
149 | # In both cases, we break up the dataframe into individual dfs |
||
150 | # that only contain a single asset's information. ie, if source_df |
||
151 | # has data for PALLADIUM and GOLD, we split source_df into two |
||
152 | # dataframes, one for each. (same applies if source_df has data for |
||
153 | # AAPL and IBM). |
||
154 | # |
||
155 | # We then take each child df and reindex it to the simulation's date |
||
156 | # range by forward-filling missing values. this makes reads simpler. |
||
157 | # |
||
158 | # Finally, we store the data. For each fetcher column, we store a |
||
159 | # mapping in self.augmented_sources_map from it to a dictionary of |
||
160 | # asset -> df. In other words, |
||
161 | # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df |
||
162 | # holding that data. |
||
163 | |||
164 | if self._sim_params.emission_rate == "daily": |
||
165 | fetcher_date_index = self.env.days_in_range( |
||
166 | start=self._sim_params.period_start, |
||
167 | end=self._sim_params.period_end |
||
168 | ) |
||
169 | else: |
||
170 | fetcher_date_index = self.env.minutes_for_days_in_range( |
||
171 | start=self._sim_params.period_start, |
||
172 | end=self._sim_params.period_end |
||
173 | ) |
||
174 | |||
175 | # break the source_df up into one dataframe per sid. this lets |
||
176 | # us (more easily) calculate accurate start/end dates for each sid, |
||
177 | # de-dup data, and expand the data to fit the backtest start/end date. |
||
178 | grouped_by_sid = source_df.groupby(["sid"]) |
||
179 | group_names = grouped_by_sid.groups.keys() |
||
180 | group_dict = {} |
||
181 | for group_name in group_names: |
||
182 | group_dict[group_name] = grouped_by_sid.get_group(group_name) |
||
183 | |||
184 | for identifier, df in group_dict.iteritems(): |
||
185 | # before reindexing, save the earliest and latest dates |
||
186 | earliest_date = df.index[0] |
||
187 | latest_date = df.index[-1] |
||
188 | |||
189 | # since we know this df only contains a single sid, we can safely |
||
190 | # de-dupe by the index (dt) |
||
191 | df = df.groupby(level=0).last() |
||
192 | |||
193 | # reindex the dataframe based on the backtest start/end date. |
||
194 | # this makes reads easier during the backtest. |
||
195 | df = df.reindex(index=fetcher_date_index, method='ffill') |
||
196 | |||
197 | if not isinstance(identifier, Asset): |
||
198 | # for fake assets we need to store a start/end date |
||
199 | self._asset_start_dates[identifier] = earliest_date |
||
200 | self._asset_end_dates[identifier] = latest_date |
||
201 | |||
202 | for col_name in df.columns.difference(['sid']): |
||
203 | if col_name not in self._augmented_sources_map: |
||
204 | self._augmented_sources_map[col_name] = {} |
||
205 | |||
206 | self._augmented_sources_map[col_name][identifier] = df |
||
207 | |||
208 | def _open_daily_file(self): |
||
209 | if self._daily_equities_data is None: |
||
210 | self._daily_equities_data = bcolz.open(self._daily_equities_path) |
||
211 | self.daily_equities_attrs = self._daily_equities_data.attrs |
||
212 | |||
213 | return self._daily_equities_data, self.daily_equities_attrs |
||
214 | |||
215 | def _open_minute_file(self, field, asset): |
||
216 | sid_str = str(int(asset)) |
||
217 | |||
218 | try: |
||
219 | carray = self._carrays[field][sid_str] |
||
220 | except KeyError: |
||
221 | carray = self._carrays[field][sid_str] = \ |
||
222 | self._get_ctable(asset)[field] |
||
223 | |||
224 | return carray |
||
225 | |||
226 | def _get_ctable(self, asset): |
||
227 | sid = int(asset) |
||
228 | |||
229 | if isinstance(asset, Future) and \ |
||
230 | self._futures_sid_path_func is not None: |
||
231 | path = self._futures_sid_path_func( |
||
232 | self._minutes_equities_path, sid |
||
233 | ) |
||
234 | elif isinstance(asset, Equity) and \ |
||
235 | self._equity_sid_path_func is not None: |
||
236 | path = self._equity_sid_path_func( |
||
237 | self._minutes_equities_path, sid |
||
238 | ) |
||
239 | else: |
||
240 | path = "{0}/{1}.bcolz".format(self._minutes_equities_path, sid) |
||
241 | |||
242 | return bcolz.open(path, mode='r') |
||
243 | |||
244 | def get_previous_value(self, asset, field, dt): |
||
245 | """ |
||
246 | Given an asset and a column and a dt, returns the previous value for |
||
247 | the same asset/column pair. If this data portal is in minute mode, |
||
248 | it's the previous minute value, otherwise it's the previous day's |
||
249 | value. |
||
250 | |||
251 | Parameters |
||
252 | --------- |
||
253 | asset : Asset |
||
254 | The asset whose data is desired. |
||
255 | |||
256 | field: string |
||
257 | The desired field of the asset. Valid values are "open", |
||
258 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
259 | "price". |
||
260 | |||
261 | dt: pd.Timestamp |
||
262 | The timestamp from which to go back in time one slot. |
||
263 | |||
264 | Returns |
||
265 | ------- |
||
266 | The value of the desired field at the desired time. |
||
267 | """ |
||
268 | if self._data_frequency == 'daily': |
||
269 | prev_dt = self.env.previous_trading_day(dt) |
||
270 | elif self._data_frequency == 'minute': |
||
271 | prev_dt = self.env.previous_market_minute(dt) |
||
272 | |||
273 | return self.get_spot_value(asset, field, prev_dt) |
||
274 | |||
275 | def _check_fetcher(self, asset, column, day): |
||
276 | # if there is a fetcher column called "price", only look at it if |
||
277 | # it's on something like palladium and not AAPL (since our own price |
||
278 | # data always wins when dealing with assets) |
||
279 | look_in_augmented_sources = column in self._augmented_sources_map and \ |
||
280 | not (column in BASE_FIELDS and isinstance(asset, Asset)) |
||
281 | |||
282 | if look_in_augmented_sources: |
||
283 | # we're being asked for a fetcher field |
||
284 | try: |
||
285 | return self._augmented_sources_map[column][asset].\ |
||
286 | loc[day, column] |
||
287 | except: |
||
288 | log.error( |
||
289 | "Could not find value for asset={0}, current_day={1}," |
||
290 | "column={2}".format( |
||
291 | str(asset), |
||
292 | str(self.current_day), |
||
293 | str(column))) |
||
294 | |||
295 | raise KeyError |
||
296 | |||
297 | def get_spot_value(self, asset, field, dt=None): |
||
298 | """ |
||
299 | Public API method that returns a scalar value representing the value |
||
300 | of the desired asset's field at either the given dt, or this data |
||
301 | portal's current_dt. |
||
302 | |||
303 | Parameters |
||
304 | --------- |
||
305 | asset : Asset |
||
306 | The asset whose data is desired. |
||
307 | |||
308 | field: string |
||
309 | The desired field of the asset. Valid values are "open", |
||
310 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
311 | "price". |
||
312 | |||
313 | dt: pd.Timestamp |
||
314 | (Optional) The timestamp for the desired value. |
||
315 | |||
316 | Returns |
||
317 | ------- |
||
318 | The value of the desired field at the desired time. |
||
319 | """ |
||
320 | fetcher_val = self._check_fetcher(asset, field, |
||
321 | (dt or self.current_dt)) |
||
322 | |||
323 | if fetcher_val is not None: |
||
324 | return fetcher_val |
||
325 | |||
326 | if field not in BASE_FIELDS: |
||
327 | raise KeyError("Invalid column: " + str(field)) |
||
328 | |||
329 | column_to_use = BASE_FIELDS[field] |
||
330 | |||
331 | if isinstance(asset, int): |
||
332 | asset = self._asset_finder.retrieve_asset(asset) |
||
333 | |||
334 | self._check_is_currently_alive(asset, dt) |
||
335 | |||
336 | if self._data_frequency == "daily": |
||
337 | day_to_use = dt or self.current_day |
||
338 | return self._get_daily_data(asset, column_to_use, day_to_use) |
||
339 | else: |
||
340 | dt_to_use = dt or self.current_dt |
||
341 | |||
342 | if isinstance(asset, Future): |
||
343 | return self._get_minute_spot_value_future( |
||
344 | asset, column_to_use, dt_to_use) |
||
345 | else: |
||
346 | return self._get_minute_spot_value( |
||
347 | asset, column_to_use, dt_to_use) |
||
348 | |||
349 | def _get_minute_spot_value_future(self, asset, column, dt): |
||
350 | # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week. |
||
351 | # The file attributes contain the "start_dt" and "last_dt" fields, |
||
352 | # which represent the time period for this bcolz file. |
||
353 | |||
354 | # The start_dt is midnight of the first day that this future started |
||
355 | # trading. |
||
356 | |||
357 | # figure out the # of minutes between dt and this asset's start_dt |
||
358 | start_date = self._get_asset_start_date(asset) |
||
359 | minute_offset = int((dt - start_date).total_seconds() / 60) |
||
360 | |||
361 | if minute_offset < 0: |
||
362 | # asking for a date that is before the asset's start date, no dice |
||
363 | return 0.0 |
||
364 | |||
365 | # then just index into the bcolz carray at that offset |
||
366 | carray = self._open_minute_file(column, asset) |
||
367 | result = carray[minute_offset] |
||
368 | |||
369 | # if there's missing data, go backwards until we run out of file |
||
370 | while result == 0 and minute_offset > 0: |
||
371 | minute_offset -= 1 |
||
372 | result = carray[minute_offset] |
||
373 | |||
374 | if column != 'volume': |
||
375 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
376 | else: |
||
377 | return result |
||
378 | |||
379 | def _get_minute_spot_value(self, asset, column, dt): |
||
380 | # All our minute bcolz files are written starting on 1/2/2002, |
||
381 | # with 390 minutes per day, regarding of when the security started |
||
382 | # trading. This lets us avoid doing an offset calculation related |
||
383 | # to the asset start date. Hard-coding 390 minutes per day lets us |
||
384 | # ignore half days. |
||
385 | |||
386 | if dt == self.current_dt: |
||
387 | minute_offset_to_use = self.cur_data_offset |
||
388 | else: |
||
389 | # this is the slow path. |
||
390 | # dt was passed in, so calculate the offset. |
||
391 | # = (390 * number of trading days since 1/2/2002) + |
||
392 | # (index of minute in day) |
||
393 | given_day = pd.Timestamp(dt.date(), tz='utc') |
||
394 | day_index = tradingcalendar.trading_days.searchsorted( |
||
395 | given_day) - INDEX_OF_FIRST_TRADING_DAY |
||
396 | |||
397 | # if dt is before the first market minute, minute_index |
||
398 | # will be 0. if it's after the last market minute, it'll |
||
399 | # be len(minutes_for_day) |
||
400 | minute_index = self.env.market_minutes_for_day(given_day).\ |
||
401 | searchsorted(dt) |
||
402 | |||
403 | minute_offset_to_use = (day_index * 390) + minute_index |
||
404 | |||
405 | carray = self._open_minute_file(column, asset) |
||
406 | result = carray[minute_offset_to_use] |
||
407 | |||
408 | if result == 0: |
||
409 | # if the given minute doesn't have data, we need to seek |
||
410 | # backwards until we find data. This makes the data |
||
411 | # forward-filled. |
||
412 | |||
413 | # get this asset's start date, so that we don't look before it. |
||
414 | start_date = self._get_asset_start_date(asset) |
||
415 | start_date_idx = tradingcalendar.trading_days.searchsorted( |
||
416 | start_date) - INDEX_OF_FIRST_TRADING_DAY |
||
417 | start_day_offset = start_date_idx * 390 |
||
418 | |||
419 | original_start = minute_offset_to_use |
||
420 | |||
421 | while result == 0 and minute_offset_to_use > start_day_offset: |
||
422 | minute_offset_to_use -= 1 |
||
423 | result = carray[minute_offset_to_use] |
||
424 | |||
425 | # once we've found data, we need to check whether it needs |
||
426 | # to be adjusted. |
||
427 | if result != 0: |
||
428 | minutes = self.env.market_minute_window( |
||
429 | start=(dt or self.current_dt), |
||
430 | count=(original_start - minute_offset_to_use + 1), |
||
431 | step=-1 |
||
432 | ).order() |
||
433 | |||
434 | # only need to check for adjustments if we've gone back |
||
435 | # far enough to cross the day boundary. |
||
436 | if minutes[0].date() != minutes[-1].date(): |
||
437 | # create a np array of size minutes, fill it all with |
||
438 | # the same value. and adjust the array. |
||
439 | arr = np.array([result] * len(minutes), |
||
440 | dtype=np.float64) |
||
441 | self._apply_all_adjustments( |
||
442 | data=arr, |
||
443 | asset=asset, |
||
444 | dts=minutes, |
||
445 | field=column |
||
446 | ) |
||
447 | |||
448 | # The first value of the adjusted array is the value |
||
449 | # we want. |
||
450 | result = arr[0] |
||
451 | |||
452 | if column != 'volume': |
||
453 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
454 | else: |
||
455 | return result |
||
456 | |||
457 | def _get_daily_data(self, asset, column, dt): |
||
458 | dt = pd.Timestamp(dt.date(), tz='utc') |
||
459 | daily_data, daily_attrs = self._open_daily_file() |
||
460 | |||
461 | sid = int(asset) |
||
462 | |||
463 | # find the start index in the daily file for this asset |
||
464 | asset_file_index = daily_attrs['first_row'][str(sid)] |
||
465 | |||
466 | # find when the asset started trading |
||
467 | asset_data_start_date = max(self._get_asset_start_date(asset), |
||
468 | FIRST_TRADING_DAY) |
||
469 | |||
470 | tradingdays = tradingcalendar.trading_days |
||
471 | |||
472 | # figure out how many days it's been between now and when this |
||
473 | # asset starting trading |
||
474 | # FIXME can cache tradingdays.searchsorted(asset_data_start_date) |
||
475 | window_offset = tradingdays.searchsorted(dt) - \ |
||
476 | tradingdays.searchsorted(asset_data_start_date) |
||
477 | |||
478 | # and use that offset to find our lookup index |
||
479 | lookup_idx = asset_file_index + window_offset |
||
480 | |||
481 | # sanity check |
||
482 | assert lookup_idx >= asset_file_index |
||
483 | assert lookup_idx <= daily_attrs['last_row'][str(sid)] + 1 |
||
484 | |||
485 | ctable = daily_data[column] |
||
486 | raw_value = ctable[lookup_idx] |
||
487 | |||
488 | while raw_value == 0 and lookup_idx > asset_file_index: |
||
489 | lookup_idx -= 1 |
||
490 | raw_value = ctable[lookup_idx] |
||
491 | |||
492 | if column != 'volume': |
||
493 | return raw_value * self.DAILY_PRICE_ADJUSTMENT_FACTOR |
||
494 | else: |
||
495 | return raw_value |
||
496 | |||
497 | def _get_history_daily_window(self, assets, end_dt, bar_count, |
||
498 | field_to_use): |
||
499 | """ |
||
500 | Internal method that returns a dataframe containing history bars |
||
501 | of daily frequency for the given sids. |
||
502 | """ |
||
503 | day_idx = tradingcalendar.trading_days.searchsorted(end_dt.date()) |
||
504 | days_for_window = tradingcalendar.trading_days[ |
||
505 | (day_idx - bar_count + 1):(day_idx + 1)] |
||
506 | |||
507 | if len(assets) == 0: |
||
508 | return pd.DataFrame(None, |
||
509 | index=days_for_window, |
||
510 | columns=None) |
||
511 | |||
512 | data = [] |
||
513 | |||
514 | for asset in assets: |
||
515 | if isinstance(asset, Future): |
||
516 | data.append(self._get_history_daily_window_future( |
||
517 | asset, days_for_window, end_dt, field_to_use |
||
518 | )) |
||
519 | else: |
||
520 | data.append(self._get_history_daily_window_equity( |
||
521 | asset, days_for_window, end_dt, field_to_use |
||
522 | )) |
||
523 | |||
524 | return pd.DataFrame( |
||
525 | np.array(data).T, |
||
526 | index=days_for_window, |
||
527 | columns=assets |
||
528 | ) |
||
529 | |||
530 | def _get_history_daily_window_future(self, asset, days_for_window, |
||
531 | end_dt, column): |
||
532 | # Since we don't have daily bcolz files for futures (yet), use minute |
||
533 | # bars to calculate the daily values. |
||
534 | data = [] |
||
535 | data_groups = [] |
||
536 | |||
537 | # get all the minutes for the days NOT including today |
||
538 | for day in days_for_window[:-1]: |
||
539 | minutes = self.env.market_minutes_for_day(day) |
||
540 | |||
541 | values_for_day = np.zeros(len(minutes), dtype=np.float64) |
||
542 | |||
543 | for idx, minute in enumerate(minutes): |
||
544 | minute_val = self._get_minute_spot_value_future( |
||
545 | asset, column, minute |
||
546 | ) |
||
547 | |||
548 | values_for_day[idx] = minute_val |
||
549 | |||
550 | data_groups.append(values_for_day) |
||
551 | |||
552 | # get the minutes for today |
||
553 | last_day_minutes = pd.date_range( |
||
554 | start=self.env.get_open_and_close(end_dt)[0], |
||
555 | end=end_dt, |
||
556 | freq="T" |
||
557 | ) |
||
558 | |||
559 | values_for_last_day = np.zeros(len(last_day_minutes), dtype=np.float64) |
||
560 | |||
561 | for idx, minute in enumerate(last_day_minutes): |
||
562 | minute_val = self._get_minute_spot_value_future( |
||
563 | asset, column, minute |
||
564 | ) |
||
565 | |||
566 | values_for_last_day[idx] = minute_val |
||
567 | |||
568 | data_groups.append(values_for_last_day) |
||
569 | |||
570 | for group in data_groups: |
||
571 | if len(group) == 0: |
||
572 | continue |
||
573 | |||
574 | if column == 'volume': |
||
575 | data.append(np.sum(group)) |
||
576 | elif column == 'open': |
||
577 | data.append(group[0]) |
||
578 | elif column == 'close': |
||
579 | data.append(group[-1]) |
||
580 | elif column == 'high': |
||
581 | data.append(np.amax(group)) |
||
582 | elif column == 'low': |
||
583 | data.append(np.amin(group)) |
||
584 | |||
585 | return data |
||
586 | |||
587 | def _get_history_daily_window_equity(self, asset, days_for_window, |
||
588 | end_dt, field_to_use): |
||
589 | sid = int(asset) |
||
590 | ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0 |
||
591 | |||
592 | # get the start and end dates for this sid |
||
593 | end_date = self._get_asset_end_date(asset) |
||
594 | |||
595 | if ends_at_midnight or (days_for_window[-1] > end_date): |
||
596 | # two cases where we use daily data for the whole range: |
||
597 | # 1) the history window ends at midnight utc. |
||
598 | # 2) the last desired day of the window is after the |
||
599 | # last trading day, use daily data for the whole range. |
||
600 | return self._get_daily_window_for_sid( |
||
601 | asset, |
||
602 | field_to_use, |
||
603 | days_for_window, |
||
604 | extra_slot=False |
||
605 | ) |
||
606 | else: |
||
607 | # for the last day of the desired window, use minute |
||
608 | # data and aggregate it. |
||
609 | all_minutes_for_day = self.env.market_minutes_for_day( |
||
610 | pd.Timestamp(end_dt.date())) |
||
611 | |||
612 | last_minute_idx = all_minutes_for_day.searchsorted(end_dt) |
||
613 | |||
614 | # these are the minutes for the partial day |
||
615 | minutes_for_partial_day =\ |
||
616 | all_minutes_for_day[0:(last_minute_idx + 1)] |
||
617 | |||
618 | daily_data = self._get_daily_window_for_sid( |
||
619 | sid, |
||
620 | field_to_use, |
||
621 | days_for_window[0:-1] |
||
622 | ) |
||
623 | |||
624 | minute_data = self._get_minute_window_for_equity( |
||
625 | sid, |
||
626 | field_to_use, |
||
627 | minutes_for_partial_day |
||
628 | ) |
||
629 | |||
630 | if field_to_use == 'volume': |
||
631 | minute_value = np.sum(minute_data) |
||
632 | elif field_to_use == 'open': |
||
633 | minute_value = minute_data[0] |
||
634 | elif field_to_use == 'close': |
||
635 | minute_value = minute_data[-1] |
||
636 | elif field_to_use == 'high': |
||
637 | minute_value = np.amax(minute_data) |
||
638 | elif field_to_use == 'low': |
||
639 | minute_value = np.amin(minute_data) |
||
640 | |||
641 | # append the partial day. |
||
642 | daily_data[-1] = minute_value |
||
643 | |||
644 | return daily_data |
||
645 | |||
646 | def _get_history_minute_window(self, assets, end_dt, bar_count, |
||
647 | field_to_use): |
||
648 | """ |
||
649 | Internal method that returns a dataframe containing history bars |
||
650 | of minute frequency for the given sids. |
||
651 | """ |
||
652 | # get all the minutes for this window |
||
653 | minutes_for_window = self.env.market_minute_window( |
||
654 | end_dt, bar_count, step=-1)[::-1] |
||
655 | |||
656 | # but then cut it down to only the minutes after |
||
657 | # FIRST_TRADING_MINUTE |
||
658 | modified_minutes_for_window = minutes_for_window[ |
||
659 | minutes_for_window.slice_indexer(FIRST_TRADING_MINUTE)] |
||
660 | |||
661 | modified_minutes_length = len(modified_minutes_for_window) |
||
662 | |||
663 | if modified_minutes_length == 0: |
||
664 | raise ValueError("Cannot calculate history window that ends" |
||
665 | "before 2002-01-02 14:31 UTC!") |
||
666 | |||
667 | data = [] |
||
668 | bars_to_prepend = 0 |
||
669 | nans_to_prepend = None |
||
670 | |||
671 | if modified_minutes_length < bar_count and \ |
||
672 | (modified_minutes_for_window[0] == FIRST_TRADING_MINUTE): |
||
673 | # the beginning of the window goes before our global trading |
||
674 | # start date |
||
675 | bars_to_prepend = bar_count - modified_minutes_length |
||
676 | nans_to_prepend = np.repeat(np.nan, bars_to_prepend) |
||
677 | |||
678 | if len(assets) == 0: |
||
679 | return pd.DataFrame( |
||
680 | None, |
||
681 | index=modified_minutes_for_window, |
||
682 | columns=None |
||
683 | ) |
||
684 | |||
685 | for asset in assets: |
||
686 | asset_minute_data = self._get_minute_window_for_asset( |
||
687 | asset, |
||
688 | field_to_use, |
||
689 | modified_minutes_for_window |
||
690 | ) |
||
691 | |||
692 | if bars_to_prepend != 0: |
||
693 | asset_minute_data = np.insert(asset_minute_data, 0, |
||
694 | nans_to_prepend) |
||
695 | |||
696 | data.append(asset_minute_data) |
||
697 | |||
698 | return pd.DataFrame( |
||
699 | np.array(data).T, |
||
700 | index=minutes_for_window, |
||
701 | columns=map(int, assets) |
||
702 | ) |
||
703 | |||
704 | def get_history_window(self, assets, end_dt, bar_count, frequency, field, |
||
705 | ffill=True): |
||
706 | """ |
||
707 | Public API method that returns a dataframe containing the requested |
||
708 | history window. Data is fully adjusted. |
||
709 | |||
710 | Parameters |
||
711 | --------- |
||
712 | assets : list of zipline.data.Asset objects |
||
713 | The assets whose data is desired. |
||
714 | |||
715 | bar_count: int |
||
716 | The number of bars desired. |
||
717 | |||
718 | frequency: string |
||
719 | "1d" or "1m" |
||
720 | |||
721 | field: string |
||
722 | The desired field of the asset. |
||
723 | |||
724 | ffill: boolean |
||
725 | Forward-fill missing values. Only has effect if field |
||
726 | is 'price'. |
||
727 | |||
728 | Returns |
||
729 | ------- |
||
730 | A dataframe containing the requested data. |
||
731 | """ |
||
732 | try: |
||
733 | field_to_use = BASE_FIELDS[field] |
||
734 | except KeyError: |
||
735 | raise ValueError("Invalid history field: " + str(field)) |
||
736 | |||
737 | # sanity check in case sids were passed in |
||
738 | assets = [(self.env.asset_finder.retrieve_asset(asset) if |
||
739 | isinstance(asset, int) else asset) for asset in assets] |
||
740 | |||
741 | if frequency == "1d": |
||
742 | df = self._get_history_daily_window(assets, end_dt, bar_count, |
||
743 | field_to_use) |
||
744 | elif frequency == "1m": |
||
745 | df = self._get_history_minute_window(assets, end_dt, bar_count, |
||
746 | field_to_use) |
||
747 | else: |
||
748 | raise ValueError("Invalid frequency: {0}".format(frequency)) |
||
749 | |||
750 | # forward-fill if needed |
||
751 | if field == "price" and ffill: |
||
752 | df.fillna(method='ffill', inplace=True) |
||
753 | |||
754 | return df |
||
755 | |||
756 | def _get_minute_window_for_asset(self, asset, field, minutes_for_window): |
||
757 | """ |
||
758 | Internal method that gets a window of adjusted minute data for an asset |
||
759 | and specified date range. Used to support the history API method for |
||
760 | minute bars. |
||
761 | |||
762 | Missing bars are filled with NaN. |
||
763 | |||
764 | Parameters |
||
765 | ---------- |
||
766 | asset : Asset |
||
767 | The asset whose data is desired. |
||
768 | |||
769 | field: string |
||
770 | The specific field to return. "open", "high", "close_price", etc. |
||
771 | |||
772 | minutes_for_window: pd.DateTimeIndex |
||
773 | The list of minutes representing the desired window. Each minute |
||
774 | is a pd.Timestamp. |
||
775 | |||
776 | Returns |
||
777 | ------- |
||
778 | A numpy array with requested values. |
||
779 | """ |
||
780 | if isinstance(asset, int): |
||
781 | asset = self.env.asset_finder.retrieve_asset(asset) |
||
782 | |||
783 | if isinstance(asset, Future): |
||
784 | return self._get_minute_window_for_future(asset, field, |
||
785 | minutes_for_window) |
||
786 | else: |
||
787 | return self._get_minute_window_for_equity(asset, field, |
||
788 | minutes_for_window) |
||
789 | |||
790 | def _get_minute_window_for_future(self, asset, field, minutes_for_window): |
||
791 | # THIS IS TEMPORARY. For now, we are only exposing futures within |
||
792 | # equity trading hours (9:30 am to 4pm, Eastern). The easiest way to |
||
793 | # do this is to simply do a spot lookup for each desired minute. |
||
794 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
||
795 | for idx, minute in enumerate(minutes_for_window): |
||
796 | return_data[idx] = \ |
||
797 | self._get_minute_spot_value_future(asset, field, minute) |
||
798 | |||
799 | # Note: an improvement could be to find the consecutive runs within |
||
800 | # minutes_for_window, and use them to read the underlying ctable |
||
801 | # more efficiently. |
||
802 | |||
803 | # Once futures are on 24-hour clock, then we can just grab all the |
||
804 | # requested minutes in one shot from the ctable. |
||
805 | |||
806 | # no adjustments for futures, yay. |
||
807 | return return_data |
||
808 | |||
809 | def _get_minute_window_for_equity(self, asset, field, minutes_for_window): |
||
810 | # each sid's minutes are stored in a bcolz file |
||
811 | # the bcolz file has 390 bars per day, starting at 1/2/2002, regardless |
||
812 | # of when the asset started trading and regardless of half days. |
||
813 | # for a half day, the second half is filled with zeroes. |
||
814 | |||
815 | # find the position of start_dt in the entire timeline, go back |
||
816 | # bar_count bars, and that's the unadjusted data |
||
817 | raw_data = self._open_minute_file(field, asset) |
||
818 | |||
819 | start_idx = max(self._find_position_of_minute(minutes_for_window[0]), |
||
820 | 0) |
||
821 | end_idx = self._find_position_of_minute(minutes_for_window[-1]) + 1 |
||
822 | |||
823 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
||
824 | data_to_copy = raw_data[start_idx:end_idx] |
||
825 | |||
826 | num_minutes = len(minutes_for_window) |
||
827 | |||
828 | # data_to_copy contains all the zeros (from 1pm to 4pm of an early |
||
829 | # close). num_minutes is the number of actual trading minutes. if |
||
830 | # these two have different lengths, that means that we need to trim |
||
831 | # away data due to early closes. |
||
832 | if len(data_to_copy) != num_minutes: |
||
833 | # get a copy of the minutes in Eastern time, since we depend on |
||
834 | # an early close being at 1pm Eastern. |
||
835 | eastern_minutes = minutes_for_window.tz_convert("US/Eastern") |
||
836 | |||
837 | # accumulate a list of indices of the last minute of an early |
||
838 | # close day. For example, if data_to_copy starts at 12:55 pm, and |
||
839 | # there are five minutes of real data before 180 zeroes, we would |
||
840 | # put 5 into last_minute_idx_of_early_close_day, because the fifth |
||
841 | # minute is the last "real" minute of the day. |
||
842 | last_minute_idx_of_early_close_day = [] |
||
843 | for minute_idx, minute_dt in enumerate(eastern_minutes): |
||
844 | if minute_idx == (num_minutes - 1): |
||
845 | break |
||
846 | |||
847 | if minute_dt.hour == 13 and minute_dt.minute == 0: |
||
848 | next_minute = eastern_minutes[minute_idx + 1] |
||
849 | if next_minute.hour != 13: |
||
850 | # minute_dt is the last minute of an early close day |
||
851 | last_minute_idx_of_early_close_day.append(minute_idx) |
||
852 | |||
853 | # spin through the list of early close markers, and use them to |
||
854 | # chop off 180 minutes at a time from data_to_copy. |
||
855 | for idx, early_close_minute_idx in \ |
||
856 | enumerate(last_minute_idx_of_early_close_day): |
||
857 | early_close_minute_idx -= (180 * idx) |
||
858 | data_to_copy = np.delete( |
||
859 | data_to_copy, |
||
860 | range( |
||
861 | early_close_minute_idx + 1, |
||
862 | early_close_minute_idx + 181 |
||
863 | ) |
||
864 | ) |
||
865 | |||
866 | return_data[0:len(data_to_copy)] = data_to_copy |
||
867 | |||
868 | self._apply_all_adjustments( |
||
869 | return_data, |
||
870 | asset, |
||
871 | minutes_for_window, |
||
872 | field, |
||
873 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
874 | ) |
||
875 | |||
876 | return return_data |
||
877 | |||
878 | def _apply_all_adjustments(self, data, asset, dts, field, |
||
879 | price_adj_factor=1.0): |
||
880 | """ |
||
881 | Internal method that applies all the necessary adjustments on the |
||
882 | given data array. |
||
883 | |||
884 | The adjustments are: |
||
885 | - splits |
||
886 | - if field != "volume": |
||
887 | - mergers |
||
888 | - dividends |
||
889 | - * 0.001 |
||
890 | - any zero fields replaced with NaN |
||
891 | - all values rounded to 3 digits after the decimal point. |
||
892 | |||
893 | Parameters |
||
894 | ---------- |
||
895 | data : np.array |
||
896 | The data to be adjusted. |
||
897 | |||
898 | asset: Asset |
||
899 | The asset whose data is being adjusted. |
||
900 | |||
901 | dts: pd.DateTimeIndex |
||
902 | The list of minutes or days representing the desired window. |
||
903 | |||
904 | field: string |
||
905 | The field whose values are in the data array. |
||
906 | |||
907 | price_adj_factor: float |
||
908 | Factor with which to adjust OHLC values. |
||
909 | Returns |
||
910 | ------- |
||
911 | None. The data array is modified in place. |
||
912 | """ |
||
913 | self._apply_adjustments_to_window( |
||
914 | self._get_adjustment_list( |
||
915 | asset, self._splits_dict, "SPLITS" |
||
916 | ), |
||
917 | data, |
||
918 | dts, |
||
919 | field != 'volume' |
||
920 | ) |
||
921 | |||
922 | if field != 'volume': |
||
923 | self._apply_adjustments_to_window( |
||
924 | self._get_adjustment_list( |
||
925 | asset, self._mergers_dict, "MERGERS" |
||
926 | ), |
||
927 | data, |
||
928 | dts, |
||
929 | True |
||
930 | ) |
||
931 | |||
932 | self._apply_adjustments_to_window( |
||
933 | self._get_adjustment_list( |
||
934 | asset, self._dividends_dict, "DIVIDENDS" |
||
935 | ), |
||
936 | data, |
||
937 | dts, |
||
938 | True |
||
939 | ) |
||
940 | |||
941 | data *= price_adj_factor |
||
942 | |||
943 | # if anything is zero, it's a missing bar, so replace it with NaN. |
||
944 | # we only want to do this for non-volume fields, because a missing |
||
945 | # volume should be 0. |
||
946 | data[data == 0] = np.NaN |
||
947 | |||
948 | np.around(data, 3, out=data) |
||
949 | |||
950 | @staticmethod |
||
951 | def _find_position_of_minute(minute_dt): |
||
952 | """ |
||
953 | Internal method that returns the position of the given minute in the |
||
954 | list of every trading minute since market open on 1/2/2002. |
||
955 | |||
956 | IMPORTANT: This method assumes every day is 390 minutes long, even |
||
957 | early closes. Our minute bcolz files are generated like this to |
||
958 | support fast lookup. |
||
959 | |||
960 | ex. this method would return 2 for 1/2/2002 9:32 AM Eastern. |
||
961 | |||
962 | Parameters |
||
963 | ---------- |
||
964 | minute_dt: pd.Timestamp |
||
965 | The minute whose position should be calculated. |
||
966 | |||
967 | Returns |
||
968 | ------- |
||
969 | The position of the given minute in the list of all trading minutes |
||
970 | since market open on 1/2/2002. |
||
971 | """ |
||
972 | day = minute_dt.date() |
||
973 | day_idx = tradingcalendar.trading_days.searchsorted(day) -\ |
||
974 | INDEX_OF_FIRST_TRADING_DAY |
||
975 | |||
976 | day_open = pd.Timestamp( |
||
977 | datetime( |
||
978 | year=day.year, |
||
979 | month=day.month, |
||
980 | day=day.day, |
||
981 | hour=9, |
||
982 | minute=31), |
||
983 | tz='US/Eastern').tz_convert('UTC') |
||
984 | |||
985 | minutes_offset = int((minute_dt - day_open).total_seconds()) / 60 |
||
986 | |||
987 | return int((390 * day_idx) + minutes_offset) |
||
988 | |||
989 | def _get_daily_window_for_sid(self, asset, field, days_in_window, |
||
990 | extra_slot=True): |
||
991 | """ |
||
992 | Internal method that gets a window of adjusted daily data for a sid |
||
993 | and specified date range. Used to support the history API method for |
||
994 | daily bars. |
||
995 | |||
996 | Parameters |
||
997 | ---------- |
||
998 | asset : Asset |
||
999 | The asset whose data is desired. |
||
1000 | |||
1001 | start_dt: pandas.Timestamp |
||
1002 | The start of the desired window of data. |
||
1003 | |||
1004 | bar_count: int |
||
1005 | The number of days of data to return. |
||
1006 | |||
1007 | field: string |
||
1008 | The specific field to return. "open", "high", "close_price", etc. |
||
1009 | |||
1010 | extra_slot: boolean |
||
1011 | Whether to allocate an extra slot in the returned numpy array. |
||
1012 | This extra slot will hold the data for the last partial day. It's |
||
1013 | much better to create it here than to create a copy of the array |
||
1014 | later just to add a slot. |
||
1015 | |||
1016 | Returns |
||
1017 | ------- |
||
1018 | A numpy array with requested values. Any missing slots filled with |
||
1019 | nan. |
||
1020 | |||
1021 | """ |
||
1022 | daily_data, daily_attrs = self._open_daily_file() |
||
1023 | |||
1024 | # the daily file stores each sid's daily OHLCV in a contiguous block. |
||
1025 | # the first row per sid is either 1/2/2002, or the sid's start_date if |
||
1026 | # it started after 1/2/2002. once a sid stops trading, there are no |
||
1027 | # rows for it. |
||
1028 | |||
1029 | bar_count = len(days_in_window) |
||
1030 | |||
1031 | # create an np.array of size bar_count |
||
1032 | if extra_slot: |
||
1033 | return_array = np.zeros((bar_count + 1,)) |
||
1034 | else: |
||
1035 | return_array = np.zeros((bar_count,)) |
||
1036 | |||
1037 | return_array[:] = np.NAN |
||
1038 | sid = int(asset) |
||
1039 | |||
1040 | # find the start index in the daily file for this asset |
||
1041 | asset_file_index = daily_attrs['first_row'][str(sid)] |
||
1042 | |||
1043 | trading_days = tradingcalendar.trading_days |
||
1044 | |||
1045 | # Calculate the starting day to use (either the asset's first trading |
||
1046 | # day, or 1/1/2002 (which is the 3028th day in the trading calendar). |
||
1047 | first_trading_day_to_use = max(trading_days.searchsorted( |
||
1048 | self._asset_start_dates[asset]), INDEX_OF_FIRST_TRADING_DAY) |
||
1049 | |||
1050 | # find the # of trading days between max(asset's first trade date, |
||
1051 | # 2002-01-02) and start_dt |
||
1052 | window_offset = (trading_days.searchsorted(days_in_window[0]) - |
||
1053 | first_trading_day_to_use) |
||
1054 | |||
1055 | start_index = max(asset_file_index, asset_file_index + window_offset) |
||
1056 | |||
1057 | if window_offset < 0 and (abs(window_offset) > bar_count): |
||
1058 | # consumer is requesting a history window that starts AND ends |
||
1059 | # before this equity started trading, so gtfo |
||
1060 | return return_array |
||
1061 | |||
1062 | # find the end index in the daily file. make sure it doesn't extend |
||
1063 | # past the end of this asset's data in the daily file. |
||
1064 | if window_offset < 0: |
||
1065 | # if the window_offset is negative, we need to decrease the |
||
1066 | # end_index accordingly. |
||
1067 | end_index = min(start_index + window_offset + bar_count, |
||
1068 | daily_attrs['last_row'][str(sid)] + 1) |
||
1069 | |||
1070 | # get data from bcolz file |
||
1071 | data = daily_data[field][start_index:end_index] |
||
1072 | |||
1073 | # have to leave a bunch of empty slots at the beginning of |
||
1074 | # return_array, since they represent days before this asset |
||
1075 | # started trading. |
||
1076 | return_array[abs(window_offset):bar_count] = data |
||
1077 | else: |
||
1078 | end_index = min(start_index + bar_count, |
||
1079 | daily_attrs['last_row'][str(sid)]) |
||
1080 | data = daily_data[field][start_index:(end_index + 1)] |
||
1081 | |||
1082 | if len(data) > len(return_array): |
||
1083 | return_array[:] = data[0:len(return_array)] |
||
1084 | else: |
||
1085 | return_array[0:len(data)] = data |
||
1086 | |||
1087 | self._apply_all_adjustments( |
||
1088 | return_array, |
||
1089 | sid, |
||
1090 | days_in_window, |
||
1091 | field, |
||
1092 | self.DAILY_PRICE_ADJUSTMENT_FACTOR |
||
1093 | ) |
||
1094 | |||
1095 | return return_array |
||
1096 | |||
1097 | @staticmethod |
||
1098 | def _apply_adjustments_to_window(adjustments_list, window_data, |
||
1099 | dts_in_window, multiply): |
||
1100 | if len(adjustments_list) == 0: |
||
1101 | return |
||
1102 | |||
1103 | # advance idx to the correct spot in the adjustments list, based on |
||
1104 | # when the window starts |
||
1105 | idx = 0 |
||
1106 | |||
1107 | while idx < len(adjustments_list) and dts_in_window[0] >\ |
||
1108 | adjustments_list[idx][0]: |
||
1109 | idx += 1 |
||
1110 | |||
1111 | # if we've advanced through all the adjustments, then there's nothing |
||
1112 | # to do. |
||
1113 | if idx == len(adjustments_list): |
||
1114 | return |
||
1115 | |||
1116 | while idx < len(adjustments_list): |
||
1117 | adjustment_to_apply = adjustments_list[idx] |
||
1118 | |||
1119 | if adjustment_to_apply[0] > dts_in_window[-1]: |
||
1120 | break |
||
1121 | |||
1122 | range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) |
||
1123 | if multiply: |
||
1124 | window_data[0:range_end] *= adjustment_to_apply[1] |
||
1125 | else: |
||
1126 | window_data[0:range_end] /= adjustment_to_apply[1] |
||
1127 | |||
1128 | idx += 1 |
||
1129 | |||
1130 | def _get_adjustment_list(self, asset, adjustments_dict, table_name): |
||
1131 | """ |
||
1132 | Internal method that returns a list of adjustments for the given sid. |
||
1133 | |||
1134 | Parameters |
||
1135 | ---------- |
||
1136 | asset : Asset |
||
1137 | The asset for which to return adjustments. |
||
1138 | |||
1139 | adjustments_dict: dict |
||
1140 | A dictionary of sid -> list that is used as a cache. |
||
1141 | |||
1142 | table_name: string |
||
1143 | The table that contains this data in the adjustments db. |
||
1144 | |||
1145 | Returns |
||
1146 | ------- |
||
1147 | adjustments: list |
||
1148 | A list of [multiplier, pd.Timestamp], earliest first |
||
1149 | |||
1150 | """ |
||
1151 | if self._adjustment_reader is None: |
||
1152 | return [] |
||
1153 | |||
1154 | sid = int(asset) |
||
1155 | |||
1156 | try: |
||
1157 | adjustments = adjustments_dict[sid] |
||
1158 | except KeyError: |
||
1159 | adjustments = adjustments_dict[sid] = self._adjustment_reader.\ |
||
1160 | get_adjustments_for_sid(table_name, sid) |
||
1161 | |||
1162 | return adjustments |
||
1163 | |||
1164 | def get_equity_price_view(self, asset): |
||
1165 | """ |
||
1166 | Returns a DataPortalSidView for the given asset. Used to support the |
||
1167 | data[sid(N)] public API. Not needed if DataPortal is used standalone. |
||
1168 | |||
1169 | Parameters |
||
1170 | ---------- |
||
1171 | asset : Asset |
||
1172 | Asset that is being queried. |
||
1173 | |||
1174 | Returns |
||
1175 | ------- |
||
1176 | DataPortalSidView: Accessor into the given asset's data. |
||
1177 | """ |
||
1178 | try: |
||
1179 | view = self.views[asset] |
||
1180 | except KeyError: |
||
1181 | view = self.views[asset] = DataPortalSidView(asset, self) |
||
1182 | |||
1183 | return view |
||
1184 | |||
1185 | def _check_is_currently_alive(self, asset, dt): |
||
1186 | if dt is None: |
||
1187 | dt = self.current_day |
||
1188 | |||
1189 | sid = int(asset) |
||
1190 | |||
1191 | if sid not in self._asset_start_dates: |
||
1192 | self._get_asset_start_date(asset) |
||
1193 | |||
1194 | start_date = self._asset_start_dates[sid] |
||
1195 | if self._asset_start_dates[sid] > dt: |
||
1196 | raise NoTradeDataAvailableTooEarly( |
||
1197 | sid=sid, |
||
1198 | dt=dt, |
||
1199 | start_dt=start_date |
||
1200 | ) |
||
1201 | |||
1202 | end_date = self._asset_end_dates[sid] |
||
1203 | if self._asset_end_dates[sid] < dt: |
||
1204 | raise NoTradeDataAvailableTooLate( |
||
1205 | sid=sid, |
||
1206 | dt=dt, |
||
1207 | end_dt=end_date |
||
1208 | ) |
||
1209 | |||
1210 | def _get_asset_start_date(self, asset): |
||
1211 | self._ensure_asset_dates(asset) |
||
1212 | return self._asset_start_dates[asset] |
||
1213 | |||
1214 | def _get_asset_end_date(self, asset): |
||
1215 | self._ensure_asset_dates(asset) |
||
1216 | return self._asset_end_dates[asset] |
||
1217 | |||
1218 | def _ensure_asset_dates(self, asset): |
||
1219 | sid = int(asset) |
||
1220 | |||
1221 | if sid not in self._asset_start_dates: |
||
1222 | self._asset_start_dates[sid] = asset.start_date |
||
1223 | self._asset_end_dates[sid] = asset.end_date |
||
1224 | |||
1225 | def get_splits(self, sids, dt): |
||
1226 | """ |
||
1227 | Returns any splits for the given sids and the given dt. |
||
1228 | |||
1229 | Parameters |
||
1230 | ---------- |
||
1231 | sids : list |
||
1232 | Sids for which we want splits. |
||
1233 | |||
1234 | dt: pd.Timestamp |
||
1235 | The date for which we are checking for splits. Note: this is |
||
1236 | expected to be midnight UTC. |
||
1237 | |||
1238 | Returns |
||
1239 | ------- |
||
1240 | list: List of splits, where each split is a (sid, ratio) tuple. |
||
1241 | """ |
||
1242 | if self._adjustment_reader is None or len(sids) == 0: |
||
1243 | return {} |
||
1244 | |||
1245 | # convert dt to # of seconds since epoch, because that's what we use |
||
1246 | # in the adjustments db |
||
1247 | seconds = int(dt.value / 1e9) |
||
1248 | |||
1249 | splits = self._adjustment_reader.conn.execute( |
||
1250 | "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?", |
||
1251 | (seconds,)).fetchall() |
||
1252 | |||
1253 | sids_set = set(sids) |
||
1254 | splits = [split for split in splits if split[0] in sids_set] |
||
1255 | |||
1256 | return splits |
||
1257 | |||
1258 | def get_stock_dividends(self, sid, trading_days): |
||
1259 | """ |
||
1260 | Returns all the stock dividends for a specific sid that occur |
||
1261 | in the given trading range. |
||
1262 | |||
1263 | Parameters |
||
1264 | ---------- |
||
1265 | sid: int |
||
1266 | The asset whose stock dividends should be returned. |
||
1267 | |||
1268 | trading_days: pd.DatetimeIndex |
||
1269 | The trading range. |
||
1270 | |||
1271 | Returns |
||
1272 | ------- |
||
1273 | list: A list of objects with all relevant attributes populated. |
||
1274 | All timestamp fields are converted to pd.Timestamps. |
||
1275 | """ |
||
1276 | |||
1277 | if self._adjustment_reader is None: |
||
1278 | return [] |
||
1279 | |||
1280 | if len(trading_days) == 0: |
||
1281 | return [] |
||
1282 | |||
1283 | start_dt = trading_days[0].value / 1e9 |
||
1284 | end_dt = trading_days[-1].value / 1e9 |
||
1285 | |||
1286 | dividends = self._adjustment_reader.conn.execute( |
||
1287 | "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND " |
||
1288 | "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\ |
||
1289 | fetchall() |
||
1290 | |||
1291 | dividend_info = [] |
||
1292 | for dividend_tuple in dividends: |
||
1293 | dividend_info.append({ |
||
1294 | "declared_date": dividend_tuple[1], |
||
1295 | "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"), |
||
1296 | "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"), |
||
1297 | "payment_sid": dividend_tuple[4], |
||
1298 | "ratio": dividend_tuple[5], |
||
1299 | "record_date": pd.Timestamp(dividend_tuple[6], unit="s"), |
||
1300 | "sid": dividend_tuple[7] |
||
1301 | }) |
||
1302 | |||
1303 | return dividend_info |
||
1304 | |||
1305 | def contains(self, asset, field): |
||
1306 | return field in BASE_FIELDS or \ |
||
1307 | (field in self._augmented_sources_map and |
||
1308 | asset in self._augmented_sources_map[field]) |
||
1309 | |||
1310 | def get_fetcher_assets(self): |
||
1311 | """ |
||
1312 | Returns a list of assets for the current date, as defined by the |
||
1313 | fetcher data. |
||
1314 | |||
1315 | Notes |
||
1316 | ----- |
||
1317 | Data is forward-filled. If there is no fetcher data defined for day |
||
1318 | N, we use day N-1's data (if available, otherwise we keep going back). |
||
1319 | |||
1320 | Returns |
||
1321 | ------- |
||
1322 | list: a list of Asset objects. |
||
1323 | """ |
||
1324 | # return a list of assets for the current date, as defined by the |
||
1325 | # fetcher source |
||
1326 | if self._fetcher_df is None: |
||
1327 | return [] |
||
1328 | |||
1329 | if self.current_day in self._fetcher_df.index: |
||
1330 | date_to_use = self.current_day |
||
1331 | else: |
||
1332 | # current day isn't in the fetcher df, go back the last |
||
1333 | # available day |
||
1334 | idx = self._fetcher_df.index.searchsorted(self.current_day) |
||
1335 | if idx == 0: |
||
1336 | return [] |
||
1337 | |||
1338 | date_to_use = self._fetcher_df.index[idx - 1] |
||
1339 | |||
1340 | asset_list = self._fetcher_df.loc[date_to_use]["sid"] |
||
1341 | |||
1342 | # make sure they're actually assets |
||
1343 | asset_list = [asset for asset in asset_list |
||
1344 | if isinstance(asset, Asset)] |
||
1345 | |||
1346 | return asset_list |
||
1347 | |||
1362 |