Conditions | 7 |
Total Lines | 149 |
Lines | 0 |
Ratio | 0 % |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
1 | # |
||
175 | def test_adjust_forward_fill_minute(self): |
||
176 | tempdir = TempDirectory() |
||
177 | try: |
||
178 | start_day = pd.Timestamp("2013-06-21", tz='UTC') |
||
179 | end_day = pd.Timestamp("2013-06-24", tz='UTC') |
||
180 | |||
181 | env = TradingEnvironment() |
||
182 | env.write_data( |
||
183 | equities_data={ |
||
184 | 0: { |
||
185 | 'start_date': start_day, |
||
186 | 'end_date': env.next_trading_day(end_day) |
||
187 | } |
||
188 | } |
||
189 | ) |
||
190 | |||
191 | minutes = env.minutes_for_days_in_range( |
||
192 | start=start_day, |
||
193 | end=end_day |
||
194 | ) |
||
195 | |||
196 | df = pd.DataFrame({ |
||
197 | # 390 bars of real data, then 100 missing bars, then 290 |
||
198 | # bars of data again |
||
199 | "open": np.array(list(range(0, 390)) + [0] * 100 + |
||
200 | list(range(390, 680))) * 1000, |
||
201 | "high": np.array(list(range(1000, 1390)) + [0] * 100 + |
||
202 | list(range(1390, 1680))) * 1000, |
||
203 | "low": np.array(list(range(2000, 2390)) + [0] * 100 + |
||
204 | list(range(2390, 2680))) * 1000, |
||
205 | "close": np.array(list(range(3000, 3390)) + [0] * 100 + |
||
206 | list(range(3390, 3680))) * 1000, |
||
207 | "volume": np.array(list(range(4000, 4390)) + [0] * 100 + |
||
208 | list(range(4390, 4680))), |
||
209 | "minute": minutes |
||
210 | }) |
||
211 | |||
212 | MinuteBarWriterFromDataFrames( |
||
213 | pd.Timestamp('2002-01-02', tz='UTC')).write( |
||
214 | tempdir.path, {0: df}) |
||
215 | |||
216 | sim_params = SimulationParameters( |
||
217 | period_start=minutes[0], |
||
218 | period_end=minutes[-1], |
||
219 | data_frequency="minute", |
||
220 | env=env |
||
221 | ) |
||
222 | |||
223 | # create a split for 6/24 |
||
224 | adjustments_path = os.path.join(tempdir.path, "adjustments.db") |
||
225 | writer = SQLiteAdjustmentWriter(adjustments_path, |
||
226 | pd.date_range(start=start_day, |
||
227 | end=end_day), |
||
228 | None) |
||
229 | |||
230 | splits = pd.DataFrame([{ |
||
231 | 'effective_date': int(end_day.value / 1e9), |
||
232 | 'ratio': 0.5, |
||
233 | 'sid': 0 |
||
234 | }]) |
||
235 | |||
236 | dividend_data = { |
||
237 | # Hackery to make the dtypes correct on an empty frame. |
||
238 | 'ex_date': np.array([], dtype='datetime64[ns]'), |
||
239 | 'pay_date': np.array([], dtype='datetime64[ns]'), |
||
240 | 'record_date': np.array([], dtype='datetime64[ns]'), |
||
241 | 'declared_date': np.array([], dtype='datetime64[ns]'), |
||
242 | 'amount': np.array([], dtype=float), |
||
243 | 'sid': np.array([], dtype=int), |
||
244 | } |
||
245 | dividends = pd.DataFrame( |
||
246 | dividend_data, |
||
247 | index=pd.DatetimeIndex([], tz='UTC'), |
||
248 | columns=['ex_date', |
||
249 | 'pay_date', |
||
250 | 'record_date', |
||
251 | 'declared_date', |
||
252 | 'amount', |
||
253 | 'sid'] |
||
254 | ) |
||
255 | |||
256 | merger_data = { |
||
257 | # Hackery to make the dtypes correct on an empty frame. |
||
258 | 'effective_date': np.array([], dtype=int), |
||
259 | 'ratio': np.array([], dtype=float), |
||
260 | 'sid': np.array([], dtype=int), |
||
261 | } |
||
262 | mergers = pd.DataFrame( |
||
263 | merger_data, |
||
264 | index=pd.DatetimeIndex([], tz='UTC') |
||
265 | ) |
||
266 | |||
267 | writer.write(splits, mergers, dividends) |
||
268 | |||
269 | equity_minute_reader = BcolzMinuteBarReader(tempdir.path) |
||
270 | |||
271 | dp = DataPortal( |
||
272 | env, |
||
273 | equity_minute_reader=equity_minute_reader, |
||
274 | adjustment_reader=SQLiteAdjustmentReader(adjustments_path) |
||
275 | ) |
||
276 | |||
277 | # phew, finally ready to start testing. |
||
278 | for idx, minute in enumerate(minutes[:390]): |
||
279 | for field_idx, field in enumerate(["open", "high", "low", |
||
280 | "close", "volume"]): |
||
281 | self.assertEqual( |
||
282 | dp.get_spot_value( |
||
283 | 0, field, |
||
284 | dt=minute, |
||
285 | data_frequency=sim_params.data_frequency), |
||
286 | idx + (1000 * field_idx) |
||
287 | ) |
||
288 | |||
289 | for idx, minute in enumerate(minutes[390:490]): |
||
290 | # no actual data for this part, so we'll forward-fill. |
||
291 | # make sure the forward-filled values are adjusted. |
||
292 | for field_idx, field in enumerate(["open", "high", "low", |
||
293 | "close"]): |
||
294 | self.assertEqual( |
||
295 | dp.get_spot_value( |
||
296 | 0, field, |
||
297 | dt=minute, |
||
298 | data_frequency=sim_params.data_frequency), |
||
299 | (389 + (1000 * field_idx)) / 2.0 |
||
300 | ) |
||
301 | |||
302 | self.assertEqual( |
||
303 | dp.get_spot_value( |
||
304 | 0, "volume", |
||
305 | dt=minute, |
||
306 | data_frequency=sim_params.data_frequency), |
||
307 | 8778 # 4389 * 2 |
||
308 | ) |
||
309 | |||
310 | for idx, minute in enumerate(minutes[490:]): |
||
311 | # back to real data |
||
312 | for field_idx, field in enumerate(["open", "high", "low", |
||
313 | "close", "volume"]): |
||
314 | self.assertEqual( |
||
315 | dp.get_spot_value( |
||
316 | 0, field, |
||
317 | dt=minute, |
||
318 | data_frequency=sim_params.data_frequency |
||
319 | ), |
||
320 | (390 + idx + (1000 * field_idx)) |
||
321 | ) |
||
322 | finally: |
||
323 | tempdir.cleanup() |
||
324 | |||
393 |