|
1
|
|
|
""" |
|
2
|
|
|
Tests for Algorithms using the Pipeline API. |
|
3
|
|
|
""" |
|
4
|
|
|
import os |
|
5
|
|
|
from unittest import TestCase |
|
6
|
|
|
from os.path import ( |
|
7
|
|
|
dirname, |
|
8
|
|
|
join, |
|
9
|
|
|
realpath, |
|
10
|
|
|
) |
|
11
|
|
|
|
|
12
|
|
|
from nose_parameterized import parameterized |
|
13
|
|
|
from numpy import ( |
|
14
|
|
|
array, |
|
15
|
|
|
arange, |
|
16
|
|
|
full_like, |
|
17
|
|
|
float64, |
|
18
|
|
|
nan, |
|
19
|
|
|
uint32, |
|
20
|
|
|
) |
|
21
|
|
|
from numpy.testing import assert_almost_equal |
|
22
|
|
|
from pandas import ( |
|
23
|
|
|
concat, |
|
24
|
|
|
DataFrame, |
|
25
|
|
|
date_range, |
|
26
|
|
|
DatetimeIndex, |
|
27
|
|
|
read_csv, |
|
28
|
|
|
Series, |
|
29
|
|
|
Timestamp, |
|
30
|
|
|
) |
|
31
|
|
|
from six import iteritems, itervalues |
|
32
|
|
|
from testfixtures import TempDirectory |
|
33
|
|
|
|
|
34
|
|
|
from zipline.algorithm import TradingAlgorithm |
|
35
|
|
|
from zipline.api import ( |
|
36
|
|
|
attach_pipeline, |
|
37
|
|
|
pipeline_output, |
|
38
|
|
|
get_datetime, |
|
39
|
|
|
) |
|
40
|
|
|
from zipline.data.data_portal import DataPortal |
|
41
|
|
|
from zipline.errors import ( |
|
42
|
|
|
AttachPipelineAfterInitialize, |
|
43
|
|
|
PipelineOutputDuringInitialize, |
|
44
|
|
|
NoSuchPipeline, |
|
45
|
|
|
) |
|
46
|
|
|
from zipline.data.us_equity_pricing import ( |
|
47
|
|
|
BcolzDailyBarReader, |
|
48
|
|
|
DailyBarWriterFromCSVs, |
|
49
|
|
|
SQLiteAdjustmentWriter, |
|
50
|
|
|
SQLiteAdjustmentReader, |
|
51
|
|
|
) |
|
52
|
|
|
from zipline.finance import trading |
|
53
|
|
|
from zipline.finance.trading import SimulationParameters |
|
54
|
|
|
from zipline.pipeline import Pipeline |
|
55
|
|
|
from zipline.pipeline.factors import VWAP |
|
56
|
|
|
from zipline.pipeline.data import USEquityPricing |
|
57
|
|
|
from zipline.pipeline.loaders.frame import DataFrameLoader, MULTIPLY |
|
58
|
|
|
from zipline.pipeline.loaders.equity_pricing_loader import ( |
|
59
|
|
|
USEquityPricingLoader, |
|
60
|
|
|
) |
|
61
|
|
|
from zipline.utils.test_utils import ( |
|
62
|
|
|
make_simple_equity_info, |
|
63
|
|
|
str_to_seconds, |
|
64
|
|
|
DailyBarWriterFromDataFrames, FakeDataPortal) |
|
65
|
|
|
from zipline.utils.tradingcalendar import ( |
|
66
|
|
|
trading_day, |
|
67
|
|
|
trading_days, |
|
68
|
|
|
) |
|
69
|
|
|
|
|
70
|
|
|
|
|
71
|
|
|
TEST_RESOURCE_PATH = join( |
|
72
|
|
|
dirname(dirname(realpath(__file__))), # zipline_repo/tests |
|
73
|
|
|
'resources', |
|
74
|
|
|
'pipeline_inputs', |
|
75
|
|
|
) |
|
76
|
|
|
|
|
77
|
|
|
|
|
78
|
|
|
def rolling_vwap(df, length): |
|
79
|
|
|
"Simple rolling vwap implementation for testing" |
|
80
|
|
|
closes = df['close'].values |
|
81
|
|
|
volumes = df['volume'].values |
|
82
|
|
|
product = closes * volumes |
|
83
|
|
|
out = full_like(closes, nan) |
|
84
|
|
|
for upper_bound in range(length, len(closes) + 1): |
|
85
|
|
|
bounds = slice(upper_bound - length, upper_bound) |
|
86
|
|
|
out[upper_bound - 1] = product[bounds].sum() / volumes[bounds].sum() |
|
87
|
|
|
|
|
88
|
|
|
return Series(out, index=df.index) |
|
89
|
|
|
|
|
90
|
|
|
|
|
91
|
|
|
class ClosesOnly(TestCase): |
|
92
|
|
|
|
|
93
|
|
|
@classmethod |
|
94
|
|
|
def setUpClass(cls): |
|
95
|
|
|
cls.tempdir = TempDirectory() |
|
96
|
|
|
|
|
97
|
|
|
@classmethod |
|
98
|
|
|
def tearDownClass(cls): |
|
99
|
|
|
cls.tempdir.cleanup() |
|
100
|
|
|
|
|
101
|
|
|
def setUp(self): |
|
102
|
|
|
self.env = env = trading.TradingEnvironment() |
|
103
|
|
|
self.dates = date_range( |
|
104
|
|
|
'2014-01-01', '2014-02-01', freq=trading_day, tz='UTC' |
|
105
|
|
|
) |
|
106
|
|
|
asset_info = DataFrame.from_records([ |
|
107
|
|
|
{ |
|
108
|
|
|
'sid': 1, |
|
109
|
|
|
'symbol': 'A', |
|
110
|
|
|
'start_date': self.dates[10], |
|
111
|
|
|
'end_date': self.dates[13], |
|
112
|
|
|
'exchange': 'TEST', |
|
113
|
|
|
}, |
|
114
|
|
|
{ |
|
115
|
|
|
'sid': 2, |
|
116
|
|
|
'symbol': 'B', |
|
117
|
|
|
'start_date': self.dates[11], |
|
118
|
|
|
'end_date': self.dates[14], |
|
119
|
|
|
'exchange': 'TEST', |
|
120
|
|
|
}, |
|
121
|
|
|
{ |
|
122
|
|
|
'sid': 3, |
|
123
|
|
|
'symbol': 'C', |
|
124
|
|
|
'start_date': self.dates[12], |
|
125
|
|
|
'end_date': self.dates[15], |
|
126
|
|
|
'exchange': 'TEST', |
|
127
|
|
|
}, |
|
128
|
|
|
]) |
|
129
|
|
|
self.first_asset_start = min(asset_info.start_date) |
|
130
|
|
|
self.last_asset_end = max(asset_info.end_date) |
|
131
|
|
|
env.write_data(equities_df=asset_info) |
|
132
|
|
|
self.asset_finder = finder = env.asset_finder |
|
133
|
|
|
|
|
134
|
|
|
sids = (1, 2, 3) |
|
135
|
|
|
self.assets = finder.retrieve_all(sids) |
|
136
|
|
|
|
|
137
|
|
|
# View of the baseline data. |
|
138
|
|
|
self.closes = DataFrame( |
|
139
|
|
|
{sid: arange(1, len(self.dates) + 1) * sid for sid in sids}, |
|
140
|
|
|
index=self.dates, |
|
141
|
|
|
dtype=float, |
|
142
|
|
|
) |
|
143
|
|
|
|
|
144
|
|
|
# Create a data portal holding the data in self.closes |
|
145
|
|
|
data = {} |
|
146
|
|
|
for sid in sids: |
|
147
|
|
|
data[sid] = DataFrame({ |
|
148
|
|
|
"open": self.closes[sid].values, |
|
149
|
|
|
"high": self.closes[sid].values, |
|
150
|
|
|
"low": self.closes[sid].values, |
|
151
|
|
|
"close": self.closes[sid].values, |
|
152
|
|
|
"volume": self.closes[sid].values, |
|
153
|
|
|
"day": [day.value for day in self.dates] |
|
154
|
|
|
}) |
|
155
|
|
|
|
|
156
|
|
|
path = os.path.join(self.tempdir.path, "testdaily.bcolz") |
|
157
|
|
|
|
|
158
|
|
|
DailyBarWriterFromDataFrames(data).write( |
|
159
|
|
|
path, |
|
160
|
|
|
self.dates, |
|
161
|
|
|
data |
|
162
|
|
|
) |
|
163
|
|
|
|
|
164
|
|
|
self.data_portal = DataPortal( |
|
165
|
|
|
self.env, |
|
166
|
|
|
daily_equities_path=path, |
|
167
|
|
|
sim_params=SimulationParameters( |
|
168
|
|
|
period_start=self.dates[0], |
|
169
|
|
|
period_end=self.dates[-1], |
|
170
|
|
|
env=self.env |
|
171
|
|
|
) |
|
172
|
|
|
) |
|
173
|
|
|
|
|
174
|
|
|
# Add a split for 'A' on its second date. |
|
175
|
|
|
self.split_asset = self.assets[0] |
|
176
|
|
|
self.split_date = self.split_asset.start_date + trading_day |
|
177
|
|
|
self.split_ratio = 0.5 |
|
178
|
|
|
self.adjustments = DataFrame.from_records([ |
|
179
|
|
|
{ |
|
180
|
|
|
'sid': self.split_asset.sid, |
|
181
|
|
|
'value': self.split_ratio, |
|
182
|
|
|
'kind': MULTIPLY, |
|
183
|
|
|
'start_date': Timestamp('NaT'), |
|
184
|
|
|
'end_date': self.split_date, |
|
185
|
|
|
'apply_date': self.split_date, |
|
186
|
|
|
} |
|
187
|
|
|
]) |
|
188
|
|
|
|
|
189
|
|
|
# View of the data on/after the split. |
|
190
|
|
|
self.adj_closes = adj_closes = self.closes.copy() |
|
191
|
|
|
adj_closes.ix[:self.split_date, self.split_asset] *= self.split_ratio |
|
192
|
|
|
|
|
193
|
|
|
self.pipeline_loader = DataFrameLoader( |
|
194
|
|
|
column=USEquityPricing.close, |
|
195
|
|
|
baseline=self.closes, |
|
196
|
|
|
adjustments=self.adjustments, |
|
197
|
|
|
) |
|
198
|
|
|
|
|
199
|
|
|
def expected_close(self, date, asset): |
|
200
|
|
|
if date < self.split_date: |
|
201
|
|
|
lookup = self.closes |
|
202
|
|
|
else: |
|
203
|
|
|
lookup = self.adj_closes |
|
204
|
|
|
return lookup.loc[date, asset] |
|
205
|
|
|
|
|
206
|
|
|
def exists(self, date, asset): |
|
207
|
|
|
return asset.start_date <= date <= asset.end_date |
|
208
|
|
|
|
|
209
|
|
|
def test_attach_pipeline_after_initialize(self): |
|
210
|
|
|
""" |
|
211
|
|
|
Assert that calling attach_pipeline after initialize raises correctly. |
|
212
|
|
|
""" |
|
213
|
|
|
def initialize(context): |
|
214
|
|
|
pass |
|
215
|
|
|
|
|
216
|
|
|
def late_attach(context, data): |
|
217
|
|
|
attach_pipeline(Pipeline(), 'test') |
|
218
|
|
|
raise AssertionError("Shouldn't make it past attach_pipeline!") |
|
219
|
|
|
|
|
220
|
|
|
algo = TradingAlgorithm( |
|
221
|
|
|
initialize=initialize, |
|
222
|
|
|
handle_data=late_attach, |
|
223
|
|
|
data_frequency='daily', |
|
224
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
|
225
|
|
|
start=self.first_asset_start - trading_day, |
|
226
|
|
|
end=self.last_asset_end + trading_day, |
|
227
|
|
|
env=self.env, |
|
228
|
|
|
) |
|
229
|
|
|
|
|
230
|
|
|
with self.assertRaises(AttachPipelineAfterInitialize): |
|
231
|
|
|
algo.run(data_portal=self.data_portal) |
|
232
|
|
|
|
|
233
|
|
|
def barf(context, data): |
|
234
|
|
|
raise AssertionError("Shouldn't make it past before_trading_start") |
|
235
|
|
|
|
|
236
|
|
|
algo = TradingAlgorithm( |
|
237
|
|
|
initialize=initialize, |
|
238
|
|
|
before_trading_start=late_attach, |
|
239
|
|
|
handle_data=barf, |
|
240
|
|
|
data_frequency='daily', |
|
241
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
|
242
|
|
|
start=self.first_asset_start - trading_day, |
|
243
|
|
|
end=self.last_asset_end + trading_day, |
|
244
|
|
|
env=self.env, |
|
245
|
|
|
) |
|
246
|
|
|
|
|
247
|
|
|
with self.assertRaises(AttachPipelineAfterInitialize): |
|
248
|
|
|
algo.run(data_portal=self.data_portal) |
|
249
|
|
|
|
|
250
|
|
|
def test_pipeline_output_after_initialize(self): |
|
251
|
|
|
""" |
|
252
|
|
|
Assert that calling pipeline_output after initialize raises correctly. |
|
253
|
|
|
""" |
|
254
|
|
|
def initialize(context): |
|
255
|
|
|
attach_pipeline(Pipeline(), 'test') |
|
256
|
|
|
pipeline_output('test') |
|
257
|
|
|
raise AssertionError("Shouldn't make it past pipeline_output()") |
|
258
|
|
|
|
|
259
|
|
|
def handle_data(context, data): |
|
260
|
|
|
raise AssertionError("Shouldn't make it past initialize!") |
|
261
|
|
|
|
|
262
|
|
|
def before_trading_start(context, data): |
|
263
|
|
|
raise AssertionError("Shouldn't make it past initialize!") |
|
264
|
|
|
|
|
265
|
|
|
algo = TradingAlgorithm( |
|
266
|
|
|
initialize=initialize, |
|
267
|
|
|
handle_data=handle_data, |
|
268
|
|
|
before_trading_start=before_trading_start, |
|
269
|
|
|
data_frequency='daily', |
|
270
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
|
271
|
|
|
start=self.first_asset_start - trading_day, |
|
272
|
|
|
end=self.last_asset_end + trading_day, |
|
273
|
|
|
env=self.env, |
|
274
|
|
|
) |
|
275
|
|
|
|
|
276
|
|
|
with self.assertRaises(PipelineOutputDuringInitialize): |
|
277
|
|
|
algo.run(data_portal=self.data_portal) |
|
278
|
|
|
|
|
279
|
|
|
def test_get_output_nonexistent_pipeline(self): |
|
280
|
|
|
""" |
|
281
|
|
|
Assert that calling add_pipeline after initialize raises appropriately. |
|
282
|
|
|
""" |
|
283
|
|
|
def initialize(context): |
|
284
|
|
|
attach_pipeline(Pipeline(), 'test') |
|
285
|
|
|
|
|
286
|
|
|
def handle_data(context, data): |
|
287
|
|
|
raise AssertionError("Shouldn't make it past before_trading_start") |
|
288
|
|
|
|
|
289
|
|
|
def before_trading_start(context, data): |
|
290
|
|
|
pipeline_output('not_test') |
|
291
|
|
|
raise AssertionError("Shouldn't make it past pipeline_output!") |
|
292
|
|
|
|
|
293
|
|
|
algo = TradingAlgorithm( |
|
294
|
|
|
initialize=initialize, |
|
295
|
|
|
handle_data=handle_data, |
|
296
|
|
|
before_trading_start=before_trading_start, |
|
297
|
|
|
data_frequency='daily', |
|
298
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
|
299
|
|
|
start=self.first_asset_start - trading_day, |
|
300
|
|
|
end=self.last_asset_end + trading_day, |
|
301
|
|
|
env=self.env, |
|
302
|
|
|
) |
|
303
|
|
|
|
|
304
|
|
|
with self.assertRaises(NoSuchPipeline): |
|
305
|
|
|
algo.run(data_portal=self.data_portal) |
|
306
|
|
|
|
|
307
|
|
|
@parameterized.expand([('default', None), |
|
308
|
|
|
('day', 1), |
|
309
|
|
|
('week', 5), |
|
310
|
|
|
('year', 252), |
|
311
|
|
|
('all_but_one_day', 'all_but_one_day')]) |
|
312
|
|
|
def test_assets_appear_on_correct_days(self, test_name, chunksize): |
|
313
|
|
|
""" |
|
314
|
|
|
Assert that assets appear at correct times during a backtest, with |
|
315
|
|
|
correctly-adjusted close price values. |
|
316
|
|
|
""" |
|
317
|
|
|
|
|
318
|
|
|
if chunksize == 'all_but_one_day': |
|
319
|
|
|
chunksize = ( |
|
320
|
|
|
self.dates.get_loc(self.last_asset_end) - |
|
321
|
|
|
self.dates.get_loc(self.first_asset_start) |
|
322
|
|
|
) - 1 |
|
323
|
|
|
|
|
324
|
|
|
def initialize(context): |
|
325
|
|
|
p = attach_pipeline(Pipeline(), 'test', chunksize=chunksize) |
|
326
|
|
|
p.add(USEquityPricing.close.latest, 'close') |
|
327
|
|
|
|
|
328
|
|
|
def handle_data(context, data): |
|
329
|
|
|
results = pipeline_output('test') |
|
330
|
|
|
date = get_datetime().normalize() |
|
331
|
|
|
for asset in self.assets: |
|
332
|
|
|
# Assets should appear iff they exist today and yesterday. |
|
333
|
|
|
exists_today = self.exists(date, asset) |
|
334
|
|
|
existed_yesterday = self.exists(date - trading_day, asset) |
|
335
|
|
|
if exists_today and existed_yesterday: |
|
336
|
|
|
latest = results.loc[asset, 'close'] |
|
337
|
|
|
self.assertEqual(latest, self.expected_close(date, asset)) |
|
338
|
|
|
else: |
|
339
|
|
|
self.assertNotIn(asset, results.index) |
|
340
|
|
|
|
|
341
|
|
|
before_trading_start = handle_data |
|
342
|
|
|
|
|
343
|
|
|
algo = TradingAlgorithm( |
|
344
|
|
|
initialize=initialize, |
|
345
|
|
|
handle_data=handle_data, |
|
346
|
|
|
before_trading_start=before_trading_start, |
|
347
|
|
|
data_frequency='daily', |
|
348
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
|
349
|
|
|
start=self.first_asset_start, |
|
350
|
|
|
end=self.last_asset_end, |
|
351
|
|
|
env=self.env, |
|
352
|
|
|
) |
|
353
|
|
|
|
|
354
|
|
|
# Run for a week in the middle of our data. |
|
355
|
|
|
algo.run(data_portal=self.data_portal) |
|
356
|
|
|
|
|
357
|
|
|
|
|
358
|
|
|
class MockDailyBarSpotReader(object): |
|
359
|
|
|
""" |
|
360
|
|
|
A BcolzDailyBarReader which returns a constant value for spot price. |
|
361
|
|
|
""" |
|
362
|
|
|
def spot_price(self, sid, day, column): |
|
363
|
|
|
return 100.0 |
|
364
|
|
|
|
|
365
|
|
|
|
|
366
|
|
|
class PipelineAlgorithmTestCase(TestCase): |
|
367
|
|
|
|
|
368
|
|
|
@classmethod |
|
369
|
|
|
def setUpClass(cls): |
|
370
|
|
|
cls.AAPL = 1 |
|
371
|
|
|
cls.MSFT = 2 |
|
372
|
|
|
cls.BRK_A = 3 |
|
373
|
|
|
cls.assets = [cls.AAPL, cls.MSFT, cls.BRK_A] |
|
374
|
|
|
asset_info = make_simple_equity_info( |
|
375
|
|
|
cls.assets, |
|
376
|
|
|
Timestamp('2014'), |
|
377
|
|
|
Timestamp('2015'), |
|
378
|
|
|
['AAPL', 'MSFT', 'BRK_A'], |
|
379
|
|
|
) |
|
380
|
|
|
cls.env = trading.TradingEnvironment() |
|
381
|
|
|
cls.env.write_data(equities_df=asset_info) |
|
382
|
|
|
cls.tempdir = tempdir = TempDirectory() |
|
383
|
|
|
tempdir.create() |
|
384
|
|
|
try: |
|
385
|
|
|
cls.raw_data, cls.bar_reader = cls.create_bar_reader(tempdir) |
|
386
|
|
|
cls.adj_reader = cls.create_adjustment_reader(tempdir) |
|
387
|
|
|
cls.pipeline_loader = USEquityPricingLoader( |
|
388
|
|
|
cls.bar_reader, cls.adj_reader |
|
389
|
|
|
) |
|
390
|
|
|
except: |
|
391
|
|
|
cls.tempdir.cleanup() |
|
392
|
|
|
raise |
|
393
|
|
|
|
|
394
|
|
|
cls.dates = cls.raw_data[cls.AAPL].index.tz_localize('UTC') |
|
395
|
|
|
cls.AAPL_split_date = Timestamp("2014-06-09", tz='UTC') |
|
396
|
|
|
|
|
397
|
|
|
@classmethod |
|
398
|
|
|
def tearDownClass(cls): |
|
399
|
|
|
del cls.env |
|
400
|
|
|
cls.tempdir.cleanup() |
|
401
|
|
|
|
|
402
|
|
|
@classmethod |
|
403
|
|
|
def create_bar_reader(cls, tempdir): |
|
404
|
|
|
resources = { |
|
405
|
|
|
cls.AAPL: join(TEST_RESOURCE_PATH, 'AAPL.csv'), |
|
406
|
|
|
cls.MSFT: join(TEST_RESOURCE_PATH, 'MSFT.csv'), |
|
407
|
|
|
cls.BRK_A: join(TEST_RESOURCE_PATH, 'BRK-A.csv'), |
|
408
|
|
|
} |
|
409
|
|
|
raw_data = { |
|
410
|
|
|
asset: read_csv(path, parse_dates=['day']).set_index('day') |
|
411
|
|
|
for asset, path in iteritems(resources) |
|
412
|
|
|
} |
|
413
|
|
|
# Add 'price' column as an alias because all kinds of stuff in zipline |
|
414
|
|
|
# depends on it being present. :/ |
|
415
|
|
|
for frame in raw_data.values(): |
|
416
|
|
|
frame['price'] = frame['close'] |
|
417
|
|
|
|
|
418
|
|
|
writer = DailyBarWriterFromCSVs(resources) |
|
419
|
|
|
data_path = tempdir.getpath('testdata.bcolz') |
|
420
|
|
|
table = writer.write(data_path, trading_days, cls.assets) |
|
421
|
|
|
return raw_data, BcolzDailyBarReader(table) |
|
422
|
|
|
|
|
423
|
|
|
@classmethod |
|
424
|
|
|
def create_adjustment_reader(cls, tempdir): |
|
425
|
|
|
dbpath = tempdir.getpath('adjustments.sqlite') |
|
426
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, cls.env.trading_days, |
|
427
|
|
|
MockDailyBarSpotReader()) |
|
428
|
|
|
splits = DataFrame.from_records([ |
|
429
|
|
|
{ |
|
430
|
|
|
'effective_date': str_to_seconds('2014-06-09'), |
|
431
|
|
|
'ratio': (1 / 7.0), |
|
432
|
|
|
'sid': cls.AAPL, |
|
433
|
|
|
} |
|
434
|
|
|
]) |
|
435
|
|
|
mergers = DataFrame( |
|
436
|
|
|
{ |
|
437
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
438
|
|
|
'effective_date': array([], dtype=int), |
|
439
|
|
|
'ratio': array([], dtype=float), |
|
440
|
|
|
'sid': array([], dtype=int), |
|
441
|
|
|
}, |
|
442
|
|
|
index=DatetimeIndex([], tz='UTC'), |
|
443
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
444
|
|
|
) |
|
445
|
|
|
dividends = DataFrame({ |
|
446
|
|
|
'sid': array([], dtype=uint32), |
|
447
|
|
|
'amount': array([], dtype=float64), |
|
448
|
|
|
'record_date': array([], dtype='datetime64[ns]'), |
|
449
|
|
|
'ex_date': array([], dtype='datetime64[ns]'), |
|
450
|
|
|
'declared_date': array([], dtype='datetime64[ns]'), |
|
451
|
|
|
'pay_date': array([], dtype='datetime64[ns]'), |
|
452
|
|
|
}) |
|
453
|
|
|
writer.write(splits, mergers, dividends) |
|
454
|
|
|
return SQLiteAdjustmentReader(dbpath) |
|
455
|
|
|
|
|
456
|
|
|
def compute_expected_vwaps(self, window_lengths): |
|
457
|
|
|
AAPL, MSFT, BRK_A = self.AAPL, self.MSFT, self.BRK_A |
|
458
|
|
|
|
|
459
|
|
|
# Our view of the data before AAPL's split on June 9, 2014. |
|
460
|
|
|
raw = {k: v.copy() for k, v in iteritems(self.raw_data)} |
|
461
|
|
|
|
|
462
|
|
|
split_date = self.AAPL_split_date |
|
463
|
|
|
split_loc = self.dates.get_loc(split_date) |
|
464
|
|
|
split_ratio = 7.0 |
|
465
|
|
|
|
|
466
|
|
|
# Our view of the data after AAPL's split. All prices from before June |
|
467
|
|
|
# 9 get divided by the split ratio, and volumes get multiplied by the |
|
468
|
|
|
# split ratio. |
|
469
|
|
|
adj = {k: v.copy() for k, v in iteritems(self.raw_data)} |
|
470
|
|
|
for column in 'open', 'high', 'low', 'close': |
|
471
|
|
|
adj[AAPL].ix[:split_loc, column] /= split_ratio |
|
472
|
|
|
adj[AAPL].ix[:split_loc, 'volume'] *= split_ratio |
|
473
|
|
|
|
|
474
|
|
|
# length -> asset -> expected vwap |
|
475
|
|
|
vwaps = {length: {} for length in window_lengths} |
|
476
|
|
|
for length in window_lengths: |
|
477
|
|
|
for asset in AAPL, MSFT, BRK_A: |
|
478
|
|
|
raw_vwap = rolling_vwap(raw[asset], length) |
|
479
|
|
|
adj_vwap = rolling_vwap(adj[asset], length) |
|
480
|
|
|
# Shift computed results one day forward so that they're |
|
481
|
|
|
# labelled by the date on which they'll be seen in the |
|
482
|
|
|
# algorithm. (We can't show the close price for day N until day |
|
483
|
|
|
# N + 1.) |
|
484
|
|
|
vwaps[length][asset] = concat( |
|
485
|
|
|
[ |
|
486
|
|
|
raw_vwap[:split_loc - 1], |
|
487
|
|
|
adj_vwap[split_loc - 1:] |
|
488
|
|
|
] |
|
489
|
|
|
).shift(1, trading_day) |
|
490
|
|
|
|
|
491
|
|
|
# Make sure all the expected vwaps have the same dates. |
|
492
|
|
|
vwap_dates = vwaps[1][self.AAPL].index |
|
493
|
|
|
for dict_ in itervalues(vwaps): |
|
494
|
|
|
# Each value is a dict mapping sid -> expected series. |
|
495
|
|
|
for series in itervalues(dict_): |
|
496
|
|
|
self.assertTrue((vwap_dates == series.index).all()) |
|
497
|
|
|
|
|
498
|
|
|
# Spot check expectations near the AAPL split. |
|
499
|
|
|
# length 1 vwap for the morning before the split should be the close |
|
500
|
|
|
# price of the previous day. |
|
501
|
|
|
before_split = vwaps[1][AAPL].loc[split_date - trading_day] |
|
502
|
|
|
assert_almost_equal(before_split, 647.3499, decimal=2) |
|
503
|
|
|
assert_almost_equal( |
|
504
|
|
|
before_split, |
|
505
|
|
|
raw[AAPL].loc[split_date - (2 * trading_day), 'close'], |
|
506
|
|
|
decimal=2, |
|
507
|
|
|
) |
|
508
|
|
|
|
|
509
|
|
|
# length 1 vwap for the morning of the split should be the close price |
|
510
|
|
|
# of the previous day, **ADJUSTED FOR THE SPLIT**. |
|
511
|
|
|
on_split = vwaps[1][AAPL].loc[split_date] |
|
512
|
|
|
assert_almost_equal(on_split, 645.5700 / split_ratio, decimal=2) |
|
513
|
|
|
assert_almost_equal( |
|
514
|
|
|
on_split, |
|
515
|
|
|
raw[AAPL].loc[split_date - trading_day, 'close'] / split_ratio, |
|
516
|
|
|
decimal=2, |
|
517
|
|
|
) |
|
518
|
|
|
|
|
519
|
|
|
# length 1 vwap on the day after the split should be the as-traded |
|
520
|
|
|
# close on the split day. |
|
521
|
|
|
after_split = vwaps[1][AAPL].loc[split_date + trading_day] |
|
522
|
|
|
assert_almost_equal(after_split, 93.69999, decimal=2) |
|
523
|
|
|
assert_almost_equal( |
|
524
|
|
|
after_split, |
|
525
|
|
|
raw[AAPL].loc[split_date, 'close'], |
|
526
|
|
|
decimal=2, |
|
527
|
|
|
) |
|
528
|
|
|
|
|
529
|
|
|
return vwaps |
|
530
|
|
|
|
|
531
|
|
|
@parameterized.expand([ |
|
532
|
|
|
(True,), |
|
533
|
|
|
(False,), |
|
534
|
|
|
]) |
|
535
|
|
|
def test_handle_adjustment(self, set_screen): |
|
536
|
|
|
AAPL, MSFT, BRK_A = assets = self.AAPL, self.MSFT, self.BRK_A |
|
537
|
|
|
|
|
538
|
|
|
window_lengths = [1, 2, 5, 10] |
|
539
|
|
|
vwaps = self.compute_expected_vwaps(window_lengths) |
|
540
|
|
|
|
|
541
|
|
|
def vwap_key(length): |
|
542
|
|
|
return "vwap_%d" % length |
|
543
|
|
|
|
|
544
|
|
|
def initialize(context): |
|
545
|
|
|
pipeline = Pipeline() |
|
546
|
|
|
context.vwaps = [] |
|
547
|
|
|
for length in vwaps: |
|
548
|
|
|
name = vwap_key(length) |
|
549
|
|
|
factor = VWAP(window_length=length) |
|
550
|
|
|
context.vwaps.append(factor) |
|
551
|
|
|
pipeline.add(factor, name=name) |
|
552
|
|
|
|
|
553
|
|
|
filter_ = (USEquityPricing.close.latest > 300) |
|
554
|
|
|
pipeline.add(filter_, 'filter') |
|
555
|
|
|
if set_screen: |
|
556
|
|
|
pipeline.set_screen(filter_) |
|
557
|
|
|
|
|
558
|
|
|
attach_pipeline(pipeline, 'test') |
|
559
|
|
|
|
|
560
|
|
|
def handle_data(context, data): |
|
561
|
|
|
today = get_datetime() |
|
562
|
|
|
results = pipeline_output('test') |
|
563
|
|
|
expect_over_300 = { |
|
564
|
|
|
AAPL: today < self.AAPL_split_date, |
|
565
|
|
|
MSFT: False, |
|
566
|
|
|
BRK_A: True, |
|
567
|
|
|
} |
|
568
|
|
|
for asset in assets: |
|
569
|
|
|
should_pass_filter = expect_over_300[asset] |
|
570
|
|
|
if set_screen and not should_pass_filter: |
|
571
|
|
|
self.assertNotIn(asset, results.index) |
|
572
|
|
|
continue |
|
573
|
|
|
|
|
574
|
|
|
asset_results = results.loc[asset] |
|
575
|
|
|
self.assertEqual(asset_results['filter'], should_pass_filter) |
|
576
|
|
|
for length in vwaps: |
|
577
|
|
|
computed = results.loc[asset, vwap_key(length)] |
|
578
|
|
|
expected = vwaps[length][asset].loc[today] |
|
579
|
|
|
# Only having two places of precision here is a bit |
|
580
|
|
|
# unfortunate. |
|
581
|
|
|
assert_almost_equal(computed, expected, decimal=2) |
|
582
|
|
|
|
|
583
|
|
|
# Do the same checks in before_trading_start |
|
584
|
|
|
before_trading_start = handle_data |
|
585
|
|
|
|
|
586
|
|
|
algo = TradingAlgorithm( |
|
587
|
|
|
initialize=initialize, |
|
588
|
|
|
handle_data=handle_data, |
|
589
|
|
|
before_trading_start=before_trading_start, |
|
590
|
|
|
data_frequency='daily', |
|
591
|
|
|
get_pipeline_loader=lambda column: self.pipeline_loader, |
|
592
|
|
|
start=self.dates[max(window_lengths)], |
|
593
|
|
|
end=self.dates[-1], |
|
594
|
|
|
env=self.env, |
|
595
|
|
|
) |
|
596
|
|
|
|
|
597
|
|
|
algo.run(data_portal=FakeDataPortal()) |
|
598
|
|
|
|