1
|
|
|
from six import StringIO |
2
|
|
|
from abc import ABCMeta, abstractmethod |
3
|
|
|
from collections import namedtuple |
4
|
|
|
import hashlib |
5
|
|
|
from textwrap import dedent |
6
|
|
|
import pandas as pd |
7
|
|
|
from pandas import read_csv |
8
|
|
|
import numpy |
9
|
|
|
from logbook import Logger |
10
|
|
|
import pytz |
11
|
|
|
import warnings |
12
|
|
|
import requests |
13
|
|
|
|
14
|
|
|
from zipline.errors import ( |
15
|
|
|
MultipleSymbolsFound, |
16
|
|
|
SymbolNotFound, |
17
|
|
|
ZiplineError) |
18
|
|
|
from zipline.protocol import ( |
19
|
|
|
DATASOURCE_TYPE, |
20
|
|
|
Event |
21
|
|
|
) |
22
|
|
|
from zipline.assets import Equity |
23
|
|
|
|
24
|
|
|
logger = Logger('Requests Source Logger') |
25
|
|
|
|
26
|
|
|
|
27
|
|
|
def roll_dts_to_midnight(dts, env): |
28
|
|
|
return pd.DatetimeIndex( |
29
|
|
|
(dts.tz_convert('US/Eastern') - pd.Timedelta(hours=16)).date, |
30
|
|
|
tz='UTC', |
31
|
|
|
) + env.trading_day |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
class FetcherEvent(Event): |
35
|
|
|
pass |
36
|
|
|
|
37
|
|
|
|
38
|
|
|
class FetcherCSVRedirectError(ZiplineError): |
39
|
|
|
msg = dedent( |
40
|
|
|
"""\ |
41
|
|
|
Attempt to fetch_csv from a redirected url. {url} |
42
|
|
|
must be changed to {new_url} |
43
|
|
|
""" |
44
|
|
|
) |
45
|
|
|
|
46
|
|
|
def __init__(self, *args, **kwargs): |
47
|
|
|
self.url = kwargs["url"] |
48
|
|
|
self.new_url = kwargs["new_url"] |
49
|
|
|
self.extra = kwargs["extra"] |
50
|
|
|
|
51
|
|
|
super(FetcherCSVRedirectError, self).__init__(*args, **kwargs) |
52
|
|
|
|
53
|
|
|
# The following optional arguments are supported for |
54
|
|
|
# requests backed data sources. |
55
|
|
|
# see http://docs.python-requests.org/en/latest/api/#main-interface |
56
|
|
|
# for a full list. |
57
|
|
|
ALLOWED_REQUESTS_KWARGS = { |
58
|
|
|
'params', |
59
|
|
|
'headers', |
60
|
|
|
'auth', |
61
|
|
|
'cert'} |
62
|
|
|
|
63
|
|
|
|
64
|
|
|
# The following optional arguments are supported for pandas' read_csv |
65
|
|
|
# function, and may be passed as kwargs to the datasource below. |
66
|
|
|
# see http://pandas.pydata.org/ |
67
|
|
|
# pandas-docs/stable/generated/pandas.io.parsers.read_csv.html |
68
|
|
|
ALLOWED_READ_CSV_KWARGS = { |
69
|
|
|
'sep', |
70
|
|
|
'dialect', |
71
|
|
|
'doublequote', |
72
|
|
|
'escapechar', |
73
|
|
|
'quotechar', |
74
|
|
|
'quoting', |
75
|
|
|
'skipinitialspace', |
76
|
|
|
'lineterminator', |
77
|
|
|
'header', |
78
|
|
|
'index_col', |
79
|
|
|
'names', |
80
|
|
|
'prefix', |
81
|
|
|
'skiprows', |
82
|
|
|
'skipfooter', |
83
|
|
|
'skip_footer', |
84
|
|
|
'na_values', |
85
|
|
|
'true_values', |
86
|
|
|
'false_values', |
87
|
|
|
'delimiter', |
88
|
|
|
'converters', |
89
|
|
|
'dtype', |
90
|
|
|
'delim_whitespace', |
91
|
|
|
'as_recarray', |
92
|
|
|
'na_filter', |
93
|
|
|
'compact_ints', |
94
|
|
|
'use_unsigned', |
95
|
|
|
'buffer_lines', |
96
|
|
|
'warn_bad_lines', |
97
|
|
|
'error_bad_lines', |
98
|
|
|
'keep_default_na', |
99
|
|
|
'thousands', |
100
|
|
|
'comment', |
101
|
|
|
'decimal', |
102
|
|
|
'keep_date_col', |
103
|
|
|
'nrows', |
104
|
|
|
'chunksize', |
105
|
|
|
'encoding', |
106
|
|
|
'usecols' |
107
|
|
|
} |
108
|
|
|
|
109
|
|
|
SHARED_REQUESTS_KWARGS = { |
110
|
|
|
'stream': True, |
111
|
|
|
'allow_redirects': False, |
112
|
|
|
} |
113
|
|
|
|
114
|
|
|
|
115
|
|
|
def mask_requests_args(url, validating=False, params_checker=None, **kwargs): |
116
|
|
|
requests_kwargs = {key: val for (key, val) in kwargs.iteritems() |
117
|
|
|
if key in ALLOWED_REQUESTS_KWARGS} |
118
|
|
|
if params_checker is not None: |
119
|
|
|
url, s_params = params_checker(url) |
120
|
|
|
if s_params: |
121
|
|
|
if 'params' in requests_kwargs: |
122
|
|
|
requests_kwargs['params'].update(s_params) |
123
|
|
|
else: |
124
|
|
|
requests_kwargs['params'] = s_params |
125
|
|
|
|
126
|
|
|
# Giving the connection 30 seconds. This timeout does not |
127
|
|
|
# apply to the download of the response body. |
128
|
|
|
# (Note that Quandl links can take >10 seconds to return their |
129
|
|
|
# first byte on occasion) |
130
|
|
|
requests_kwargs['timeout'] = 1.0 if validating else 30.0 |
131
|
|
|
requests_kwargs.update(SHARED_REQUESTS_KWARGS) |
132
|
|
|
|
133
|
|
|
request_pair = namedtuple("RequestPair", ("requests_kwargs", "url")) |
134
|
|
|
return request_pair(requests_kwargs, url) |
135
|
|
|
|
136
|
|
|
|
137
|
|
|
class PandasCSV(object): |
138
|
|
|
__metaclass__ = ABCMeta |
139
|
|
|
|
140
|
|
|
def __init__(self, |
141
|
|
|
pre_func, |
142
|
|
|
post_func, |
143
|
|
|
env, |
144
|
|
|
start_date, |
145
|
|
|
end_date, |
146
|
|
|
date_column, |
147
|
|
|
date_format, |
148
|
|
|
timezone, |
149
|
|
|
symbol, |
150
|
|
|
mask, |
151
|
|
|
symbol_column, |
152
|
|
|
data_frequency, |
153
|
|
|
**kwargs): |
154
|
|
|
|
155
|
|
|
self.start_date = start_date |
156
|
|
|
self.end_date = end_date |
157
|
|
|
self.date_column = date_column |
158
|
|
|
self.date_format = date_format |
159
|
|
|
self.timezone = timezone |
160
|
|
|
self.mask = mask |
161
|
|
|
self.symbol_column = symbol_column or "symbol" |
162
|
|
|
self.data_frequency = data_frequency |
163
|
|
|
|
164
|
|
|
invalid_kwargs = set(kwargs) - ALLOWED_READ_CSV_KWARGS |
165
|
|
|
if invalid_kwargs: |
166
|
|
|
raise TypeError( |
167
|
|
|
"Unexpected keyword arguments: %s" % invalid_kwargs, |
168
|
|
|
) |
169
|
|
|
|
170
|
|
|
self.pandas_kwargs = self.mask_pandas_args(kwargs) |
171
|
|
|
|
172
|
|
|
self.symbol = symbol |
173
|
|
|
|
174
|
|
|
self.env = env |
175
|
|
|
self.finder = env.asset_finder |
176
|
|
|
|
177
|
|
|
self.pre_func = pre_func |
178
|
|
|
self.post_func = post_func |
179
|
|
|
|
180
|
|
|
@property |
181
|
|
|
def fields(self): |
182
|
|
|
return self.df.columns.tolist() |
183
|
|
|
|
184
|
|
|
def get_hash(self): |
185
|
|
|
return self.namestring |
186
|
|
|
|
187
|
|
|
@abstractmethod |
188
|
|
|
def fetch_data(self): |
189
|
|
|
return |
190
|
|
|
|
191
|
|
|
@staticmethod |
192
|
|
|
def parse_date_str_series(format_str, tz, date_str_series, data_frequency, |
193
|
|
|
env): |
194
|
|
|
""" |
195
|
|
|
Efficient parsing for a 1d Pandas/numpy object containing string |
196
|
|
|
representations of dates. |
197
|
|
|
|
198
|
|
|
Note: pd.to_datetime is significantly faster when no format string is |
199
|
|
|
passed, and in pandas 0.12.0 the %p strptime directive is not correctly |
200
|
|
|
handled if a format string is explicitly passed, but AM/PM is handled |
201
|
|
|
properly if format=None. |
202
|
|
|
|
203
|
|
|
Moreover, we were previously ignoring this parameter unintentionally |
204
|
|
|
because we were incorrectly passing it as a positional. For all these |
205
|
|
|
reasons, we ignore the format_str parameter when parsing datetimes. |
206
|
|
|
""" |
207
|
|
|
|
208
|
|
|
# Explicitly ignoring this parameter. See note above. |
209
|
|
|
if format_str is not None: |
210
|
|
|
logger.warn( |
211
|
|
|
"The 'format_str' parameter to fetch_csv is deprecated. " |
212
|
|
|
"Ignoring and defaulting to pandas default date parsing." |
213
|
|
|
) |
214
|
|
|
format_str = None |
215
|
|
|
|
216
|
|
|
tz_str = str(tz) |
217
|
|
|
if tz_str == pytz.utc.zone: |
218
|
|
|
parsed = pd.to_datetime( |
219
|
|
|
date_str_series.values, |
220
|
|
|
format=format_str, |
221
|
|
|
utc=True, |
222
|
|
|
coerce=True, |
223
|
|
|
) |
224
|
|
|
else: |
225
|
|
|
parsed = pd.to_datetime( |
226
|
|
|
date_str_series.values, |
227
|
|
|
format=format_str, |
228
|
|
|
coerce=True, |
229
|
|
|
).tz_localize(tz_str).tz_convert('UTC') |
230
|
|
|
|
231
|
|
|
if data_frequency == 'daily': |
232
|
|
|
parsed = roll_dts_to_midnight(parsed, env) |
233
|
|
|
return parsed |
234
|
|
|
|
235
|
|
|
def mask_pandas_args(self, kwargs): |
236
|
|
|
pandas_kwargs = {key: val for (key, val) in kwargs.iteritems() |
237
|
|
|
if key in ALLOWED_READ_CSV_KWARGS} |
238
|
|
|
if 'usecols' in pandas_kwargs: |
239
|
|
|
usecols = pandas_kwargs['usecols'] |
240
|
|
|
if usecols and self.date_column not in usecols: |
241
|
|
|
# make a new list so we don't modify user's, |
242
|
|
|
# and to ensure it is mutable |
243
|
|
|
with_date = list(usecols) |
244
|
|
|
with_date.append(self.date_column) |
245
|
|
|
pandas_kwargs['usecols'] = with_date |
246
|
|
|
|
247
|
|
|
# No strings in the 'symbol' column should be interpreted as NaNs |
248
|
|
|
pandas_kwargs.setdefault('keep_default_na', False) |
249
|
|
|
pandas_kwargs.setdefault('na_values', {'symbol': []}) |
250
|
|
|
|
251
|
|
|
return pandas_kwargs |
252
|
|
|
|
253
|
|
|
def _lookup_unconflicted_symbol(self, symbol): |
254
|
|
|
""" |
255
|
|
|
Attempt to find a unique asset whose symbol is the given string. |
256
|
|
|
|
257
|
|
|
If multiple assets have held the given symbol, return a 0. |
258
|
|
|
|
259
|
|
|
If no asset has held the given symbol, return a NaN. |
260
|
|
|
""" |
261
|
|
|
try: |
262
|
|
|
uppered = symbol.upper() |
263
|
|
|
except AttributeError: |
264
|
|
|
# The mapping fails because symbol was a non-string |
265
|
|
|
return numpy.nan |
266
|
|
|
|
267
|
|
|
try: |
268
|
|
|
return self.finder.lookup_symbol(uppered, as_of_date=None) |
269
|
|
|
except MultipleSymbolsFound: |
270
|
|
|
# Fill conflicted entries with zeros to mark that they need to be |
271
|
|
|
# resolved by date. |
272
|
|
|
return 0 |
273
|
|
|
except SymbolNotFound: |
274
|
|
|
# Fill not found entries with nans. |
275
|
|
|
return numpy.nan |
276
|
|
|
|
277
|
|
|
def load_df(self): |
278
|
|
|
df = self.fetch_data() |
279
|
|
|
|
280
|
|
|
if self.pre_func: |
281
|
|
|
df = self.pre_func(df) |
282
|
|
|
|
283
|
|
|
# Batch-convert the user-specifed date column into timestamps. |
284
|
|
|
df['dt'] = self.parse_date_str_series( |
285
|
|
|
self.date_format, |
286
|
|
|
self.timezone, |
287
|
|
|
df[self.date_column], |
288
|
|
|
self.data_frequency, |
289
|
|
|
self.env |
290
|
|
|
).values |
291
|
|
|
|
292
|
|
|
# ignore rows whose dates we couldn't parse |
293
|
|
|
df = df[df['dt'].notnull()] |
294
|
|
|
|
295
|
|
|
if self.symbol is not None: |
296
|
|
|
df['sid'] = self.symbol |
297
|
|
|
elif self.finder: |
298
|
|
|
|
299
|
|
|
df.sort(self.symbol_column) |
300
|
|
|
|
301
|
|
|
# Pop the 'sid' column off of the DataFrame, just in case the user |
302
|
|
|
# has assigned it, and throw a warning |
303
|
|
|
try: |
304
|
|
|
df.pop('sid') |
305
|
|
|
warnings.warn( |
306
|
|
|
"Assignment of the 'sid' column of a DataFrame is " |
307
|
|
|
"not supported by Fetcher. The 'sid' column has been " |
308
|
|
|
"overwritten.", |
309
|
|
|
category=UserWarning, |
310
|
|
|
stacklevel=2, |
311
|
|
|
) |
312
|
|
|
except KeyError: |
313
|
|
|
# There was no 'sid' column, so no warning is necessary |
314
|
|
|
pass |
315
|
|
|
|
316
|
|
|
# Fill entries for any symbols that don't require a date to |
317
|
|
|
# uniquely identify. Entries for which multiple securities exist |
318
|
|
|
# are replaced with zeroes, while entries for which no asset |
319
|
|
|
# exists are replaced with NaNs. |
320
|
|
|
unique_symbols = df[self.symbol_column].unique() |
321
|
|
|
sid_series = pd.Series( |
322
|
|
|
data=map(self._lookup_unconflicted_symbol, unique_symbols), |
323
|
|
|
index=unique_symbols, |
324
|
|
|
name='sid', |
325
|
|
|
) |
326
|
|
|
df = df.join(sid_series, on=self.symbol_column) |
327
|
|
|
|
328
|
|
|
# Fill any zero entries left in our sid column by doing a lookup |
329
|
|
|
# using both symbol and the row date. |
330
|
|
|
conflict_rows = df[df['sid'] == 0] |
331
|
|
|
for row_idx, row in conflict_rows.iterrows(): |
332
|
|
|
try: |
333
|
|
|
asset = self.finder.lookup_symbol( |
334
|
|
|
row[self.symbol_column], |
335
|
|
|
# Replacing tzinfo here is necessary because of the |
336
|
|
|
# timezone metadata bug described below. |
337
|
|
|
row['dt'].replace(tzinfo=pytz.utc), |
338
|
|
|
|
339
|
|
|
# It's possible that no asset comes back here if our |
340
|
|
|
# lookup date is from before any asset held the |
341
|
|
|
# requested symbol. Mark such cases as NaN so that |
342
|
|
|
# they get dropped in the next step. |
343
|
|
|
) or numpy.nan |
344
|
|
|
except SymbolNotFound: |
345
|
|
|
asset = numpy.nan |
346
|
|
|
|
347
|
|
|
# Assign the resolved asset to the cell |
348
|
|
|
df.ix[row_idx, 'sid'] = asset |
349
|
|
|
|
350
|
|
|
# Filter out rows containing symbols that we failed to find. |
351
|
|
|
length_before_drop = len(df) |
352
|
|
|
df = df[df['sid'].notnull()] |
353
|
|
|
no_sid_count = length_before_drop - len(df) |
354
|
|
|
if no_sid_count: |
355
|
|
|
logger.warn( |
356
|
|
|
"Dropped {} rows from fetched csv.".format(no_sid_count), |
357
|
|
|
no_sid_count, |
358
|
|
|
extra={'syslog': True}, |
359
|
|
|
) |
360
|
|
|
else: |
361
|
|
|
df['sid'] = df['symbol'] |
362
|
|
|
|
363
|
|
|
# Dates are localized to UTC when they come out of |
364
|
|
|
# parse_date_str_series, but we need to re-localize them here because |
365
|
|
|
# of a bug that wasn't fixed until |
366
|
|
|
# https://github.com/pydata/pandas/pull/7092. |
367
|
|
|
# We should be able to remove the call to tz_localize once we're on |
368
|
|
|
# pandas 0.14.0 |
369
|
|
|
|
370
|
|
|
# We don't set 'dt' as the index until here because the Symbol parsing |
371
|
|
|
# operations above depend on having a unique index for the dataframe, |
372
|
|
|
# and the 'dt' column can contain multiple dates for the same entry. |
373
|
|
|
df.drop_duplicates(["sid", "dt"]) |
374
|
|
|
df.set_index(['dt'], inplace=True) |
375
|
|
|
df = df.tz_localize('UTC') |
376
|
|
|
df.sort_index(inplace=True) |
377
|
|
|
|
378
|
|
|
cols_to_drop = [self.date_column] |
379
|
|
|
if self.symbol is None: |
380
|
|
|
cols_to_drop.append(self.symbol_column) |
381
|
|
|
df = df[df.columns.drop(cols_to_drop)] |
382
|
|
|
|
383
|
|
|
if self.post_func: |
384
|
|
|
df = self.post_func(df) |
385
|
|
|
|
386
|
|
|
return df |
387
|
|
|
|
388
|
|
|
def __iter__(self): |
389
|
|
|
asset_cache = {} |
390
|
|
|
for dt, series in self.df.iterrows(): |
391
|
|
|
if dt < self.start_date: |
392
|
|
|
continue |
393
|
|
|
|
394
|
|
|
if dt > self.end_date: |
395
|
|
|
return |
396
|
|
|
|
397
|
|
|
event = FetcherEvent() |
398
|
|
|
# when dt column is converted to be the dataframe's index |
399
|
|
|
# the dt column is dropped. So, we need to manually copy |
400
|
|
|
# dt into the event. |
401
|
|
|
event.dt = dt |
402
|
|
|
for k, v in series.iteritems(): |
403
|
|
|
# convert numpy integer types to |
404
|
|
|
# int. This assumes we are on a 64bit |
405
|
|
|
# platform that will not lose information |
406
|
|
|
# by casting. |
407
|
|
|
# TODO: this is only necessary on the |
408
|
|
|
# amazon qexec instances. would be good |
409
|
|
|
# to figure out how to use the numpy dtypes |
410
|
|
|
# without this check and casting. |
411
|
|
|
if isinstance(v, numpy.integer): |
412
|
|
|
v = int(v) |
413
|
|
|
|
414
|
|
|
setattr(event, k, v) |
415
|
|
|
|
416
|
|
|
# If it has start_date, then it's already an Asset |
417
|
|
|
# object from asset_for_symbol, and we don't have to |
418
|
|
|
# transform it any further. Checking for start_date is |
419
|
|
|
# faster than isinstance. |
420
|
|
|
if event.sid in asset_cache: |
421
|
|
|
event.sid = asset_cache[event.sid] |
422
|
|
|
elif hasattr(event.sid, 'start_date'): |
423
|
|
|
# Clone for user algo code, if we haven't already. |
424
|
|
|
asset_cache[event.sid] = event.sid |
425
|
|
|
elif self.finder and isinstance(event.sid, int): |
426
|
|
|
asset = self.finder.retrieve_asset(event.sid, |
427
|
|
|
default_none=True) |
428
|
|
|
if asset: |
429
|
|
|
# Clone for user algo code. |
430
|
|
|
event.sid = asset_cache[asset] = asset |
431
|
|
|
elif self.mask: |
432
|
|
|
# When masking drop all non-mappable values. |
433
|
|
|
continue |
434
|
|
|
elif self.symbol is None: |
435
|
|
|
# If the event's sid property is an int we coerce |
436
|
|
|
# it into an Equity. |
437
|
|
|
event.sid = asset_cache[event.sid] = Equity(event.sid) |
438
|
|
|
|
439
|
|
|
event.type = DATASOURCE_TYPE.CUSTOM |
440
|
|
|
event.source_id = self.namestring |
441
|
|
|
yield event |
442
|
|
|
|
443
|
|
|
|
444
|
|
|
class PandasRequestsCSV(PandasCSV): |
445
|
|
|
# maximum 100 megs to prevent DDoS |
446
|
|
|
MAX_DOCUMENT_SIZE = (1024 * 1024) * 100 |
447
|
|
|
|
448
|
|
|
# maximum number of bytes to read in at a time |
449
|
|
|
CONTENT_CHUNK_SIZE = 4096 |
450
|
|
|
|
451
|
|
|
def __init__(self, |
452
|
|
|
url, |
453
|
|
|
pre_func, |
454
|
|
|
post_func, |
455
|
|
|
env, |
456
|
|
|
start_date, |
457
|
|
|
end_date, |
458
|
|
|
date_column, |
459
|
|
|
date_format, |
460
|
|
|
timezone, |
461
|
|
|
symbol, |
462
|
|
|
mask, |
463
|
|
|
symbol_column, |
464
|
|
|
data_frequency, |
465
|
|
|
special_params_checker=None, |
466
|
|
|
**kwargs): |
467
|
|
|
|
468
|
|
|
# Peel off extra requests kwargs, forwarding the remaining kwargs to |
469
|
|
|
# the superclass. |
470
|
|
|
# Also returns possible https updated url if sent to http quandl ds |
471
|
|
|
# If url hasn't changed, will just return the original. |
472
|
|
|
self._requests_kwargs, self.url =\ |
473
|
|
|
mask_requests_args(url, |
474
|
|
|
params_checker=special_params_checker, |
475
|
|
|
**kwargs) |
476
|
|
|
|
477
|
|
|
remaining_kwargs = { |
478
|
|
|
k: v for k, v in kwargs.iteritems() |
479
|
|
|
if k not in self.requests_kwargs |
480
|
|
|
} |
481
|
|
|
|
482
|
|
|
self.namestring = type(self).__name__ |
483
|
|
|
|
484
|
|
|
super(PandasRequestsCSV, self).__init__( |
485
|
|
|
pre_func, |
486
|
|
|
post_func, |
487
|
|
|
env, |
488
|
|
|
start_date, |
489
|
|
|
end_date, |
490
|
|
|
date_column, |
491
|
|
|
date_format, |
492
|
|
|
timezone, |
493
|
|
|
symbol, |
494
|
|
|
mask, |
495
|
|
|
symbol_column, |
496
|
|
|
data_frequency, |
497
|
|
|
**remaining_kwargs |
498
|
|
|
) |
499
|
|
|
|
500
|
|
|
self.fetch_size = None |
501
|
|
|
self.fetch_hash = None |
502
|
|
|
self.df = self.load_df() |
503
|
|
|
|
504
|
|
|
self.special_params_checker = special_params_checker |
505
|
|
|
|
506
|
|
|
@property |
507
|
|
|
def requests_kwargs(self): |
508
|
|
|
return self._requests_kwargs |
509
|
|
|
|
510
|
|
|
def fetch_url(self, url): |
511
|
|
|
info = "checking {url} with {params}" |
512
|
|
|
logger.info(info.format(url=url, params=self.requests_kwargs)) |
513
|
|
|
# setting decode_unicode=True sometimes results in a |
514
|
|
|
# UnicodeEncodeError exception, so instead we'll use |
515
|
|
|
# pandas logic for decoding content |
516
|
|
|
try: |
517
|
|
|
response = requests.get(url, **self.requests_kwargs) |
518
|
|
|
except requests.exceptions.ConnectionError: |
519
|
|
|
raise Exception('Could not connect to %s' % url) |
520
|
|
|
|
521
|
|
|
if not response.ok: |
522
|
|
|
raise Exception('Problem reaching %s' % url) |
523
|
|
|
elif response.is_redirect: |
524
|
|
|
# On the offchance we don't catch a redirect URL |
525
|
|
|
# in validation, this will catch it. |
526
|
|
|
new_url = response.headers['location'] |
527
|
|
|
raise FetcherCSVRedirectError( |
528
|
|
|
url=url, |
529
|
|
|
new_url=new_url, |
530
|
|
|
extra={ |
531
|
|
|
'old_url': url, |
532
|
|
|
'new_url': new_url |
533
|
|
|
} |
534
|
|
|
) |
535
|
|
|
|
536
|
|
|
content_length = 0 |
537
|
|
|
logger.info('{} connection established in {:.1f} seconds'.format( |
538
|
|
|
url, response.elapsed.total_seconds())) |
539
|
|
|
for chunk in response.iter_content(self.CONTENT_CHUNK_SIZE): |
540
|
|
|
if content_length > self.MAX_DOCUMENT_SIZE: |
541
|
|
|
raise Exception('Document size too big.') |
542
|
|
|
if chunk: |
543
|
|
|
content_length += len(chunk) |
544
|
|
|
yield chunk |
545
|
|
|
|
546
|
|
|
return |
547
|
|
|
|
548
|
|
|
def fetch_data(self): |
549
|
|
|
# create a data frame directly from the full text of |
550
|
|
|
# the response from the returned file-descriptor. |
551
|
|
|
data = self.fetch_url(self.url) |
552
|
|
|
fd = StringIO() |
553
|
|
|
|
554
|
|
|
for chunk in data: |
555
|
|
|
fd.write(chunk) |
556
|
|
|
self.fetch_size = fd.tell() |
557
|
|
|
|
558
|
|
|
fd.seek(0) |
559
|
|
|
|
560
|
|
|
try: |
561
|
|
|
# see if pandas can parse csv data |
562
|
|
|
frames = read_csv(fd, **self.pandas_kwargs) |
563
|
|
|
frames_hash = hashlib.md5(fd.getvalue()) |
564
|
|
|
self.fetch_hash = frames_hash.hexdigest() |
565
|
|
|
except pd.parser.CParserError: |
566
|
|
|
# could not parse the data, raise exception |
567
|
|
|
raise Exception('Error parsing remote CSV data.') |
568
|
|
|
finally: |
569
|
|
|
fd.close() |
570
|
|
|
|
571
|
|
|
return frames |
572
|
|
|
|