Total Complexity | 149 |
Total Lines | 1270 |
Duplicated Lines | 0 % |
Complex classes like zipline.data.DataPortal often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # |
||
59 | class DataPortal(object): |
||
60 | def __init__(self, |
||
61 | env, |
||
62 | sim_params=None, |
||
63 | minutes_equities_path=None, |
||
64 | daily_equities_path=None, |
||
65 | adjustment_reader=None, |
||
66 | equity_sid_path_func=None, |
||
67 | futures_sid_path_func=None): |
||
68 | self.env = env |
||
69 | |||
70 | # Internal pointers to the current dt (can be minute) and current day. |
||
71 | # In daily mode, they point to the same thing. In minute mode, it's |
||
72 | # useful to have separate pointers to the current day and to the |
||
73 | # current minute. These pointers are updated by the |
||
74 | # AlgorithmSimulator's transform loop. |
||
75 | self.current_dt = None |
||
76 | self.current_day = None |
||
77 | |||
78 | # This is a bit ugly, but is here for performance reasons. In minute |
||
79 | # simulations, we need to very quickly go from dt -> (# of minutes |
||
80 | # since Jan 1 2002 9:30 Eastern). |
||
81 | # |
||
82 | # The clock that heartbeats the simulation has all the necessary |
||
83 | # information to do this calculation very quickly. This value is |
||
84 | # calculated there, and then set here |
||
85 | self.cur_data_offset = 0 |
||
86 | |||
87 | self.views = {} |
||
88 | |||
89 | if minutes_equities_path is None and daily_equities_path is None: |
||
90 | raise ValueError("Must provide at least one of minute or " |
||
91 | "daily data path!") |
||
92 | |||
93 | self._minutes_equities_path = minutes_equities_path |
||
94 | self._daily_equities_path = daily_equities_path |
||
95 | self._asset_finder = env.asset_finder |
||
96 | |||
97 | self._carrays = { |
||
98 | 'open': {}, |
||
99 | 'high': {}, |
||
100 | 'low': {}, |
||
101 | 'close': {}, |
||
102 | 'volume': {}, |
||
103 | 'sid': {}, |
||
104 | 'dt': {}, |
||
105 | } |
||
106 | |||
107 | self._adjustment_reader = adjustment_reader |
||
108 | |||
109 | # caches of sid -> adjustment list |
||
110 | self._splits_dict = {} |
||
111 | self._mergers_dict = {} |
||
112 | self._dividends_dict = {} |
||
113 | |||
114 | # Pointer to the daily bcolz file. |
||
115 | self._daily_equities_data = None |
||
116 | |||
117 | # Cache of sid -> the first trading day of an asset, even if that day |
||
118 | # is before 1/2/2002. |
||
119 | self._asset_start_dates = {} |
||
120 | self._asset_end_dates = {} |
||
121 | |||
122 | # Fetcher state |
||
123 | self._augmented_sources_map = {} |
||
124 | self._fetcher_df = None |
||
125 | |||
126 | self._sim_params = sim_params |
||
127 | if self._sim_params is not None: |
||
128 | self._data_frequency = self._sim_params.data_frequency |
||
129 | else: |
||
130 | self._data_frequency = "minute" |
||
131 | |||
132 | self._equity_sid_path_func = equity_sid_path_func |
||
133 | self._futures_sid_path_func = futures_sid_path_func |
||
134 | |||
135 | self.DAILY_PRICE_ADJUSTMENT_FACTOR = 0.001 |
||
136 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR = 0.001 |
||
137 | |||
138 | if daily_equities_path is not None: |
||
139 | self._daily_bar_reader = BcolzDailyBarReader(daily_equities_path) |
||
140 | else: |
||
141 | self._daily_bar_reader = None |
||
142 | |||
143 | def handle_extra_source(self, source_df): |
||
144 | """ |
||
145 | Extra sources always have a sid column. |
||
146 | |||
147 | We expand the given data (by forward filling) to the full range of |
||
148 | the simulation dates, so that lookup is fast during simulation. |
||
149 | """ |
||
150 | if source_df is None: |
||
151 | return |
||
152 | |||
153 | self._fetcher_df = source_df |
||
154 | |||
155 | # source_df's sid column can either consist of assets we know about |
||
156 | # (such as sid(24)) or of assets we don't know about (such as |
||
157 | # palladium). |
||
158 | # |
||
159 | # In both cases, we break up the dataframe into individual dfs |
||
160 | # that only contain a single asset's information. ie, if source_df |
||
161 | # has data for PALLADIUM and GOLD, we split source_df into two |
||
162 | # dataframes, one for each. (same applies if source_df has data for |
||
163 | # AAPL and IBM). |
||
164 | # |
||
165 | # We then take each child df and reindex it to the simulation's date |
||
166 | # range by forward-filling missing values. this makes reads simpler. |
||
167 | # |
||
168 | # Finally, we store the data. For each fetcher column, we store a |
||
169 | # mapping in self.augmented_sources_map from it to a dictionary of |
||
170 | # asset -> df. In other words, |
||
171 | # self.augmented_sources_map['days_to_cover']['AAPL'] gives us the df |
||
172 | # holding that data. |
||
173 | |||
174 | if self._sim_params.emission_rate == "daily": |
||
175 | fetcher_date_index = self.env.days_in_range( |
||
176 | start=self._sim_params.period_start, |
||
177 | end=self._sim_params.period_end |
||
178 | ) |
||
179 | else: |
||
180 | fetcher_date_index = self.env.minutes_for_days_in_range( |
||
181 | start=self._sim_params.period_start, |
||
182 | end=self._sim_params.period_end |
||
183 | ) |
||
184 | |||
185 | # break the source_df up into one dataframe per sid. this lets |
||
186 | # us (more easily) calculate accurate start/end dates for each sid, |
||
187 | # de-dup data, and expand the data to fit the backtest start/end date. |
||
188 | grouped_by_sid = source_df.groupby(["sid"]) |
||
189 | group_names = grouped_by_sid.groups.keys() |
||
190 | group_dict = {} |
||
191 | for group_name in group_names: |
||
192 | group_dict[group_name] = grouped_by_sid.get_group(group_name) |
||
193 | |||
194 | for identifier, df in group_dict.iteritems(): |
||
195 | # before reindexing, save the earliest and latest dates |
||
196 | earliest_date = df.index[0] |
||
197 | latest_date = df.index[-1] |
||
198 | |||
199 | # since we know this df only contains a single sid, we can safely |
||
200 | # de-dupe by the index (dt) |
||
201 | df = df.groupby(level=0).last() |
||
202 | |||
203 | # reindex the dataframe based on the backtest start/end date. |
||
204 | # this makes reads easier during the backtest. |
||
205 | df = df.reindex(index=fetcher_date_index, method='ffill') |
||
206 | |||
207 | if not isinstance(identifier, Asset): |
||
208 | # for fake assets we need to store a start/end date |
||
209 | self._asset_start_dates[identifier] = earliest_date |
||
210 | self._asset_end_dates[identifier] = latest_date |
||
211 | |||
212 | for col_name in df.columns.difference(['sid']): |
||
213 | if col_name not in self._augmented_sources_map: |
||
214 | self._augmented_sources_map[col_name] = {} |
||
215 | |||
216 | self._augmented_sources_map[col_name][identifier] = df |
||
217 | |||
218 | def _open_daily_file(self): |
||
219 | if self._daily_equities_data is None: |
||
220 | self._daily_equities_data = bcolz.open(self._daily_equities_path) |
||
221 | self.daily_equities_attrs = self._daily_equities_data.attrs |
||
222 | |||
223 | return self._daily_equities_data, self.daily_equities_attrs |
||
224 | |||
225 | def _open_minute_file(self, field, asset): |
||
226 | sid_str = str(int(asset)) |
||
227 | |||
228 | try: |
||
229 | carray = self._carrays[field][sid_str] |
||
230 | except KeyError: |
||
231 | carray = self._carrays[field][sid_str] = \ |
||
232 | self._get_ctable(asset)[field] |
||
233 | |||
234 | return carray |
||
235 | |||
236 | def _get_ctable(self, asset): |
||
237 | sid = int(asset) |
||
238 | |||
239 | if isinstance(asset, Future) and \ |
||
240 | self._futures_sid_path_func is not None: |
||
241 | path = self._futures_sid_path_func( |
||
242 | self._minutes_equities_path, sid |
||
243 | ) |
||
244 | elif isinstance(asset, Equity) and \ |
||
245 | self._equity_sid_path_func is not None: |
||
246 | path = self._equity_sid_path_func( |
||
247 | self._minutes_equities_path, sid |
||
248 | ) |
||
249 | else: |
||
250 | path = "{0}/{1}.bcolz".format(self._minutes_equities_path, sid) |
||
251 | |||
252 | return bcolz.open(path, mode='r') |
||
253 | |||
254 | def get_previous_value(self, asset, field, dt): |
||
255 | """ |
||
256 | Given an asset and a column and a dt, returns the previous value for |
||
257 | the same asset/column pair. If this data portal is in minute mode, |
||
258 | it's the previous minute value, otherwise it's the previous day's |
||
259 | value. |
||
260 | |||
261 | Parameters |
||
262 | --------- |
||
263 | asset : Asset |
||
264 | The asset whose data is desired. |
||
265 | |||
266 | field: string |
||
267 | The desired field of the asset. Valid values are "open", |
||
268 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
269 | "price". |
||
270 | |||
271 | dt: pd.Timestamp |
||
272 | The timestamp from which to go back in time one slot. |
||
273 | |||
274 | Returns |
||
275 | ------- |
||
276 | The value of the desired field at the desired time. |
||
277 | """ |
||
278 | if self._data_frequency == 'daily': |
||
279 | prev_dt = self.env.previous_trading_day(dt) |
||
280 | elif self._data_frequency == 'minute': |
||
281 | prev_dt = self.env.previous_market_minute(dt) |
||
282 | |||
283 | return self.get_spot_value(asset, field, prev_dt) |
||
284 | |||
285 | def _check_fetcher(self, asset, column, day): |
||
286 | # if there is a fetcher column called "price", only look at it if |
||
287 | # it's on something like palladium and not AAPL (since our own price |
||
288 | # data always wins when dealing with assets) |
||
289 | look_in_augmented_sources = column in self._augmented_sources_map and \ |
||
290 | not (column in BASE_FIELDS and isinstance(asset, Asset)) |
||
291 | |||
292 | if look_in_augmented_sources: |
||
293 | # we're being asked for a fetcher field |
||
294 | try: |
||
295 | return self._augmented_sources_map[column][asset].\ |
||
296 | loc[day, column] |
||
297 | except: |
||
298 | log.error( |
||
299 | "Could not find value for asset={0}, current_day={1}," |
||
300 | "column={2}".format( |
||
301 | str(asset), |
||
302 | str(self.current_day), |
||
303 | str(column))) |
||
304 | |||
305 | raise KeyError |
||
306 | |||
307 | def get_spot_value(self, asset, field, dt=None): |
||
308 | """ |
||
309 | Public API method that returns a scalar value representing the value |
||
310 | of the desired asset's field at either the given dt, or this data |
||
311 | portal's current_dt. |
||
312 | |||
313 | Parameters |
||
314 | --------- |
||
315 | asset : Asset |
||
316 | The asset whose data is desired. |
||
317 | |||
318 | field: string |
||
319 | The desired field of the asset. Valid values are "open", |
||
320 | "open_price", "high", "low", "close", "close_price", "volume", and |
||
321 | "price". |
||
322 | |||
323 | dt: pd.Timestamp |
||
324 | (Optional) The timestamp for the desired value. |
||
325 | |||
326 | Returns |
||
327 | ------- |
||
328 | The value of the desired field at the desired time. |
||
329 | """ |
||
330 | fetcher_val = self._check_fetcher(asset, field, |
||
331 | (dt or self.current_dt)) |
||
332 | |||
333 | if fetcher_val is not None: |
||
334 | return fetcher_val |
||
335 | |||
336 | if field not in BASE_FIELDS: |
||
337 | raise KeyError("Invalid column: " + str(field)) |
||
338 | |||
339 | column_to_use = BASE_FIELDS[field] |
||
340 | |||
341 | if isinstance(asset, int): |
||
342 | asset = self._asset_finder.retrieve_asset(asset) |
||
343 | |||
344 | self._check_is_currently_alive(asset, dt) |
||
345 | |||
346 | if self._data_frequency == "daily": |
||
347 | day_to_use = dt or self.current_day |
||
348 | day_to_use = normalize_date(day_to_use) |
||
349 | return self._get_daily_data(asset, column_to_use, day_to_use) |
||
350 | else: |
||
351 | dt_to_use = dt or self.current_dt |
||
352 | |||
353 | if isinstance(asset, Future): |
||
354 | return self._get_minute_spot_value_future( |
||
355 | asset, column_to_use, dt_to_use) |
||
356 | else: |
||
357 | return self._get_minute_spot_value( |
||
358 | asset, column_to_use, dt_to_use) |
||
359 | |||
360 | def _get_minute_spot_value_future(self, asset, column, dt): |
||
361 | # Futures bcolz files have 1440 bars per day (24 hours), 7 days a week. |
||
362 | # The file attributes contain the "start_dt" and "last_dt" fields, |
||
363 | # which represent the time period for this bcolz file. |
||
364 | |||
365 | # The start_dt is midnight of the first day that this future started |
||
366 | # trading. |
||
367 | |||
368 | # figure out the # of minutes between dt and this asset's start_dt |
||
369 | start_date = self._get_asset_start_date(asset) |
||
370 | minute_offset = int((dt - start_date).total_seconds() / 60) |
||
371 | |||
372 | if minute_offset < 0: |
||
373 | # asking for a date that is before the asset's start date, no dice |
||
374 | return 0.0 |
||
375 | |||
376 | # then just index into the bcolz carray at that offset |
||
377 | carray = self._open_minute_file(column, asset) |
||
378 | result = carray[minute_offset] |
||
379 | |||
380 | # if there's missing data, go backwards until we run out of file |
||
381 | while result == 0 and minute_offset > 0: |
||
382 | minute_offset -= 1 |
||
383 | result = carray[minute_offset] |
||
384 | |||
385 | if column != 'volume': |
||
386 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
387 | else: |
||
388 | return result |
||
389 | |||
390 | def _get_minute_spot_value(self, asset, column, dt): |
||
391 | # All our minute bcolz files are written starting on 1/2/2002, |
||
392 | # with 390 minutes per day, regarding of when the security started |
||
393 | # trading. This lets us avoid doing an offset calculation related |
||
394 | # to the asset start date. Hard-coding 390 minutes per day lets us |
||
395 | # ignore half days. |
||
396 | |||
397 | if dt == self.current_dt: |
||
398 | minute_offset_to_use = self.cur_data_offset |
||
399 | else: |
||
400 | # this is the slow path. |
||
401 | # dt was passed in, so calculate the offset. |
||
402 | # = (390 * number of trading days since 1/2/2002) + |
||
403 | # (index of minute in day) |
||
404 | given_day = pd.Timestamp(dt.date(), tz='utc') |
||
405 | day_index = tradingcalendar.trading_days.searchsorted( |
||
406 | given_day) - INDEX_OF_FIRST_TRADING_DAY |
||
407 | |||
408 | # if dt is before the first market minute, minute_index |
||
409 | # will be 0. if it's after the last market minute, it'll |
||
410 | # be len(minutes_for_day) |
||
411 | minute_index = self.env.market_minutes_for_day(given_day).\ |
||
412 | searchsorted(dt) |
||
413 | |||
414 | minute_offset_to_use = (day_index * 390) + minute_index |
||
415 | |||
416 | carray = self._open_minute_file(column, asset) |
||
417 | result = carray[minute_offset_to_use] |
||
418 | |||
419 | if result == 0: |
||
420 | # if the given minute doesn't have data, we need to seek |
||
421 | # backwards until we find data. This makes the data |
||
422 | # forward-filled. |
||
423 | |||
424 | # get this asset's start date, so that we don't look before it. |
||
425 | start_date = self._get_asset_start_date(asset) |
||
426 | start_date_idx = tradingcalendar.trading_days.searchsorted( |
||
427 | start_date) - INDEX_OF_FIRST_TRADING_DAY |
||
428 | start_day_offset = start_date_idx * 390 |
||
429 | |||
430 | original_start = minute_offset_to_use |
||
431 | |||
432 | while result == 0 and minute_offset_to_use > start_day_offset: |
||
433 | minute_offset_to_use -= 1 |
||
434 | result = carray[minute_offset_to_use] |
||
435 | |||
436 | # once we've found data, we need to check whether it needs |
||
437 | # to be adjusted. |
||
438 | if result != 0: |
||
439 | minutes = self.env.market_minute_window( |
||
440 | start=(dt or self.current_dt), |
||
441 | count=(original_start - minute_offset_to_use + 1), |
||
442 | step=-1 |
||
443 | ).order() |
||
444 | |||
445 | # only need to check for adjustments if we've gone back |
||
446 | # far enough to cross the day boundary. |
||
447 | if minutes[0].date() != minutes[-1].date(): |
||
448 | # create a np array of size minutes, fill it all with |
||
449 | # the same value. and adjust the array. |
||
450 | arr = np.array([result] * len(minutes), |
||
451 | dtype=np.float64) |
||
452 | self._apply_all_adjustments( |
||
453 | data=arr, |
||
454 | asset=asset, |
||
455 | dts=minutes, |
||
456 | field=column |
||
457 | ) |
||
458 | |||
459 | # The first value of the adjusted array is the value |
||
460 | # we want. |
||
461 | result = arr[0] |
||
462 | |||
463 | if column != 'volume': |
||
464 | return result * self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
465 | else: |
||
466 | return result |
||
467 | |||
468 | def _get_daily_data(self, asset, column, dt): |
||
469 | while True: |
||
470 | try: |
||
471 | value = self._daily_bar_reader.spot_price(asset, dt, column) |
||
472 | if value != -1: |
||
473 | return value |
||
474 | else: |
||
475 | dt -= tradingcalendar.trading_day |
||
476 | except NoDataOnDate: |
||
477 | return 0 |
||
478 | |||
479 | def _get_history_daily_window(self, assets, end_dt, bar_count, |
||
480 | field_to_use): |
||
481 | """ |
||
482 | Internal method that returns a dataframe containing history bars |
||
483 | of daily frequency for the given sids. |
||
484 | """ |
||
485 | day_idx = tradingcalendar.trading_days.searchsorted(end_dt.date()) |
||
486 | days_for_window = tradingcalendar.trading_days[ |
||
487 | (day_idx - bar_count + 1):(day_idx + 1)] |
||
488 | |||
489 | if len(assets) == 0: |
||
490 | return pd.DataFrame(None, |
||
491 | index=days_for_window, |
||
492 | columns=None) |
||
493 | |||
494 | data = [] |
||
495 | |||
496 | for asset in assets: |
||
497 | if isinstance(asset, Future): |
||
498 | data.append(self._get_history_daily_window_future( |
||
499 | asset, days_for_window, end_dt, field_to_use |
||
500 | )) |
||
501 | else: |
||
502 | data.append(self._get_history_daily_window_equity( |
||
503 | asset, days_for_window, end_dt, field_to_use |
||
504 | )) |
||
505 | |||
506 | return pd.DataFrame( |
||
507 | np.array(data).T, |
||
508 | index=days_for_window, |
||
509 | columns=assets |
||
510 | ) |
||
511 | |||
512 | def _get_history_daily_window_future(self, asset, days_for_window, |
||
513 | end_dt, column): |
||
514 | # Since we don't have daily bcolz files for futures (yet), use minute |
||
515 | # bars to calculate the daily values. |
||
516 | data = [] |
||
517 | data_groups = [] |
||
518 | |||
519 | # get all the minutes for the days NOT including today |
||
520 | for day in days_for_window[:-1]: |
||
521 | minutes = self.env.market_minutes_for_day(day) |
||
522 | |||
523 | values_for_day = np.zeros(len(minutes), dtype=np.float64) |
||
524 | |||
525 | for idx, minute in enumerate(minutes): |
||
526 | minute_val = self._get_minute_spot_value_future( |
||
527 | asset, column, minute |
||
528 | ) |
||
529 | |||
530 | values_for_day[idx] = minute_val |
||
531 | |||
532 | data_groups.append(values_for_day) |
||
533 | |||
534 | # get the minutes for today |
||
535 | last_day_minutes = pd.date_range( |
||
536 | start=self.env.get_open_and_close(end_dt)[0], |
||
537 | end=end_dt, |
||
538 | freq="T" |
||
539 | ) |
||
540 | |||
541 | values_for_last_day = np.zeros(len(last_day_minutes), dtype=np.float64) |
||
542 | |||
543 | for idx, minute in enumerate(last_day_minutes): |
||
544 | minute_val = self._get_minute_spot_value_future( |
||
545 | asset, column, minute |
||
546 | ) |
||
547 | |||
548 | values_for_last_day[idx] = minute_val |
||
549 | |||
550 | data_groups.append(values_for_last_day) |
||
551 | |||
552 | for group in data_groups: |
||
553 | if len(group) == 0: |
||
554 | continue |
||
555 | |||
556 | if column == 'volume': |
||
557 | data.append(np.sum(group)) |
||
558 | elif column == 'open': |
||
559 | data.append(group[0]) |
||
560 | elif column == 'close': |
||
561 | data.append(group[-1]) |
||
562 | elif column == 'high': |
||
563 | data.append(np.amax(group)) |
||
564 | elif column == 'low': |
||
565 | data.append(np.amin(group)) |
||
566 | |||
567 | return data |
||
568 | |||
569 | def _get_history_daily_window_equity(self, asset, days_for_window, |
||
570 | end_dt, field_to_use): |
||
571 | sid = int(asset) |
||
572 | ends_at_midnight = end_dt.hour == 0 and end_dt.minute == 0 |
||
573 | |||
574 | # get the start and end dates for this sid |
||
575 | end_date = self._get_asset_end_date(asset) |
||
576 | |||
577 | if ends_at_midnight or (days_for_window[-1] > end_date): |
||
578 | # two cases where we use daily data for the whole range: |
||
579 | # 1) the history window ends at midnight utc. |
||
580 | # 2) the last desired day of the window is after the |
||
581 | # last trading day, use daily data for the whole range. |
||
582 | return self._get_daily_window_for_sid( |
||
583 | asset, |
||
584 | field_to_use, |
||
585 | days_for_window, |
||
586 | extra_slot=False |
||
587 | ) |
||
588 | else: |
||
589 | # for the last day of the desired window, use minute |
||
590 | # data and aggregate it. |
||
591 | all_minutes_for_day = self.env.market_minutes_for_day( |
||
592 | pd.Timestamp(end_dt.date())) |
||
593 | |||
594 | last_minute_idx = all_minutes_for_day.searchsorted(end_dt) |
||
595 | |||
596 | # these are the minutes for the partial day |
||
597 | minutes_for_partial_day =\ |
||
598 | all_minutes_for_day[0:(last_minute_idx + 1)] |
||
599 | |||
600 | daily_data = self._get_daily_window_for_sid( |
||
601 | sid, |
||
602 | field_to_use, |
||
603 | days_for_window[0:-1] |
||
604 | ) |
||
605 | |||
606 | minute_data = self._get_minute_window_for_equity( |
||
607 | sid, |
||
608 | field_to_use, |
||
609 | minutes_for_partial_day |
||
610 | ) |
||
611 | |||
612 | if field_to_use == 'volume': |
||
613 | minute_value = np.sum(minute_data) |
||
614 | elif field_to_use == 'open': |
||
615 | minute_value = minute_data[0] |
||
616 | elif field_to_use == 'close': |
||
617 | minute_value = minute_data[-1] |
||
618 | elif field_to_use == 'high': |
||
619 | minute_value = np.amax(minute_data) |
||
620 | elif field_to_use == 'low': |
||
621 | minute_value = np.amin(minute_data) |
||
622 | |||
623 | # append the partial day. |
||
624 | daily_data[-1] = minute_value |
||
625 | |||
626 | return daily_data |
||
627 | |||
628 | def _get_history_minute_window(self, assets, end_dt, bar_count, |
||
629 | field_to_use): |
||
630 | """ |
||
631 | Internal method that returns a dataframe containing history bars |
||
632 | of minute frequency for the given sids. |
||
633 | """ |
||
634 | # get all the minutes for this window |
||
635 | minutes_for_window = self.env.market_minute_window( |
||
636 | end_dt, bar_count, step=-1)[::-1] |
||
637 | |||
638 | # but then cut it down to only the minutes after |
||
639 | # FIRST_TRADING_MINUTE |
||
640 | modified_minutes_for_window = minutes_for_window[ |
||
641 | minutes_for_window.slice_indexer(FIRST_TRADING_MINUTE)] |
||
642 | |||
643 | modified_minutes_length = len(modified_minutes_for_window) |
||
644 | |||
645 | if modified_minutes_length == 0: |
||
646 | raise ValueError("Cannot calculate history window that ends" |
||
647 | "before 2002-01-02 14:31 UTC!") |
||
648 | |||
649 | data = [] |
||
650 | bars_to_prepend = 0 |
||
651 | nans_to_prepend = None |
||
652 | |||
653 | if modified_minutes_length < bar_count and \ |
||
654 | (modified_minutes_for_window[0] == FIRST_TRADING_MINUTE): |
||
655 | # the beginning of the window goes before our global trading |
||
656 | # start date |
||
657 | bars_to_prepend = bar_count - modified_minutes_length |
||
658 | nans_to_prepend = np.repeat(np.nan, bars_to_prepend) |
||
659 | |||
660 | if len(assets) == 0: |
||
661 | return pd.DataFrame( |
||
662 | None, |
||
663 | index=modified_minutes_for_window, |
||
664 | columns=None |
||
665 | ) |
||
666 | |||
667 | for asset in assets: |
||
668 | asset_minute_data = self._get_minute_window_for_asset( |
||
669 | asset, |
||
670 | field_to_use, |
||
671 | modified_minutes_for_window |
||
672 | ) |
||
673 | |||
674 | if bars_to_prepend != 0: |
||
675 | asset_minute_data = np.insert(asset_minute_data, 0, |
||
676 | nans_to_prepend) |
||
677 | |||
678 | data.append(asset_minute_data) |
||
679 | |||
680 | return pd.DataFrame( |
||
681 | np.array(data).T, |
||
682 | index=minutes_for_window, |
||
683 | columns=map(int, assets) |
||
684 | ) |
||
685 | |||
686 | def get_history_window(self, assets, end_dt, bar_count, frequency, field, |
||
687 | ffill=True): |
||
688 | """ |
||
689 | Public API method that returns a dataframe containing the requested |
||
690 | history window. Data is fully adjusted. |
||
691 | |||
692 | Parameters |
||
693 | --------- |
||
694 | assets : list of zipline.data.Asset objects |
||
695 | The assets whose data is desired. |
||
696 | |||
697 | bar_count: int |
||
698 | The number of bars desired. |
||
699 | |||
700 | frequency: string |
||
701 | "1d" or "1m" |
||
702 | |||
703 | field: string |
||
704 | The desired field of the asset. |
||
705 | |||
706 | ffill: boolean |
||
707 | Forward-fill missing values. Only has effect if field |
||
708 | is 'price'. |
||
709 | |||
710 | Returns |
||
711 | ------- |
||
712 | A dataframe containing the requested data. |
||
713 | """ |
||
714 | try: |
||
715 | field_to_use = BASE_FIELDS[field] |
||
716 | except KeyError: |
||
717 | raise ValueError("Invalid history field: " + str(field)) |
||
718 | |||
719 | # sanity check in case sids were passed in |
||
720 | assets = [(self.env.asset_finder.retrieve_asset(asset) if |
||
721 | isinstance(asset, int) else asset) for asset in assets] |
||
722 | |||
723 | if frequency == "1d": |
||
724 | df = self._get_history_daily_window(assets, end_dt, bar_count, |
||
725 | field_to_use) |
||
726 | elif frequency == "1m": |
||
727 | df = self._get_history_minute_window(assets, end_dt, bar_count, |
||
728 | field_to_use) |
||
729 | else: |
||
730 | raise ValueError("Invalid frequency: {0}".format(frequency)) |
||
731 | |||
732 | # forward-fill if needed |
||
733 | if field == "price" and ffill: |
||
734 | df.fillna(method='ffill', inplace=True) |
||
735 | |||
736 | return df |
||
737 | |||
738 | def _get_minute_window_for_asset(self, asset, field, minutes_for_window): |
||
739 | """ |
||
740 | Internal method that gets a window of adjusted minute data for an asset |
||
741 | and specified date range. Used to support the history API method for |
||
742 | minute bars. |
||
743 | |||
744 | Missing bars are filled with NaN. |
||
745 | |||
746 | Parameters |
||
747 | ---------- |
||
748 | asset : Asset |
||
749 | The asset whose data is desired. |
||
750 | |||
751 | field: string |
||
752 | The specific field to return. "open", "high", "close_price", etc. |
||
753 | |||
754 | minutes_for_window: pd.DateTimeIndex |
||
755 | The list of minutes representing the desired window. Each minute |
||
756 | is a pd.Timestamp. |
||
757 | |||
758 | Returns |
||
759 | ------- |
||
760 | A numpy array with requested values. |
||
761 | """ |
||
762 | if isinstance(asset, int): |
||
763 | asset = self.env.asset_finder.retrieve_asset(asset) |
||
764 | |||
765 | if isinstance(asset, Future): |
||
766 | return self._get_minute_window_for_future(asset, field, |
||
767 | minutes_for_window) |
||
768 | else: |
||
769 | return self._get_minute_window_for_equity(asset, field, |
||
770 | minutes_for_window) |
||
771 | |||
772 | def _get_minute_window_for_future(self, asset, field, minutes_for_window): |
||
773 | # THIS IS TEMPORARY. For now, we are only exposing futures within |
||
774 | # equity trading hours (9:30 am to 4pm, Eastern). The easiest way to |
||
775 | # do this is to simply do a spot lookup for each desired minute. |
||
776 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
||
777 | for idx, minute in enumerate(minutes_for_window): |
||
778 | return_data[idx] = \ |
||
779 | self._get_minute_spot_value_future(asset, field, minute) |
||
780 | |||
781 | # Note: an improvement could be to find the consecutive runs within |
||
782 | # minutes_for_window, and use them to read the underlying ctable |
||
783 | # more efficiently. |
||
784 | |||
785 | # Once futures are on 24-hour clock, then we can just grab all the |
||
786 | # requested minutes in one shot from the ctable. |
||
787 | |||
788 | # no adjustments for futures, yay. |
||
789 | return return_data |
||
790 | |||
791 | def _get_minute_window_for_equity(self, asset, field, minutes_for_window): |
||
792 | # each sid's minutes are stored in a bcolz file |
||
793 | # the bcolz file has 390 bars per day, starting at 1/2/2002, regardless |
||
794 | # of when the asset started trading and regardless of half days. |
||
795 | # for a half day, the second half is filled with zeroes. |
||
796 | |||
797 | # find the position of start_dt in the entire timeline, go back |
||
798 | # bar_count bars, and that's the unadjusted data |
||
799 | raw_data = self._open_minute_file(field, asset) |
||
800 | |||
801 | start_idx = max(self._find_position_of_minute(minutes_for_window[0]), |
||
802 | 0) |
||
803 | end_idx = self._find_position_of_minute(minutes_for_window[-1]) + 1 |
||
804 | |||
805 | return_data = np.zeros(len(minutes_for_window), dtype=np.float64) |
||
806 | data_to_copy = raw_data[start_idx:end_idx] |
||
807 | |||
808 | num_minutes = len(minutes_for_window) |
||
809 | |||
810 | # data_to_copy contains all the zeros (from 1pm to 4pm of an early |
||
811 | # close). num_minutes is the number of actual trading minutes. if |
||
812 | # these two have different lengths, that means that we need to trim |
||
813 | # away data due to early closes. |
||
814 | if len(data_to_copy) != num_minutes: |
||
815 | # get a copy of the minutes in Eastern time, since we depend on |
||
816 | # an early close being at 1pm Eastern. |
||
817 | eastern_minutes = minutes_for_window.tz_convert("US/Eastern") |
||
818 | |||
819 | # accumulate a list of indices of the last minute of an early |
||
820 | # close day. For example, if data_to_copy starts at 12:55 pm, and |
||
821 | # there are five minutes of real data before 180 zeroes, we would |
||
822 | # put 5 into last_minute_idx_of_early_close_day, because the fifth |
||
823 | # minute is the last "real" minute of the day. |
||
824 | last_minute_idx_of_early_close_day = [] |
||
825 | for minute_idx, minute_dt in enumerate(eastern_minutes): |
||
826 | if minute_idx == (num_minutes - 1): |
||
827 | break |
||
828 | |||
829 | if minute_dt.hour == 13 and minute_dt.minute == 0: |
||
830 | next_minute = eastern_minutes[minute_idx + 1] |
||
831 | if next_minute.hour != 13: |
||
832 | # minute_dt is the last minute of an early close day |
||
833 | last_minute_idx_of_early_close_day.append(minute_idx) |
||
834 | |||
835 | # spin through the list of early close markers, and use them to |
||
836 | # chop off 180 minutes at a time from data_to_copy. |
||
837 | for idx, early_close_minute_idx in \ |
||
838 | enumerate(last_minute_idx_of_early_close_day): |
||
839 | early_close_minute_idx -= (180 * idx) |
||
840 | data_to_copy = np.delete( |
||
841 | data_to_copy, |
||
842 | range( |
||
843 | early_close_minute_idx + 1, |
||
844 | early_close_minute_idx + 181 |
||
845 | ) |
||
846 | ) |
||
847 | |||
848 | return_data[0:len(data_to_copy)] = data_to_copy |
||
849 | |||
850 | self._apply_all_adjustments( |
||
851 | return_data, |
||
852 | asset, |
||
853 | minutes_for_window, |
||
854 | field, |
||
855 | self.MINUTE_PRICE_ADJUSTMENT_FACTOR |
||
856 | ) |
||
857 | |||
858 | return return_data |
||
859 | |||
860 | def _apply_all_adjustments(self, data, asset, dts, field, |
||
861 | price_adj_factor=1.0): |
||
862 | """ |
||
863 | Internal method that applies all the necessary adjustments on the |
||
864 | given data array. |
||
865 | |||
866 | The adjustments are: |
||
867 | - splits |
||
868 | - if field != "volume": |
||
869 | - mergers |
||
870 | - dividends |
||
871 | - * 0.001 |
||
872 | - any zero fields replaced with NaN |
||
873 | - all values rounded to 3 digits after the decimal point. |
||
874 | |||
875 | Parameters |
||
876 | ---------- |
||
877 | data : np.array |
||
878 | The data to be adjusted. |
||
879 | |||
880 | asset: Asset |
||
881 | The asset whose data is being adjusted. |
||
882 | |||
883 | dts: pd.DateTimeIndex |
||
884 | The list of minutes or days representing the desired window. |
||
885 | |||
886 | field: string |
||
887 | The field whose values are in the data array. |
||
888 | |||
889 | price_adj_factor: float |
||
890 | Factor with which to adjust OHLC values. |
||
891 | Returns |
||
892 | ------- |
||
893 | None. The data array is modified in place. |
||
894 | """ |
||
895 | self._apply_adjustments_to_window( |
||
896 | self._get_adjustment_list( |
||
897 | asset, self._splits_dict, "SPLITS" |
||
898 | ), |
||
899 | data, |
||
900 | dts, |
||
901 | field != 'volume' |
||
902 | ) |
||
903 | |||
904 | if field != 'volume': |
||
905 | self._apply_adjustments_to_window( |
||
906 | self._get_adjustment_list( |
||
907 | asset, self._mergers_dict, "MERGERS" |
||
908 | ), |
||
909 | data, |
||
910 | dts, |
||
911 | True |
||
912 | ) |
||
913 | |||
914 | self._apply_adjustments_to_window( |
||
915 | self._get_adjustment_list( |
||
916 | asset, self._dividends_dict, "DIVIDENDS" |
||
917 | ), |
||
918 | data, |
||
919 | dts, |
||
920 | True |
||
921 | ) |
||
922 | |||
923 | data *= price_adj_factor |
||
924 | |||
925 | # if anything is zero, it's a missing bar, so replace it with NaN. |
||
926 | # we only want to do this for non-volume fields, because a missing |
||
927 | # volume should be 0. |
||
928 | data[data == 0] = np.NaN |
||
929 | |||
930 | np.around(data, 3, out=data) |
||
931 | |||
932 | @staticmethod |
||
933 | def _find_position_of_minute(minute_dt): |
||
934 | """ |
||
935 | Internal method that returns the position of the given minute in the |
||
936 | list of every trading minute since market open on 1/2/2002. |
||
937 | |||
938 | IMPORTANT: This method assumes every day is 390 minutes long, even |
||
939 | early closes. Our minute bcolz files are generated like this to |
||
940 | support fast lookup. |
||
941 | |||
942 | ex. this method would return 2 for 1/2/2002 9:32 AM Eastern. |
||
943 | |||
944 | Parameters |
||
945 | ---------- |
||
946 | minute_dt: pd.Timestamp |
||
947 | The minute whose position should be calculated. |
||
948 | |||
949 | Returns |
||
950 | ------- |
||
951 | The position of the given minute in the list of all trading minutes |
||
952 | since market open on 1/2/2002. |
||
953 | """ |
||
954 | day = minute_dt.date() |
||
955 | day_idx = tradingcalendar.trading_days.searchsorted(day) -\ |
||
956 | INDEX_OF_FIRST_TRADING_DAY |
||
957 | |||
958 | day_open = pd.Timestamp( |
||
959 | datetime( |
||
960 | year=day.year, |
||
961 | month=day.month, |
||
962 | day=day.day, |
||
963 | hour=9, |
||
964 | minute=31), |
||
965 | tz='US/Eastern').tz_convert('UTC') |
||
966 | |||
967 | minutes_offset = int((minute_dt - day_open).total_seconds()) / 60 |
||
968 | |||
969 | return int((390 * day_idx) + minutes_offset) |
||
970 | |||
971 | def _get_daily_window_for_sid(self, asset, field, days_in_window, |
||
972 | extra_slot=True): |
||
973 | """ |
||
974 | Internal method that gets a window of adjusted daily data for a sid |
||
975 | and specified date range. Used to support the history API method for |
||
976 | daily bars. |
||
977 | |||
978 | Parameters |
||
979 | ---------- |
||
980 | asset : Asset |
||
981 | The asset whose data is desired. |
||
982 | |||
983 | start_dt: pandas.Timestamp |
||
984 | The start of the desired window of data. |
||
985 | |||
986 | bar_count: int |
||
987 | The number of days of data to return. |
||
988 | |||
989 | field: string |
||
990 | The specific field to return. "open", "high", "close_price", etc. |
||
991 | |||
992 | extra_slot: boolean |
||
993 | Whether to allocate an extra slot in the returned numpy array. |
||
994 | This extra slot will hold the data for the last partial day. It's |
||
995 | much better to create it here than to create a copy of the array |
||
996 | later just to add a slot. |
||
997 | |||
998 | Returns |
||
999 | ------- |
||
1000 | A numpy array with requested values. Any missing slots filled with |
||
1001 | nan. |
||
1002 | |||
1003 | """ |
||
1004 | daily_data, daily_attrs = self._open_daily_file() |
||
1005 | |||
1006 | # the daily file stores each sid's daily OHLCV in a contiguous block. |
||
1007 | # the first row per sid is either 1/2/2002, or the sid's start_date if |
||
1008 | # it started after 1/2/2002. once a sid stops trading, there are no |
||
1009 | # rows for it. |
||
1010 | |||
1011 | bar_count = len(days_in_window) |
||
1012 | |||
1013 | # create an np.array of size bar_count |
||
1014 | if extra_slot: |
||
1015 | return_array = np.zeros((bar_count + 1,)) |
||
1016 | else: |
||
1017 | return_array = np.zeros((bar_count,)) |
||
1018 | |||
1019 | return_array[:] = np.NAN |
||
1020 | sid = int(asset) |
||
1021 | |||
1022 | # find the start index in the daily file for this asset |
||
1023 | asset_file_index = daily_attrs['first_row'][str(sid)] |
||
1024 | |||
1025 | trading_days = tradingcalendar.trading_days |
||
1026 | |||
1027 | # Calculate the starting day to use (either the asset's first trading |
||
1028 | # day, or 1/1/2002 (which is the 3028th day in the trading calendar). |
||
1029 | first_trading_day_to_use = max(trading_days.searchsorted( |
||
1030 | self._asset_start_dates[asset]), INDEX_OF_FIRST_TRADING_DAY) |
||
1031 | |||
1032 | # find the # of trading days between max(asset's first trade date, |
||
1033 | # 2002-01-02) and start_dt |
||
1034 | window_offset = (trading_days.searchsorted(days_in_window[0]) - |
||
1035 | first_trading_day_to_use) |
||
1036 | |||
1037 | start_index = max(asset_file_index, asset_file_index + window_offset) |
||
1038 | |||
1039 | if window_offset < 0 and (abs(window_offset) > bar_count): |
||
1040 | # consumer is requesting a history window that starts AND ends |
||
1041 | # before this equity started trading, so gtfo |
||
1042 | return return_array |
||
1043 | |||
1044 | # find the end index in the daily file. make sure it doesn't extend |
||
1045 | # past the end of this asset's data in the daily file. |
||
1046 | if window_offset < 0: |
||
1047 | # if the window_offset is negative, we need to decrease the |
||
1048 | # end_index accordingly. |
||
1049 | end_index = min(start_index + window_offset + bar_count, |
||
1050 | daily_attrs['last_row'][str(sid)] + 1) |
||
1051 | |||
1052 | # get data from bcolz file |
||
1053 | data = daily_data[field][start_index:end_index] |
||
1054 | |||
1055 | # have to leave a bunch of empty slots at the beginning of |
||
1056 | # return_array, since they represent days before this asset |
||
1057 | # started trading. |
||
1058 | return_array[abs(window_offset):bar_count] = data |
||
1059 | else: |
||
1060 | end_index = min(start_index + bar_count, |
||
1061 | daily_attrs['last_row'][str(sid)]) |
||
1062 | data = daily_data[field][start_index:(end_index + 1)] |
||
1063 | |||
1064 | if len(data) > len(return_array): |
||
1065 | return_array[:] = data[0:len(return_array)] |
||
1066 | else: |
||
1067 | return_array[0:len(data)] = data |
||
1068 | |||
1069 | self._apply_all_adjustments( |
||
1070 | return_array, |
||
1071 | sid, |
||
1072 | days_in_window, |
||
1073 | field, |
||
1074 | self.DAILY_PRICE_ADJUSTMENT_FACTOR |
||
1075 | ) |
||
1076 | |||
1077 | return return_array |
||
1078 | |||
1079 | @staticmethod |
||
1080 | def _apply_adjustments_to_window(adjustments_list, window_data, |
||
1081 | dts_in_window, multiply): |
||
1082 | if len(adjustments_list) == 0: |
||
1083 | return |
||
1084 | |||
1085 | # advance idx to the correct spot in the adjustments list, based on |
||
1086 | # when the window starts |
||
1087 | idx = 0 |
||
1088 | |||
1089 | while idx < len(adjustments_list) and dts_in_window[0] >\ |
||
1090 | adjustments_list[idx][0]: |
||
1091 | idx += 1 |
||
1092 | |||
1093 | # if we've advanced through all the adjustments, then there's nothing |
||
1094 | # to do. |
||
1095 | if idx == len(adjustments_list): |
||
1096 | return |
||
1097 | |||
1098 | while idx < len(adjustments_list): |
||
1099 | adjustment_to_apply = adjustments_list[idx] |
||
1100 | |||
1101 | if adjustment_to_apply[0] > dts_in_window[-1]: |
||
1102 | break |
||
1103 | |||
1104 | range_end = dts_in_window.searchsorted(adjustment_to_apply[0]) |
||
1105 | if multiply: |
||
1106 | window_data[0:range_end] *= adjustment_to_apply[1] |
||
1107 | else: |
||
1108 | window_data[0:range_end] /= adjustment_to_apply[1] |
||
1109 | |||
1110 | idx += 1 |
||
1111 | |||
1112 | def _get_adjustment_list(self, asset, adjustments_dict, table_name): |
||
1113 | """ |
||
1114 | Internal method that returns a list of adjustments for the given sid. |
||
1115 | |||
1116 | Parameters |
||
1117 | ---------- |
||
1118 | asset : Asset |
||
1119 | The asset for which to return adjustments. |
||
1120 | |||
1121 | adjustments_dict: dict |
||
1122 | A dictionary of sid -> list that is used as a cache. |
||
1123 | |||
1124 | table_name: string |
||
1125 | The table that contains this data in the adjustments db. |
||
1126 | |||
1127 | Returns |
||
1128 | ------- |
||
1129 | adjustments: list |
||
1130 | A list of [multiplier, pd.Timestamp], earliest first |
||
1131 | |||
1132 | """ |
||
1133 | if self._adjustment_reader is None: |
||
1134 | return [] |
||
1135 | |||
1136 | sid = int(asset) |
||
1137 | |||
1138 | try: |
||
1139 | adjustments = adjustments_dict[sid] |
||
1140 | except KeyError: |
||
1141 | adjustments = adjustments_dict[sid] = self._adjustment_reader.\ |
||
1142 | get_adjustments_for_sid(table_name, sid) |
||
1143 | |||
1144 | return adjustments |
||
1145 | |||
1146 | def get_equity_price_view(self, asset): |
||
1147 | """ |
||
1148 | Returns a DataPortalSidView for the given asset. Used to support the |
||
1149 | data[sid(N)] public API. Not needed if DataPortal is used standalone. |
||
1150 | |||
1151 | Parameters |
||
1152 | ---------- |
||
1153 | asset : Asset |
||
1154 | Asset that is being queried. |
||
1155 | |||
1156 | Returns |
||
1157 | ------- |
||
1158 | DataPortalSidView: Accessor into the given asset's data. |
||
1159 | """ |
||
1160 | try: |
||
1161 | view = self.views[asset] |
||
1162 | except KeyError: |
||
1163 | view = self.views[asset] = DataPortalSidView(asset, self) |
||
1164 | |||
1165 | return view |
||
1166 | |||
1167 | def _check_is_currently_alive(self, asset, dt): |
||
1168 | if dt is None: |
||
1169 | dt = self.current_day |
||
1170 | |||
1171 | sid = int(asset) |
||
1172 | |||
1173 | if sid not in self._asset_start_dates: |
||
1174 | self._get_asset_start_date(asset) |
||
1175 | |||
1176 | start_date = self._asset_start_dates[sid] |
||
1177 | if self._asset_start_dates[sid] > dt: |
||
1178 | raise NoTradeDataAvailableTooEarly( |
||
1179 | sid=sid, |
||
1180 | dt=dt, |
||
1181 | start_dt=start_date |
||
1182 | ) |
||
1183 | |||
1184 | end_date = self._asset_end_dates[sid] |
||
1185 | if self._asset_end_dates[sid] < dt: |
||
1186 | raise NoTradeDataAvailableTooLate( |
||
1187 | sid=sid, |
||
1188 | dt=dt, |
||
1189 | end_dt=end_date |
||
1190 | ) |
||
1191 | |||
1192 | def _get_asset_start_date(self, asset): |
||
1193 | self._ensure_asset_dates(asset) |
||
1194 | return self._asset_start_dates[asset] |
||
1195 | |||
1196 | def _get_asset_end_date(self, asset): |
||
1197 | self._ensure_asset_dates(asset) |
||
1198 | return self._asset_end_dates[asset] |
||
1199 | |||
1200 | def _ensure_asset_dates(self, asset): |
||
1201 | sid = int(asset) |
||
1202 | |||
1203 | if sid not in self._asset_start_dates: |
||
1204 | self._asset_start_dates[sid] = asset.start_date |
||
1205 | self._asset_end_dates[sid] = asset.end_date |
||
1206 | |||
1207 | def get_splits(self, sids, dt): |
||
1208 | """ |
||
1209 | Returns any splits for the given sids and the given dt. |
||
1210 | |||
1211 | Parameters |
||
1212 | ---------- |
||
1213 | sids : list |
||
1214 | Sids for which we want splits. |
||
1215 | |||
1216 | dt: pd.Timestamp |
||
1217 | The date for which we are checking for splits. Note: this is |
||
1218 | expected to be midnight UTC. |
||
1219 | |||
1220 | Returns |
||
1221 | ------- |
||
1222 | list: List of splits, where each split is a (sid, ratio) tuple. |
||
1223 | """ |
||
1224 | if self._adjustment_reader is None or len(sids) == 0: |
||
1225 | return {} |
||
1226 | |||
1227 | # convert dt to # of seconds since epoch, because that's what we use |
||
1228 | # in the adjustments db |
||
1229 | seconds = int(dt.value / 1e9) |
||
1230 | |||
1231 | splits = self._adjustment_reader.conn.execute( |
||
1232 | "SELECT sid, ratio FROM SPLITS WHERE effective_date = ?", |
||
1233 | (seconds,)).fetchall() |
||
1234 | |||
1235 | sids_set = set(sids) |
||
1236 | splits = [split for split in splits if split[0] in sids_set] |
||
1237 | |||
1238 | return splits |
||
1239 | |||
1240 | def get_stock_dividends(self, sid, trading_days): |
||
1241 | """ |
||
1242 | Returns all the stock dividends for a specific sid that occur |
||
1243 | in the given trading range. |
||
1244 | |||
1245 | Parameters |
||
1246 | ---------- |
||
1247 | sid: int |
||
1248 | The asset whose stock dividends should be returned. |
||
1249 | |||
1250 | trading_days: pd.DatetimeIndex |
||
1251 | The trading range. |
||
1252 | |||
1253 | Returns |
||
1254 | ------- |
||
1255 | list: A list of objects with all relevant attributes populated. |
||
1256 | All timestamp fields are converted to pd.Timestamps. |
||
1257 | """ |
||
1258 | |||
1259 | if self._adjustment_reader is None: |
||
1260 | return [] |
||
1261 | |||
1262 | if len(trading_days) == 0: |
||
1263 | return [] |
||
1264 | |||
1265 | start_dt = trading_days[0].value / 1e9 |
||
1266 | end_dt = trading_days[-1].value / 1e9 |
||
1267 | |||
1268 | dividends = self._adjustment_reader.conn.execute( |
||
1269 | "SELECT * FROM stock_dividend_payouts WHERE sid = ? AND " |
||
1270 | "ex_date > ? AND pay_date < ?", (int(sid), start_dt, end_dt,)).\ |
||
1271 | fetchall() |
||
1272 | |||
1273 | dividend_info = [] |
||
1274 | for dividend_tuple in dividends: |
||
1275 | dividend_info.append({ |
||
1276 | "declared_date": dividend_tuple[1], |
||
1277 | "ex_date": pd.Timestamp(dividend_tuple[2], unit="s"), |
||
1278 | "pay_date": pd.Timestamp(dividend_tuple[3], unit="s"), |
||
1279 | "payment_sid": dividend_tuple[4], |
||
1280 | "ratio": dividend_tuple[5], |
||
1281 | "record_date": pd.Timestamp(dividend_tuple[6], unit="s"), |
||
1282 | "sid": dividend_tuple[7] |
||
1283 | }) |
||
1284 | |||
1285 | return dividend_info |
||
1286 | |||
1287 | def contains(self, asset, field): |
||
1288 | return field in BASE_FIELDS or \ |
||
1289 | (field in self._augmented_sources_map and |
||
1290 | asset in self._augmented_sources_map[field]) |
||
1291 | |||
1292 | def get_fetcher_assets(self): |
||
1293 | """ |
||
1294 | Returns a list of assets for the current date, as defined by the |
||
1295 | fetcher data. |
||
1296 | |||
1297 | Notes |
||
1298 | ----- |
||
1299 | Data is forward-filled. If there is no fetcher data defined for day |
||
1300 | N, we use day N-1's data (if available, otherwise we keep going back). |
||
1301 | |||
1302 | Returns |
||
1303 | ------- |
||
1304 | list: a list of Asset objects. |
||
1305 | """ |
||
1306 | # return a list of assets for the current date, as defined by the |
||
1307 | # fetcher source |
||
1308 | if self._fetcher_df is None: |
||
1309 | return [] |
||
1310 | |||
1311 | if self.current_day in self._fetcher_df.index: |
||
1312 | date_to_use = self.current_day |
||
1313 | else: |
||
1314 | # current day isn't in the fetcher df, go back the last |
||
1315 | # available day |
||
1316 | idx = self._fetcher_df.index.searchsorted(self.current_day) |
||
1317 | if idx == 0: |
||
1318 | return [] |
||
1319 | |||
1320 | date_to_use = self._fetcher_df.index[idx - 1] |
||
1321 | |||
1322 | asset_list = self._fetcher_df.loc[date_to_use]["sid"] |
||
1323 | |||
1324 | # make sure they're actually assets |
||
1325 | asset_list = [asset for asset in asset_list |
||
1326 | if isinstance(asset, Asset)] |
||
1327 | |||
1328 | return asset_list |
||
1329 | |||
1344 |