1
|
|
|
import os |
2
|
|
|
from datetime import timedelta |
3
|
|
|
import bcolz |
4
|
|
|
import numpy as np |
5
|
|
|
import pandas as pd |
6
|
|
|
|
7
|
|
|
from unittest import TestCase |
8
|
|
|
from pandas.tslib import normalize_date |
9
|
|
|
from testfixtures import TempDirectory |
10
|
|
|
from zipline.data.data_portal import DataPortal |
11
|
|
|
from zipline.data.us_equity_pricing import SQLiteAdjustmentWriter, \ |
12
|
|
|
SQLiteAdjustmentReader |
13
|
|
|
from zipline.finance.trading import TradingEnvironment, SimulationParameters |
14
|
|
|
from zipline.data.minute_writer import MinuteBarWriterFromDataFrames |
15
|
|
|
from .utils.daily_bar_writer import DailyBarWriterFromDataFrames |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
class TestDataPortal(TestCase): |
19
|
|
|
def test_forward_fill_minute(self): |
20
|
|
|
tempdir = TempDirectory() |
21
|
|
|
try: |
22
|
|
|
env = TradingEnvironment() |
23
|
|
|
env.write_data( |
24
|
|
|
equities_data={ |
25
|
|
|
0: { |
26
|
|
|
'start_date': pd.Timestamp("2015-09-28", tz='UTC'), |
27
|
|
|
'end_date': pd.Timestamp("2015-09-29", tz='UTC') |
28
|
|
|
+ timedelta(days=1) |
29
|
|
|
} |
30
|
|
|
} |
31
|
|
|
) |
32
|
|
|
|
33
|
|
|
minutes = env.minutes_for_days_in_range( |
34
|
|
|
start=pd.Timestamp("2015-09-28", tz='UTC'), |
35
|
|
|
end=pd.Timestamp("2015-09-29", tz='UTC') |
36
|
|
|
) |
37
|
|
|
|
38
|
|
|
df = pd.DataFrame({ |
39
|
|
|
# one missing bar, then 200 bars of real data, |
40
|
|
|
# then 1.5 days of missing data |
41
|
|
|
"open": np.array([0] + list(range(0, 200)) + [0] * 579) |
42
|
|
|
* 1000, |
43
|
|
|
"high": np.array([0] + list(range(1000, 1200)) + [0] * 579) |
44
|
|
|
* 1000, |
45
|
|
|
"low": np.array([0] + list(range(2000, 2200)) + [0] * 579) |
46
|
|
|
* 1000, |
47
|
|
|
"close": np.array([0] + list(range(3000, 3200)) + [0] * 579) |
48
|
|
|
* 1000, |
49
|
|
|
"volume": [0] + list(range(4000, 4200)) + [0] * 579, |
50
|
|
|
"minute": minutes |
51
|
|
|
}) |
52
|
|
|
|
53
|
|
|
MinuteBarWriterFromDataFrames().write(tempdir.path, {0: df}) |
54
|
|
|
|
55
|
|
|
sim_params = SimulationParameters( |
56
|
|
|
period_start=minutes[0], |
57
|
|
|
period_end=minutes[-1], |
58
|
|
|
data_frequency="minute" |
59
|
|
|
) |
60
|
|
|
|
61
|
|
|
dp = DataPortal( |
62
|
|
|
env, |
63
|
|
|
minutes_equities_path=tempdir.path, |
64
|
|
|
sim_params=sim_params |
65
|
|
|
) |
66
|
|
|
|
67
|
|
|
for minute_idx, minute in enumerate(minutes): |
68
|
|
|
for field_idx, field in enumerate( |
69
|
|
|
["open", "high", "low", "close", "volume"]): |
70
|
|
|
val = dp.get_spot_value(0, field, dt=minute) |
71
|
|
|
if minute_idx == 0: |
72
|
|
|
self.assertEqual(0, val) |
73
|
|
|
elif minute_idx < 200: |
74
|
|
|
self.assertEqual((minute_idx - 1) + |
75
|
|
|
(field_idx * 1000), val) |
76
|
|
|
else: |
77
|
|
|
self.assertEqual(199 + (field_idx * 1000), val) |
78
|
|
|
finally: |
79
|
|
|
tempdir.cleanup() |
80
|
|
|
|
81
|
|
|
def test_forward_fill_daily(self): |
82
|
|
|
tempdir = TempDirectory() |
83
|
|
|
try: |
84
|
|
|
# 17 trading days |
85
|
|
|
start_day = pd.Timestamp("2015-09-07", tz='UTC') |
86
|
|
|
end_day = pd.Timestamp("2015-09-30", tz='UTC') |
87
|
|
|
|
88
|
|
|
env = TradingEnvironment() |
89
|
|
|
env.write_data( |
90
|
|
|
equities_data={ |
91
|
|
|
0: { |
92
|
|
|
'start_date': start_day, |
93
|
|
|
'end_date': end_day |
94
|
|
|
} |
95
|
|
|
} |
96
|
|
|
) |
97
|
|
|
|
98
|
|
|
days = env.days_in_range(start_day, end_day) |
99
|
|
|
|
100
|
|
|
# first bar is missing. then 8 real bars. then 8 more missing |
101
|
|
|
# bars. |
102
|
|
|
df = pd.DataFrame({ |
103
|
|
|
"open": [0] + list(range(0, 8)) + [0] * 8, |
104
|
|
|
"high": [0] + list(range(10, 18)) + [0] * 8, |
105
|
|
|
"low": [0] + list(range(20, 28)) + [0] * 8, |
106
|
|
|
"close": [0] + list(range(30, 38)) + [0] * 8, |
107
|
|
|
"volume": [0] + list(range(40, 48)) + [0] * 8, |
108
|
|
|
"day": [day.value for day in days] |
109
|
|
|
}, index=days) |
110
|
|
|
|
111
|
|
|
assets = {0: df} |
112
|
|
|
path = os.path.join(tempdir.path, "testdaily.bcolz") |
113
|
|
|
|
114
|
|
|
DailyBarWriterFromDataFrames(assets).write( |
115
|
|
|
path, |
116
|
|
|
days, |
117
|
|
|
assets |
118
|
|
|
) |
119
|
|
|
|
120
|
|
|
sim_params = SimulationParameters( |
121
|
|
|
period_start=days[0], |
122
|
|
|
period_end=days[-1], |
123
|
|
|
data_frequency="daily" |
124
|
|
|
) |
125
|
|
|
|
126
|
|
|
dp = DataPortal( |
127
|
|
|
env, |
128
|
|
|
daily_equities_path=path, |
129
|
|
|
sim_params=sim_params |
130
|
|
|
) |
131
|
|
|
|
132
|
|
|
for day_idx, day in enumerate(days): |
133
|
|
|
for field_idx, field in enumerate( |
134
|
|
|
["open", "high", "low", "close", "volume"]): |
135
|
|
|
val = dp.get_spot_value(0, field, dt=day) |
136
|
|
|
if day_idx == 0: |
137
|
|
|
self.assertEqual(0, val) |
138
|
|
|
elif day_idx < 9: |
139
|
|
|
self.assertEqual((day_idx - 1) + (field_idx * 10), val) |
140
|
|
|
else: |
141
|
|
|
self.assertEqual(7 + (field_idx * 10), val) |
142
|
|
|
finally: |
143
|
|
|
tempdir.cleanup() |
144
|
|
|
|
145
|
|
|
def test_adjust_forward_fill_minute(self): |
146
|
|
|
tempdir = TempDirectory() |
147
|
|
|
try: |
148
|
|
|
start_day = pd.Timestamp("2013-06-21", tz='UTC') |
149
|
|
|
end_day = pd.Timestamp("2013-06-24", tz='UTC') |
150
|
|
|
|
151
|
|
|
env = TradingEnvironment() |
152
|
|
|
env.write_data( |
153
|
|
|
equities_data={ |
154
|
|
|
0: { |
155
|
|
|
'start_date': start_day, |
156
|
|
|
'end_date': env.next_trading_day(end_day) |
157
|
|
|
} |
158
|
|
|
} |
159
|
|
|
) |
160
|
|
|
|
161
|
|
|
minutes = env.minutes_for_days_in_range( |
162
|
|
|
start=start_day, |
163
|
|
|
end=end_day |
164
|
|
|
) |
165
|
|
|
|
166
|
|
|
df = pd.DataFrame({ |
167
|
|
|
# 390 bars of real data, then 100 missing bars, then 290 |
168
|
|
|
# bars of data again |
169
|
|
|
"open": np.array(list(range(0, 390)) + [0] * 100 + |
170
|
|
|
list(range(390, 680))) * 1000, |
171
|
|
|
"high": np.array(list(range(1000, 1390)) + [0] * 100 + |
172
|
|
|
list(range(1390, 1680))) * 1000, |
173
|
|
|
"low": np.array(list(range(2000, 2390)) + [0] * 100 + |
174
|
|
|
list(range(2390, 2680))) * 1000, |
175
|
|
|
"close": np.array(list(range(3000, 3390)) + [0] * 100 + |
176
|
|
|
list(range(3390, 3680))) * 1000, |
177
|
|
|
"volume": np.array(list(range(4000, 4390)) + [0] * 100 + |
178
|
|
|
list(range(4390, 4680))), |
179
|
|
|
"minute": minutes |
180
|
|
|
}) |
181
|
|
|
|
182
|
|
|
MinuteBarWriterFromDataFrames().write(tempdir.path, {0: df}) |
183
|
|
|
|
184
|
|
|
sim_params = SimulationParameters( |
185
|
|
|
period_start=minutes[0], |
186
|
|
|
period_end=minutes[-1], |
187
|
|
|
data_frequency="minute" |
188
|
|
|
) |
189
|
|
|
|
190
|
|
|
# create a split for 6/24 |
191
|
|
|
adjustments_path = os.path.join(tempdir.path, "adjustments.db") |
192
|
|
|
writer = SQLiteAdjustmentWriter(adjustments_path, |
193
|
|
|
pd.date_range(start=start_day, |
194
|
|
|
end=end_day), |
195
|
|
|
None) |
196
|
|
|
|
197
|
|
|
splits = pd.DataFrame([{ |
198
|
|
|
'effective_date': int(end_day.value / 1e9), |
199
|
|
|
'ratio': 0.5, |
200
|
|
|
'sid': 0 |
201
|
|
|
}]) |
202
|
|
|
|
203
|
|
|
dividend_data = { |
204
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
205
|
|
|
'ex_date': np.array([], dtype='datetime64[ns]'), |
206
|
|
|
'pay_date': np.array([], dtype='datetime64[ns]'), |
207
|
|
|
'record_date': np.array([], dtype='datetime64[ns]'), |
208
|
|
|
'declared_date': np.array([], dtype='datetime64[ns]'), |
209
|
|
|
'amount': np.array([], dtype=float), |
210
|
|
|
'sid': np.array([], dtype=int), |
211
|
|
|
} |
212
|
|
|
dividends = pd.DataFrame( |
213
|
|
|
dividend_data, |
214
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
215
|
|
|
columns=['ex_date', |
216
|
|
|
'pay_date', |
217
|
|
|
'record_date', |
218
|
|
|
'declared_date', |
219
|
|
|
'amount', |
220
|
|
|
'sid'] |
221
|
|
|
) |
222
|
|
|
|
223
|
|
|
merger_data = { |
224
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
225
|
|
|
'effective_date': np.array([], dtype=int), |
226
|
|
|
'ratio': np.array([], dtype=float), |
227
|
|
|
'sid': np.array([], dtype=int), |
228
|
|
|
} |
229
|
|
|
mergers = pd.DataFrame( |
230
|
|
|
merger_data, |
231
|
|
|
index=pd.DatetimeIndex([], tz='UTC') |
232
|
|
|
) |
233
|
|
|
|
234
|
|
|
writer.write(splits, mergers, dividends) |
235
|
|
|
|
236
|
|
|
dp = DataPortal( |
237
|
|
|
env, |
238
|
|
|
minutes_equities_path=tempdir.path, |
239
|
|
|
sim_params=sim_params, |
240
|
|
|
adjustment_reader=SQLiteAdjustmentReader(adjustments_path) |
241
|
|
|
) |
242
|
|
|
|
243
|
|
|
# phew, finally ready to start testing. |
244
|
|
|
for idx, minute in enumerate(minutes[:390]): |
245
|
|
|
for field_idx, field in enumerate(["open", "high", "low", |
246
|
|
|
"close", "volume"]): |
247
|
|
|
self.assertEqual( |
248
|
|
|
dp.get_spot_value(0, field, dt=minute), |
249
|
|
|
idx + (1000 * field_idx) |
250
|
|
|
) |
251
|
|
|
|
252
|
|
|
for idx, minute in enumerate(minutes[390:490]): |
253
|
|
|
# no actual data for this part, so we'll forward-fill. |
254
|
|
|
# make sure the forward-filled values are adjusted. |
255
|
|
|
for field_idx, field in enumerate(["open", "high", "low", |
256
|
|
|
"close"]): |
257
|
|
|
self.assertEqual( |
258
|
|
|
dp.get_spot_value(0, field, dt=minute), |
259
|
|
|
(389 + (1000 * field_idx)) / 2.0 |
260
|
|
|
) |
261
|
|
|
|
262
|
|
|
self.assertEqual( |
263
|
|
|
dp.get_spot_value(0, "volume", dt=minute), |
264
|
|
|
8778 # 4389 * 2 |
265
|
|
|
) |
266
|
|
|
|
267
|
|
|
for idx, minute in enumerate(minutes[490:]): |
268
|
|
|
# back to real data |
269
|
|
|
for field_idx, field in enumerate(["open", "high", "low", |
270
|
|
|
"close", "volume"]): |
271
|
|
|
self.assertEqual( |
272
|
|
|
dp.get_spot_value(0, field, dt=minute), |
273
|
|
|
(390 + idx + (1000 * field_idx)) |
274
|
|
|
) |
275
|
|
|
finally: |
276
|
|
|
tempdir.cleanup() |
277
|
|
|
|
278
|
|
|
def test_spot_value_futures(self): |
279
|
|
|
tempdir = TempDirectory() |
280
|
|
|
try: |
281
|
|
|
start_dt = pd.Timestamp("2015-11-20 20:11", tz='UTC') |
282
|
|
|
end_dt = pd.Timestamp(start_dt + timedelta(minutes=10000)) |
283
|
|
|
|
284
|
|
|
zeroes_buffer = \ |
285
|
|
|
[0] * int((start_dt - |
286
|
|
|
normalize_date(start_dt)).total_seconds() / 60) |
287
|
|
|
|
288
|
|
|
df = pd.DataFrame({ |
289
|
|
|
"open": np.array(zeroes_buffer + list(range(0, 10000))) * 1000, |
290
|
|
|
"high": np.array( |
291
|
|
|
zeroes_buffer + list(range(10000, 20000))) * 1000, |
292
|
|
|
"low": np.array( |
293
|
|
|
zeroes_buffer + list(range(20000, 30000))) * 1000, |
294
|
|
|
"close": np.array( |
295
|
|
|
zeroes_buffer + list(range(30000, 40000))) * 1000, |
296
|
|
|
"volume": np.array(zeroes_buffer + list(range(40000, 50000))) |
297
|
|
|
}) |
298
|
|
|
|
299
|
|
|
path = os.path.join(tempdir.path, "123.bcolz") |
300
|
|
|
ctable = bcolz.ctable.fromdataframe(df, rootdir=path) |
301
|
|
|
ctable.attrs["start_dt"] = start_dt.value / 1e9 |
302
|
|
|
ctable.attrs["last_dt"] = end_dt.value / 1e9 |
303
|
|
|
|
304
|
|
|
env = TradingEnvironment() |
305
|
|
|
env.write_data(futures_data={ |
306
|
|
|
123: { |
307
|
|
|
"start_date": normalize_date(start_dt), |
308
|
|
|
"end_date": env.next_trading_day(normalize_date(end_dt)), |
309
|
|
|
'symbol': 'TEST_FUTURE', |
310
|
|
|
'asset_type': 'future', |
311
|
|
|
} |
312
|
|
|
}) |
313
|
|
|
|
314
|
|
|
dp = DataPortal( |
315
|
|
|
env, |
316
|
|
|
minutes_equities_path=tempdir.path |
317
|
|
|
) |
318
|
|
|
|
319
|
|
|
future123 = env.asset_finder.retrieve_asset(123) |
320
|
|
|
|
321
|
|
|
for i in range(0, 10000): |
322
|
|
|
dt = pd.Timestamp(start_dt + timedelta(minutes=i)) |
323
|
|
|
|
324
|
|
|
self.assertEqual(i, |
325
|
|
|
dp.get_spot_value(future123, "open", dt)) |
326
|
|
|
self.assertEqual(i + 10000, |
327
|
|
|
dp.get_spot_value(future123, "high", dt)) |
328
|
|
|
self.assertEqual(i + 20000, |
329
|
|
|
dp.get_spot_value(future123, "low", dt)) |
330
|
|
|
self.assertEqual(i + 30000, |
331
|
|
|
dp.get_spot_value(future123, "close", dt)) |
332
|
|
|
self.assertEqual(i + 40000, |
333
|
|
|
dp.get_spot_value(future123, "volume", dt)) |
334
|
|
|
|
335
|
|
|
finally: |
336
|
|
|
tempdir.cleanup() |
337
|
|
|
|