|
1
|
|
|
# |
|
2
|
|
|
# Copyright 2013 Quantopian, Inc. |
|
3
|
|
|
# |
|
4
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
5
|
|
|
# you may not use this file except in compliance with the License. |
|
6
|
|
|
# You may obtain a copy of the License at |
|
7
|
|
|
# |
|
8
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
9
|
|
|
# |
|
10
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
11
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
12
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
13
|
|
|
# See the License for the specific language governing permissions and |
|
14
|
|
|
# limitations under the License. |
|
15
|
|
|
|
|
16
|
|
|
from __future__ import division |
|
17
|
|
|
|
|
18
|
|
|
from datetime import ( |
|
19
|
|
|
datetime, |
|
20
|
|
|
timedelta, |
|
21
|
|
|
) |
|
22
|
|
|
import logging |
|
23
|
|
|
|
|
24
|
|
|
from testfixtures import TempDirectory |
|
25
|
|
|
import unittest |
|
26
|
|
|
import nose.tools as nt |
|
27
|
|
|
import pytz |
|
28
|
|
|
|
|
29
|
|
|
import pandas as pd |
|
30
|
|
|
import numpy as np |
|
31
|
|
|
from six.moves import range, zip |
|
32
|
|
|
|
|
33
|
|
|
from zipline.data.us_equity_pricing import ( |
|
34
|
|
|
SQLiteAdjustmentWriter, |
|
35
|
|
|
SQLiteAdjustmentReader, |
|
36
|
|
|
) |
|
37
|
|
|
import zipline.utils.factory as factory |
|
38
|
|
|
import zipline.finance.performance as perf |
|
39
|
|
|
from zipline.finance.transaction import create_transaction |
|
40
|
|
|
import zipline.utils.math_utils as zp_math |
|
41
|
|
|
|
|
42
|
|
|
from zipline.finance.blotter import Order |
|
43
|
|
|
from zipline.finance.commission import PerShare, PerTrade, PerDollar |
|
44
|
|
|
from zipline.finance.trading import TradingEnvironment |
|
45
|
|
|
from zipline.pipeline.loaders.synthetic import NullAdjustmentReader |
|
46
|
|
|
from zipline.utils.factory import create_simulation_parameters |
|
47
|
|
|
from zipline.utils.serialization_utils import ( |
|
48
|
|
|
loads_with_persistent_ids, dumps_with_persistent_ids |
|
49
|
|
|
) |
|
50
|
|
|
import zipline.protocol as zp |
|
51
|
|
|
from zipline.protocol import Event |
|
52
|
|
|
from zipline.utils.test_utils import create_data_portal_from_trade_history |
|
53
|
|
|
|
|
54
|
|
|
logger = logging.getLogger('Test Perf Tracking') |
|
55
|
|
|
|
|
56
|
|
|
onesec = timedelta(seconds=1) |
|
57
|
|
|
oneday = timedelta(days=1) |
|
58
|
|
|
tradingday = timedelta(hours=6, minutes=30) |
|
59
|
|
|
|
|
60
|
|
|
# nose.tools changed name in python 3 |
|
61
|
|
|
if not hasattr(nt, 'assert_count_equal'): |
|
62
|
|
|
nt.assert_count_equal = nt.assert_items_equal |
|
63
|
|
|
|
|
64
|
|
|
|
|
65
|
|
|
def check_perf_period(pp, |
|
66
|
|
|
gross_leverage, |
|
67
|
|
|
net_leverage, |
|
68
|
|
|
long_exposure, |
|
69
|
|
|
longs_count, |
|
70
|
|
|
short_exposure, |
|
71
|
|
|
shorts_count): |
|
72
|
|
|
|
|
73
|
|
|
perf_data = pp.to_dict() |
|
74
|
|
|
np.testing.assert_allclose( |
|
75
|
|
|
gross_leverage, perf_data['gross_leverage'], rtol=1e-3) |
|
76
|
|
|
np.testing.assert_allclose( |
|
77
|
|
|
net_leverage, perf_data['net_leverage'], rtol=1e-3) |
|
78
|
|
|
np.testing.assert_allclose( |
|
79
|
|
|
long_exposure, perf_data['long_exposure'], rtol=1e-3) |
|
80
|
|
|
np.testing.assert_allclose( |
|
81
|
|
|
longs_count, perf_data['longs_count'], rtol=1e-3) |
|
82
|
|
|
np.testing.assert_allclose( |
|
83
|
|
|
short_exposure, perf_data['short_exposure'], rtol=1e-3) |
|
84
|
|
|
np.testing.assert_allclose( |
|
85
|
|
|
shorts_count, perf_data['shorts_count'], rtol=1e-3) |
|
86
|
|
|
|
|
87
|
|
|
|
|
88
|
|
|
def check_account(account, |
|
89
|
|
|
settled_cash, |
|
90
|
|
|
equity_with_loan, |
|
91
|
|
|
total_positions_value, |
|
92
|
|
|
regt_equity, |
|
93
|
|
|
available_funds, |
|
94
|
|
|
excess_liquidity, |
|
95
|
|
|
cushion, |
|
96
|
|
|
leverage, |
|
97
|
|
|
net_leverage, |
|
98
|
|
|
net_liquidation): |
|
99
|
|
|
# this is a long only portfolio that is only partially invested |
|
100
|
|
|
# so net and gross leverage are equal. |
|
101
|
|
|
|
|
102
|
|
|
np.testing.assert_allclose(settled_cash, |
|
103
|
|
|
account['settled_cash'], rtol=1e-3) |
|
104
|
|
|
np.testing.assert_allclose(equity_with_loan, |
|
105
|
|
|
account['equity_with_loan'], rtol=1e-3) |
|
106
|
|
|
np.testing.assert_allclose(total_positions_value, |
|
107
|
|
|
account['total_positions_value'], rtol=1e-3) |
|
108
|
|
|
np.testing.assert_allclose(regt_equity, |
|
109
|
|
|
account['regt_equity'], rtol=1e-3) |
|
110
|
|
|
np.testing.assert_allclose(available_funds, |
|
111
|
|
|
account['available_funds'], rtol=1e-3) |
|
112
|
|
|
np.testing.assert_allclose(excess_liquidity, |
|
113
|
|
|
account['excess_liquidity'], rtol=1e-3) |
|
114
|
|
|
np.testing.assert_allclose(cushion, |
|
115
|
|
|
account['cushion'], rtol=1e-3) |
|
116
|
|
|
np.testing.assert_allclose(leverage, account['leverage'], rtol=1e-3) |
|
117
|
|
|
np.testing.assert_allclose(net_leverage, |
|
118
|
|
|
account['net_leverage'], rtol=1e-3) |
|
119
|
|
|
np.testing.assert_allclose(net_liquidation, |
|
120
|
|
|
account['net_liquidation'], rtol=1e-3) |
|
121
|
|
|
|
|
122
|
|
|
|
|
123
|
|
|
def create_txn(sid, dt, price, amount): |
|
124
|
|
|
""" |
|
125
|
|
|
Create a fake transaction to be filled and processed prior to the execution |
|
126
|
|
|
of a given trade event. |
|
127
|
|
|
""" |
|
128
|
|
|
mock_order = Order(dt, sid, amount, id=None) |
|
129
|
|
|
return create_transaction(sid, dt, mock_order, price, amount) |
|
130
|
|
|
|
|
131
|
|
|
|
|
132
|
|
|
def benchmark_events_in_range(sim_params, env): |
|
133
|
|
|
return [ |
|
134
|
|
|
Event({'dt': dt, |
|
135
|
|
|
'returns': ret, |
|
136
|
|
|
'type': zp.DATASOURCE_TYPE.BENCHMARK, |
|
137
|
|
|
# We explicitly rely on the behavior that benchmarks sort before |
|
138
|
|
|
# any other events. |
|
139
|
|
|
'source_id': '1Abenchmarks'}) |
|
140
|
|
|
for dt, ret in env.benchmark_returns.iteritems() |
|
141
|
|
|
if dt.date() >= sim_params.period_start.date() and |
|
142
|
|
|
dt.date() <= sim_params.period_end.date() |
|
143
|
|
|
] |
|
144
|
|
|
|
|
145
|
|
|
|
|
146
|
|
|
def calculate_results(sim_params, |
|
147
|
|
|
env, |
|
148
|
|
|
tempdir, |
|
149
|
|
|
benchmark_events, |
|
150
|
|
|
trade_events, |
|
151
|
|
|
adjustment_reader, |
|
152
|
|
|
splits=None, |
|
153
|
|
|
txns=None, |
|
154
|
|
|
commissions=None): |
|
155
|
|
|
""" |
|
156
|
|
|
Run the given events through a stripped down version of the loop in |
|
157
|
|
|
AlgorithmSimulator.transform. |
|
158
|
|
|
|
|
159
|
|
|
IMPORTANT NOTE FOR TEST WRITERS/READERS: |
|
160
|
|
|
|
|
161
|
|
|
This loop has some wonky logic for the order of event processing for |
|
162
|
|
|
datasource types. This exists mostly to accomodate legacy tests accomodate |
|
163
|
|
|
existing tests that were making assumptions about how events would be |
|
164
|
|
|
sorted. |
|
165
|
|
|
|
|
166
|
|
|
In particular: |
|
167
|
|
|
|
|
168
|
|
|
- Dividends passed for a given date are processed PRIOR to any events |
|
169
|
|
|
for that date. |
|
170
|
|
|
- Splits passed for a given date are process AFTER any events for that |
|
171
|
|
|
date. |
|
172
|
|
|
|
|
173
|
|
|
Tests that use this helper should not be considered useful guarantees of |
|
174
|
|
|
the behavior of AlgorithmSimulator on a stream containing the same events |
|
175
|
|
|
unless the subgroups have been explicitly re-sorted in this way. |
|
176
|
|
|
""" |
|
177
|
|
|
|
|
178
|
|
|
txns = txns or [] |
|
179
|
|
|
splits = splits or {} |
|
180
|
|
|
commissions = commissions or {} |
|
181
|
|
|
|
|
182
|
|
|
adjustment_reader = adjustment_reader or NullAdjustmentReader() |
|
183
|
|
|
|
|
184
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
185
|
|
|
env, |
|
186
|
|
|
tempdir, |
|
187
|
|
|
sim_params, |
|
188
|
|
|
trade_events, |
|
189
|
|
|
) |
|
190
|
|
|
data_portal._adjustment_reader = adjustment_reader |
|
191
|
|
|
|
|
192
|
|
|
perf_tracker = perf.PerformanceTracker(sim_params, env, data_portal) |
|
193
|
|
|
|
|
194
|
|
|
results = [] |
|
195
|
|
|
|
|
196
|
|
|
for date in sim_params.trading_days: |
|
197
|
|
|
|
|
198
|
|
|
for txn in filter(lambda txn: txn.dt == date, txns): |
|
199
|
|
|
# Process txns for this date. |
|
200
|
|
|
perf_tracker.process_transaction(txn) |
|
201
|
|
|
|
|
202
|
|
|
try: |
|
203
|
|
|
commissions_for_date = commissions[date] |
|
204
|
|
|
for comm in commissions_for_date: |
|
205
|
|
|
perf_tracker.process_commission(comm) |
|
206
|
|
|
except KeyError: |
|
207
|
|
|
pass |
|
208
|
|
|
|
|
209
|
|
|
try: |
|
210
|
|
|
splits_for_date = splits[date] |
|
211
|
|
|
perf_tracker.handle_splits(splits_for_date) |
|
212
|
|
|
except KeyError: |
|
213
|
|
|
pass |
|
214
|
|
|
|
|
215
|
|
|
msg = perf_tracker.handle_market_close_daily(date) |
|
216
|
|
|
msg['account'] = perf_tracker.get_account(True, date) |
|
217
|
|
|
results.append(msg) |
|
218
|
|
|
return results |
|
219
|
|
|
|
|
220
|
|
|
|
|
221
|
|
|
def check_perf_tracker_serialization(perf_tracker): |
|
222
|
|
|
scalar_keys = [ |
|
223
|
|
|
'emission_rate', |
|
224
|
|
|
'txn_count', |
|
225
|
|
|
'market_open', |
|
226
|
|
|
'last_close', |
|
227
|
|
|
'period_start', |
|
228
|
|
|
'day_count', |
|
229
|
|
|
'capital_base', |
|
230
|
|
|
'market_close', |
|
231
|
|
|
'saved_dt', |
|
232
|
|
|
'period_end', |
|
233
|
|
|
'total_days', |
|
234
|
|
|
] |
|
235
|
|
|
p_string = dumps_with_persistent_ids(perf_tracker) |
|
236
|
|
|
|
|
237
|
|
|
test = loads_with_persistent_ids(p_string, env=perf_tracker.env) |
|
238
|
|
|
|
|
239
|
|
|
for k in scalar_keys: |
|
240
|
|
|
nt.assert_equal(getattr(test, k), getattr(perf_tracker, k), k) |
|
241
|
|
|
|
|
242
|
|
|
perf_periods = ( |
|
243
|
|
|
test.cumulative_performance, |
|
244
|
|
|
test.todays_performance |
|
245
|
|
|
) |
|
246
|
|
|
for period in perf_periods: |
|
247
|
|
|
nt.assert_true(hasattr(period, '_position_tracker')) |
|
248
|
|
|
|
|
249
|
|
|
|
|
250
|
|
|
def setup_env_data(env, sim_params, sids): |
|
251
|
|
|
data = {} |
|
252
|
|
|
for sid in sids: |
|
253
|
|
|
data[sid] = { |
|
254
|
|
|
"start_date": sim_params.trading_days[0], |
|
255
|
|
|
"end_date": sim_params.trading_days[-1] |
|
256
|
|
|
} |
|
257
|
|
|
|
|
258
|
|
|
env.write_data(equities_data=data) |
|
259
|
|
|
|
|
260
|
|
|
|
|
261
|
|
|
class TestSplitPerformance(unittest.TestCase): |
|
262
|
|
|
@classmethod |
|
263
|
|
|
def setUpClass(cls): |
|
264
|
|
|
cls.env = TradingEnvironment() |
|
265
|
|
|
cls.sim_params = create_simulation_parameters(num_days=2, |
|
266
|
|
|
capital_base=10e3) |
|
267
|
|
|
|
|
268
|
|
|
setup_env_data(cls.env, cls.sim_params, [1]) |
|
269
|
|
|
|
|
270
|
|
|
cls.benchmark_events = benchmark_events_in_range(cls.sim_params, |
|
271
|
|
|
cls.env) |
|
272
|
|
|
cls.tempdir = TempDirectory() |
|
273
|
|
|
|
|
274
|
|
|
@classmethod |
|
275
|
|
|
def tearDownClass(cls): |
|
276
|
|
|
cls.tempdir.cleanup() |
|
277
|
|
|
|
|
278
|
|
|
def test_split_long_position(self): |
|
279
|
|
|
events = factory.create_trade_history( |
|
280
|
|
|
1, |
|
281
|
|
|
# TODO: Should we provide adjusted prices in the tests, or provide |
|
282
|
|
|
# raw prices and adjust via DataPortal? |
|
283
|
|
|
[20, 60], |
|
284
|
|
|
[100, 100], |
|
285
|
|
|
oneday, |
|
286
|
|
|
self.sim_params, |
|
287
|
|
|
env=self.env |
|
288
|
|
|
) |
|
289
|
|
|
|
|
290
|
|
|
# set up a long position in sid 1 |
|
291
|
|
|
# 100 shares at $20 apiece = $2000 position |
|
292
|
|
|
txns = [create_txn(events[0].sid, events[0].dt, 20, 100)] |
|
293
|
|
|
|
|
294
|
|
|
# set up a split with ratio 3 occurring at the start of the second |
|
295
|
|
|
# day. |
|
296
|
|
|
splits = { |
|
297
|
|
|
events[1].dt: [(1, 3)] |
|
298
|
|
|
} |
|
299
|
|
|
|
|
300
|
|
|
results = calculate_results(self.sim_params, self.env, |
|
301
|
|
|
self.tempdir, |
|
302
|
|
|
self.benchmark_events, |
|
303
|
|
|
{1: events}, |
|
304
|
|
|
NullAdjustmentReader(), |
|
305
|
|
|
txns=txns, splits=splits) |
|
306
|
|
|
|
|
307
|
|
|
# should have 33 shares (at $60 apiece) and $20 in cash |
|
308
|
|
|
self.assertEqual(2, len(results)) |
|
309
|
|
|
|
|
310
|
|
|
latest_positions = results[1]['daily_perf']['positions'] |
|
311
|
|
|
self.assertEqual(1, len(latest_positions)) |
|
312
|
|
|
|
|
313
|
|
|
# check the last position to make sure it's been updated |
|
314
|
|
|
position = latest_positions[0] |
|
315
|
|
|
|
|
316
|
|
|
self.assertEqual(1, position['sid']) |
|
317
|
|
|
self.assertEqual(33, position['amount']) |
|
318
|
|
|
self.assertEqual(60, position['cost_basis']) |
|
319
|
|
|
self.assertEqual(60, position['last_sale_price']) |
|
320
|
|
|
|
|
321
|
|
|
# since we started with $10000, and we spent $2000 on the |
|
322
|
|
|
# position, but then got $20 back, we should have $8020 |
|
323
|
|
|
# (or close to it) in cash. |
|
324
|
|
|
|
|
325
|
|
|
# we won't get exactly 8020 because sometimes a split is |
|
326
|
|
|
# denoted as a ratio like 0.3333, and we lose some digits |
|
327
|
|
|
# of precision. thus, make sure we're pretty close. |
|
328
|
|
|
daily_perf = results[1]['daily_perf'] |
|
329
|
|
|
|
|
330
|
|
|
self.assertTrue( |
|
331
|
|
|
zp_math.tolerant_equals(8020, |
|
332
|
|
|
daily_perf['ending_cash'], 1), |
|
333
|
|
|
"ending_cash was {0}".format(daily_perf['ending_cash'])) |
|
334
|
|
|
|
|
335
|
|
|
# Validate that the account attributes were updated. |
|
336
|
|
|
account = results[1]['account'] |
|
337
|
|
|
self.assertEqual(float('inf'), account['day_trades_remaining']) |
|
338
|
|
|
# this is a long only portfolio that is only partially invested |
|
339
|
|
|
# so net and gross leverage are equal. |
|
340
|
|
|
np.testing.assert_allclose(0.198, account['leverage'], rtol=1e-3) |
|
341
|
|
|
np.testing.assert_allclose(0.198, account['net_leverage'], rtol=1e-3) |
|
342
|
|
|
np.testing.assert_allclose(8020, account['regt_equity'], rtol=1e-3) |
|
343
|
|
|
self.assertEqual(float('inf'), account['regt_margin']) |
|
344
|
|
|
np.testing.assert_allclose(8020, account['available_funds'], rtol=1e-3) |
|
345
|
|
|
self.assertEqual(0, account['maintenance_margin_requirement']) |
|
346
|
|
|
np.testing.assert_allclose(10000, |
|
347
|
|
|
account['equity_with_loan'], rtol=1e-3) |
|
348
|
|
|
self.assertEqual(float('inf'), account['buying_power']) |
|
349
|
|
|
self.assertEqual(0, account['initial_margin_requirement']) |
|
350
|
|
|
np.testing.assert_allclose(8020, account['excess_liquidity'], |
|
351
|
|
|
rtol=1e-3) |
|
352
|
|
|
np.testing.assert_allclose(8020, account['settled_cash'], rtol=1e-3) |
|
353
|
|
|
np.testing.assert_allclose(10000, account['net_liquidation'], |
|
354
|
|
|
rtol=1e-3) |
|
355
|
|
|
np.testing.assert_allclose(0.802, account['cushion'], rtol=1e-3) |
|
356
|
|
|
np.testing.assert_allclose(1980, account['total_positions_value'], |
|
357
|
|
|
rtol=1e-3) |
|
358
|
|
|
self.assertEqual(0, account['accrued_interest']) |
|
359
|
|
|
|
|
360
|
|
|
for i, result in enumerate(results): |
|
361
|
|
|
for perf_kind in ('daily_perf', 'cumulative_perf'): |
|
362
|
|
|
perf_result = result[perf_kind] |
|
363
|
|
|
# prices aren't changing, so pnl and returns should be 0.0 |
|
364
|
|
|
self.assertEqual(0.0, perf_result['pnl'], |
|
365
|
|
|
"day %s %s pnl %s instead of 0.0" % |
|
366
|
|
|
(i, perf_kind, perf_result['pnl'])) |
|
367
|
|
|
self.assertEqual(0.0, perf_result['returns'], |
|
368
|
|
|
"day %s %s returns %s instead of 0.0" % |
|
369
|
|
|
(i, perf_kind, perf_result['returns'])) |
|
370
|
|
|
|
|
371
|
|
|
|
|
372
|
|
|
class TestCommissionEvents(unittest.TestCase): |
|
373
|
|
|
@classmethod |
|
374
|
|
|
def setUpClass(cls): |
|
375
|
|
|
cls.env = TradingEnvironment() |
|
376
|
|
|
cls.sim_params = create_simulation_parameters(num_days=5, |
|
377
|
|
|
capital_base=10e3) |
|
378
|
|
|
setup_env_data(cls.env, cls.sim_params, [0, 1, 133]) |
|
379
|
|
|
|
|
380
|
|
|
cls.benchmark_events = benchmark_events_in_range(cls.sim_params, |
|
381
|
|
|
cls.env) |
|
382
|
|
|
cls.tempdir = TempDirectory() |
|
383
|
|
|
|
|
384
|
|
|
@classmethod |
|
385
|
|
|
def tearDownClass(cls): |
|
386
|
|
|
cls.tempdir.cleanup() |
|
387
|
|
|
|
|
388
|
|
|
def test_commission_event(self): |
|
389
|
|
|
trade_events = factory.create_trade_history( |
|
390
|
|
|
1, |
|
391
|
|
|
[10, 10, 10, 10, 10], |
|
392
|
|
|
[100, 100, 100, 100, 100], |
|
393
|
|
|
oneday, |
|
394
|
|
|
self.sim_params, |
|
395
|
|
|
env=self.env |
|
396
|
|
|
) |
|
397
|
|
|
|
|
398
|
|
|
# Test commission models and validate result |
|
399
|
|
|
# Expected commission amounts: |
|
400
|
|
|
# PerShare commission: 1.00, 1.00, 1.50 = $3.50 |
|
401
|
|
|
# PerTrade commission: 5.00, 5.00, 5.00 = $15.00 |
|
402
|
|
|
# PerDollar commission: 1.50, 3.00, 4.50 = $9.00 |
|
403
|
|
|
# Total commission = $3.50 + $15.00 + $9.00 = $27.50 |
|
404
|
|
|
|
|
405
|
|
|
# Create 3 transactions: 50, 100, 150 shares traded @ $20 |
|
406
|
|
|
first_trade = trade_events[0] |
|
407
|
|
|
transactions = [create_txn(first_trade.sid, first_trade.dt, 20, i) |
|
408
|
|
|
for i in [50, 100, 150]] |
|
409
|
|
|
|
|
410
|
|
|
# Create commission models and validate that produce expected |
|
411
|
|
|
# commissions. |
|
412
|
|
|
models = [PerShare(cost=0.01, min_trade_cost=1.00), |
|
413
|
|
|
PerTrade(cost=5.00), |
|
414
|
|
|
PerDollar(cost=0.0015)] |
|
415
|
|
|
expected_results = [3.50, 15.0, 9.0] |
|
416
|
|
|
|
|
417
|
|
|
for model, expected in zip(models, expected_results): |
|
418
|
|
|
total_commission = 0 |
|
419
|
|
|
for trade in transactions: |
|
420
|
|
|
total_commission += model.calculate(trade)[1] |
|
421
|
|
|
self.assertEqual(total_commission, expected) |
|
422
|
|
|
|
|
423
|
|
|
# Verify that commission events are handled correctly by |
|
424
|
|
|
# PerformanceTracker. |
|
425
|
|
|
commissions = {} |
|
426
|
|
|
cash_adj_dt = trade_events[0].dt |
|
427
|
|
|
cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) |
|
428
|
|
|
commissions[cash_adj_dt] = [cash_adjustment] |
|
429
|
|
|
|
|
430
|
|
|
# Insert a purchase order. |
|
431
|
|
|
txns = [create_txn(1, cash_adj_dt, 20, 1)] |
|
432
|
|
|
results = calculate_results(self.sim_params, |
|
433
|
|
|
self.env, |
|
434
|
|
|
self.tempdir, |
|
435
|
|
|
self.benchmark_events, |
|
436
|
|
|
{1: trade_events}, |
|
437
|
|
|
NullAdjustmentReader(), |
|
438
|
|
|
txns=txns, |
|
439
|
|
|
commissions=commissions) |
|
440
|
|
|
|
|
441
|
|
|
# Validate that we lost 320 dollars from our cash pool. |
|
442
|
|
|
self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], |
|
443
|
|
|
9680, "Should have lost 320 from cash pool.") |
|
444
|
|
|
# Validate that the cost basis of our position changed. |
|
445
|
|
|
self.assertEqual(results[-1]['daily_perf']['positions'] |
|
446
|
|
|
[0]['cost_basis'], 320.0) |
|
447
|
|
|
# Validate that the account attributes were updated. |
|
448
|
|
|
account = results[1]['account'] |
|
449
|
|
|
self.assertEqual(float('inf'), account['day_trades_remaining']) |
|
450
|
|
|
np.testing.assert_allclose(0.001, account['leverage'], rtol=1e-3, |
|
451
|
|
|
atol=1e-4) |
|
452
|
|
|
np.testing.assert_allclose(9680, account['regt_equity'], rtol=1e-3) |
|
453
|
|
|
self.assertEqual(float('inf'), account['regt_margin']) |
|
454
|
|
|
np.testing.assert_allclose(9680, account['available_funds'], |
|
455
|
|
|
rtol=1e-3) |
|
456
|
|
|
self.assertEqual(0, account['maintenance_margin_requirement']) |
|
457
|
|
|
np.testing.assert_allclose(9690, |
|
458
|
|
|
account['equity_with_loan'], rtol=1e-3) |
|
459
|
|
|
self.assertEqual(float('inf'), account['buying_power']) |
|
460
|
|
|
self.assertEqual(0, account['initial_margin_requirement']) |
|
461
|
|
|
np.testing.assert_allclose(9680, account['excess_liquidity'], |
|
462
|
|
|
rtol=1e-3) |
|
463
|
|
|
np.testing.assert_allclose(9680, account['settled_cash'], |
|
464
|
|
|
rtol=1e-3) |
|
465
|
|
|
np.testing.assert_allclose(9690, account['net_liquidation'], |
|
466
|
|
|
rtol=1e-3) |
|
467
|
|
|
np.testing.assert_allclose(0.999, account['cushion'], rtol=1e-3) |
|
468
|
|
|
np.testing.assert_allclose(10, account['total_positions_value'], |
|
469
|
|
|
rtol=1e-3) |
|
470
|
|
|
self.assertEqual(0, account['accrued_interest']) |
|
471
|
|
|
|
|
472
|
|
|
def test_commission_zero_position(self): |
|
473
|
|
|
""" |
|
474
|
|
|
Ensure no div-by-zero errors. |
|
475
|
|
|
""" |
|
476
|
|
|
events = factory.create_trade_history( |
|
477
|
|
|
1, |
|
478
|
|
|
[10, 10, 10, 10, 10], |
|
479
|
|
|
[100, 100, 100, 100, 100], |
|
480
|
|
|
oneday, |
|
481
|
|
|
self.sim_params, |
|
482
|
|
|
env=self.env |
|
483
|
|
|
) |
|
484
|
|
|
|
|
485
|
|
|
# Buy and sell the same sid so that we have a zero position by the |
|
486
|
|
|
# time of events[3]. |
|
487
|
|
|
txns = [ |
|
488
|
|
|
create_txn(events[0].sid, events[0].dt, 20, 1), |
|
489
|
|
|
create_txn(events[1].sid, events[1].dt, 20, -1), |
|
490
|
|
|
] |
|
491
|
|
|
|
|
492
|
|
|
# Add a cash adjustment at the time of event[3]. |
|
493
|
|
|
cash_adj_dt = events[3].dt |
|
494
|
|
|
commissions = {} |
|
495
|
|
|
cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) |
|
496
|
|
|
commissions[cash_adj_dt] = [cash_adjustment] |
|
497
|
|
|
|
|
498
|
|
|
results = calculate_results(self.sim_params, |
|
499
|
|
|
self.env, |
|
500
|
|
|
self.tempdir, |
|
501
|
|
|
self.benchmark_events, |
|
502
|
|
|
{1: events}, |
|
503
|
|
|
NullAdjustmentReader(), |
|
504
|
|
|
txns=txns, |
|
505
|
|
|
commissions=commissions) |
|
506
|
|
|
# Validate that we lost 300 dollars from our cash pool. |
|
507
|
|
|
self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], |
|
508
|
|
|
9700) |
|
509
|
|
|
|
|
510
|
|
|
def test_commission_no_position(self): |
|
511
|
|
|
""" |
|
512
|
|
|
Ensure no position-not-found or sid-not-found errors. |
|
513
|
|
|
""" |
|
514
|
|
|
events = factory.create_trade_history( |
|
515
|
|
|
1, |
|
516
|
|
|
[10, 10, 10, 10, 10], |
|
517
|
|
|
[100, 100, 100, 100, 100], |
|
518
|
|
|
oneday, |
|
519
|
|
|
self.sim_params, |
|
520
|
|
|
env=self.env |
|
521
|
|
|
) |
|
522
|
|
|
|
|
523
|
|
|
# Add a cash adjustment at the time of event[3]. |
|
524
|
|
|
cash_adj_dt = events[3].dt |
|
525
|
|
|
commissions = {} |
|
526
|
|
|
cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) |
|
527
|
|
|
commissions[cash_adj_dt] = [cash_adjustment] |
|
528
|
|
|
|
|
529
|
|
|
results = calculate_results(self.sim_params, |
|
530
|
|
|
self.env, |
|
531
|
|
|
self.tempdir, |
|
532
|
|
|
self.benchmark_events, |
|
533
|
|
|
{1: events}, |
|
534
|
|
|
NullAdjustmentReader(), |
|
535
|
|
|
commissions=commissions) |
|
536
|
|
|
# Validate that we lost 300 dollars from our cash pool. |
|
537
|
|
|
self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], |
|
538
|
|
|
9700) |
|
539
|
|
|
|
|
540
|
|
|
|
|
541
|
|
|
class MockDailyBarSpotReader(object): |
|
542
|
|
|
|
|
543
|
|
|
def spot_price(self, sid, day, colname): |
|
544
|
|
|
return 100.0 |
|
545
|
|
|
|
|
546
|
|
|
|
|
547
|
|
|
class TestDividendPerformance(unittest.TestCase): |
|
548
|
|
|
|
|
549
|
|
|
@classmethod |
|
550
|
|
|
def setUpClass(cls): |
|
551
|
|
|
cls.env = TradingEnvironment() |
|
552
|
|
|
cls.sim_params = create_simulation_parameters(num_days=6, |
|
553
|
|
|
capital_base=10e3) |
|
554
|
|
|
|
|
555
|
|
|
setup_env_data(cls.env, cls.sim_params, [1, 2]) |
|
556
|
|
|
|
|
557
|
|
|
cls.benchmark_events = benchmark_events_in_range(cls.sim_params, |
|
558
|
|
|
cls.env) |
|
559
|
|
|
|
|
560
|
|
|
@classmethod |
|
561
|
|
|
def tearDownClass(cls): |
|
562
|
|
|
del cls.env |
|
563
|
|
|
|
|
564
|
|
|
def setUp(self): |
|
565
|
|
|
self.tempdir = TempDirectory() |
|
566
|
|
|
|
|
567
|
|
|
def tearDown(self): |
|
568
|
|
|
self.tempdir.cleanup() |
|
569
|
|
|
|
|
570
|
|
|
def test_market_hours_calculations(self): |
|
571
|
|
|
# DST in US/Eastern began on Sunday March 14, 2010 |
|
572
|
|
|
before = datetime(2010, 3, 12, 14, 31, tzinfo=pytz.utc) |
|
573
|
|
|
after = factory.get_next_trading_dt( |
|
574
|
|
|
before, |
|
575
|
|
|
timedelta(days=1), |
|
576
|
|
|
self.env, |
|
577
|
|
|
) |
|
578
|
|
|
self.assertEqual(after.hour, 13) |
|
579
|
|
|
|
|
580
|
|
|
def test_long_position_receives_dividend(self): |
|
581
|
|
|
# post some trades in the market |
|
582
|
|
|
events = factory.create_trade_history( |
|
583
|
|
|
1, |
|
584
|
|
|
[10, 10, 10, 10, 10, 10], |
|
585
|
|
|
[100, 100, 100, 100, 100, 100], |
|
586
|
|
|
oneday, |
|
587
|
|
|
self.sim_params, |
|
588
|
|
|
env=self.env |
|
589
|
|
|
) |
|
590
|
|
|
|
|
591
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
592
|
|
|
|
|
593
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
594
|
|
|
MockDailyBarSpotReader()) |
|
595
|
|
|
splits = mergers = pd.DataFrame( |
|
596
|
|
|
{ |
|
597
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
598
|
|
|
'effective_date': np.array([], dtype=int), |
|
599
|
|
|
'ratio': np.array([], dtype=float), |
|
600
|
|
|
'sid': np.array([], dtype=int), |
|
601
|
|
|
}, |
|
602
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
603
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
604
|
|
|
) |
|
605
|
|
|
dividends = pd.DataFrame({ |
|
606
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
607
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
608
|
|
|
'declared_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
609
|
|
|
'ex_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
610
|
|
|
'record_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
611
|
|
|
'pay_date': np.array([events[2].dt], dtype='datetime64[ns]'), |
|
612
|
|
|
}) |
|
613
|
|
|
writer.write(splits, mergers, dividends) |
|
614
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
615
|
|
|
|
|
616
|
|
|
# Simulate a transaction being filled prior to the ex_date. |
|
617
|
|
|
txns = [create_txn(events[0].sid, events[0].dt, 10.0, 100)] |
|
618
|
|
|
results = calculate_results( |
|
619
|
|
|
self.sim_params, |
|
620
|
|
|
self.env, |
|
621
|
|
|
self.tempdir, |
|
622
|
|
|
self.benchmark_events, |
|
623
|
|
|
{1: events}, |
|
624
|
|
|
adjustment_reader, |
|
625
|
|
|
txns=txns, |
|
626
|
|
|
) |
|
627
|
|
|
|
|
628
|
|
|
self.assertEqual(len(results), 6) |
|
629
|
|
|
cumulative_returns = \ |
|
630
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
631
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.1, 0.1, 0.1, 0.1]) |
|
632
|
|
|
daily_returns = [event['daily_perf']['returns'] |
|
633
|
|
|
for event in results] |
|
634
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.10, 0.0, 0.0, 0.0]) |
|
635
|
|
|
cash_flows = [event['daily_perf']['capital_used'] |
|
636
|
|
|
for event in results] |
|
637
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 1000, 0, 0, 0]) |
|
638
|
|
|
cumulative_cash_flows = \ |
|
639
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
640
|
|
|
self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 0, 0, 0]) |
|
641
|
|
|
cash_pos = \ |
|
642
|
|
|
[event['cumulative_perf']['ending_cash'] for event in results] |
|
643
|
|
|
self.assertEqual(cash_pos, [9000, 9000, 10000, 10000, 10000, 10000]) |
|
644
|
|
|
|
|
645
|
|
|
def test_long_position_receives_stock_dividend(self): |
|
646
|
|
|
# post some trades in the market |
|
647
|
|
|
events = {} |
|
648
|
|
|
for sid in (1, 2): |
|
649
|
|
|
events[sid] = factory.create_trade_history( |
|
650
|
|
|
sid, |
|
651
|
|
|
[10, 10, 10, 10, 10, 10], |
|
652
|
|
|
[100, 100, 100, 100, 100, 100], |
|
653
|
|
|
oneday, |
|
654
|
|
|
self.sim_params, |
|
655
|
|
|
env=self.env |
|
656
|
|
|
) |
|
657
|
|
|
|
|
658
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
659
|
|
|
|
|
660
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
661
|
|
|
MockDailyBarSpotReader()) |
|
662
|
|
|
splits = mergers = pd.DataFrame( |
|
663
|
|
|
{ |
|
664
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
665
|
|
|
'effective_date': np.array([], dtype=int), |
|
666
|
|
|
'ratio': np.array([], dtype=float), |
|
667
|
|
|
'sid': np.array([], dtype=int), |
|
668
|
|
|
}, |
|
669
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
670
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
671
|
|
|
) |
|
672
|
|
|
dividends = pd.DataFrame({ |
|
673
|
|
|
'sid': np.array([], dtype=np.uint32), |
|
674
|
|
|
'amount': np.array([], dtype=np.float64), |
|
675
|
|
|
'declared_date': np.array([], dtype='datetime64[ns]'), |
|
676
|
|
|
'ex_date': np.array([], dtype='datetime64[ns]'), |
|
677
|
|
|
'pay_date': np.array([], dtype='datetime64[ns]'), |
|
678
|
|
|
'record_date': np.array([], dtype='datetime64[ns]'), |
|
679
|
|
|
}) |
|
680
|
|
|
sid_1 = events[1] |
|
681
|
|
|
stock_dividends = pd.DataFrame({ |
|
682
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
683
|
|
|
'payment_sid': np.array([2], dtype=np.uint32), |
|
684
|
|
|
'ratio': np.array([2], dtype=np.float64), |
|
685
|
|
|
'declared_date': np.array([sid_1[0].dt], dtype='datetime64[ns]'), |
|
686
|
|
|
'ex_date': np.array([sid_1[1].dt], dtype='datetime64[ns]'), |
|
687
|
|
|
'record_date': np.array([sid_1[1].dt], dtype='datetime64[ns]'), |
|
688
|
|
|
'pay_date': np.array([sid_1[2].dt], dtype='datetime64[ns]'), |
|
689
|
|
|
}) |
|
690
|
|
|
writer.write(splits, mergers, dividends, stock_dividends) |
|
691
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
692
|
|
|
|
|
693
|
|
|
txns = [create_txn(events[1][0].sid, events[1][0].dt, 10.0, 100)] |
|
694
|
|
|
|
|
695
|
|
|
results = calculate_results( |
|
696
|
|
|
self.sim_params, |
|
697
|
|
|
self.env, |
|
698
|
|
|
self.tempdir, |
|
699
|
|
|
self.benchmark_events, |
|
700
|
|
|
events, |
|
701
|
|
|
adjustment_reader, |
|
702
|
|
|
txns=txns, |
|
703
|
|
|
) |
|
704
|
|
|
|
|
705
|
|
|
self.assertEqual(len(results), 6) |
|
706
|
|
|
cumulative_returns = \ |
|
707
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
708
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.2, 0.2, 0.2, 0.2]) |
|
709
|
|
|
daily_returns = [event['daily_perf']['returns'] |
|
710
|
|
|
for event in results] |
|
711
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.2, 0.0, 0.0, 0.0]) |
|
712
|
|
|
cash_flows = [event['daily_perf']['capital_used'] |
|
713
|
|
|
for event in results] |
|
714
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0, 0]) |
|
715
|
|
|
cumulative_cash_flows = \ |
|
716
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
717
|
|
|
self.assertEqual(cumulative_cash_flows, [-1000] * 6) |
|
718
|
|
|
cash_pos = \ |
|
719
|
|
|
[event['cumulative_perf']['ending_cash'] for event in results] |
|
720
|
|
|
self.assertEqual(cash_pos, [9000] * 6) |
|
721
|
|
|
|
|
722
|
|
|
def test_long_position_purchased_on_ex_date_receives_no_dividend(self): |
|
723
|
|
|
# post some trades in the market |
|
724
|
|
|
events = factory.create_trade_history( |
|
725
|
|
|
1, |
|
726
|
|
|
[10, 10, 10, 10, 10, 10], |
|
727
|
|
|
[100, 100, 100, 100, 100, 100], |
|
728
|
|
|
oneday, |
|
729
|
|
|
self.sim_params, |
|
730
|
|
|
env=self.env |
|
731
|
|
|
) |
|
732
|
|
|
|
|
733
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
734
|
|
|
|
|
735
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
736
|
|
|
MockDailyBarSpotReader()) |
|
737
|
|
|
splits = mergers = pd.DataFrame( |
|
738
|
|
|
{ |
|
739
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
740
|
|
|
'effective_date': np.array([], dtype=int), |
|
741
|
|
|
'ratio': np.array([], dtype=float), |
|
742
|
|
|
'sid': np.array([], dtype=int), |
|
743
|
|
|
}, |
|
744
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
745
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
746
|
|
|
) |
|
747
|
|
|
dividends = pd.DataFrame({ |
|
748
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
749
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
750
|
|
|
'declared_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
751
|
|
|
'ex_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
752
|
|
|
'record_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
753
|
|
|
'pay_date': np.array([events[2].dt], dtype='datetime64[ns]'), |
|
754
|
|
|
}) |
|
755
|
|
|
writer.write(splits, mergers, dividends) |
|
756
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
757
|
|
|
|
|
758
|
|
|
# Simulate a transaction being filled on the ex_date. |
|
759
|
|
|
txns = [create_txn(events[1].sid, events[1].dt, 10.0, 100)] |
|
760
|
|
|
|
|
761
|
|
|
results = calculate_results( |
|
762
|
|
|
self.sim_params, |
|
763
|
|
|
self.env, |
|
764
|
|
|
self.tempdir, |
|
765
|
|
|
self.benchmark_events, |
|
766
|
|
|
{1: events}, |
|
767
|
|
|
adjustment_reader, |
|
768
|
|
|
txns=txns, |
|
769
|
|
|
) |
|
770
|
|
|
|
|
771
|
|
|
self.assertEqual(len(results), 6) |
|
772
|
|
|
cumulative_returns = \ |
|
773
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
774
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0, 0]) |
|
775
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
776
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0, 0, 0]) |
|
777
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
778
|
|
|
self.assertEqual(cash_flows, [0, -1000, 0, 0, 0, 0]) |
|
779
|
|
|
cumulative_cash_flows = \ |
|
780
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
781
|
|
|
self.assertEqual(cumulative_cash_flows, |
|
782
|
|
|
[0, -1000, -1000, -1000, -1000, -1000]) |
|
783
|
|
|
|
|
784
|
|
|
def test_selling_before_dividend_payment_still_gets_paid(self): |
|
785
|
|
|
# post some trades in the market |
|
786
|
|
|
events = factory.create_trade_history( |
|
787
|
|
|
1, |
|
788
|
|
|
[10, 10, 10, 10, 10, 10], |
|
789
|
|
|
[100, 100, 100, 100, 100, 100], |
|
790
|
|
|
oneday, |
|
791
|
|
|
self.sim_params, |
|
792
|
|
|
env=self.env |
|
793
|
|
|
) |
|
794
|
|
|
|
|
795
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
796
|
|
|
|
|
797
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
798
|
|
|
MockDailyBarSpotReader()) |
|
799
|
|
|
splits = mergers = pd.DataFrame( |
|
800
|
|
|
{ |
|
801
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
802
|
|
|
'effective_date': np.array([], dtype=int), |
|
803
|
|
|
'ratio': np.array([], dtype=float), |
|
804
|
|
|
'sid': np.array([], dtype=int), |
|
805
|
|
|
}, |
|
806
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
807
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
808
|
|
|
) |
|
809
|
|
|
dividends = pd.DataFrame({ |
|
810
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
811
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
812
|
|
|
'declared_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
813
|
|
|
'ex_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
814
|
|
|
'record_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
815
|
|
|
'pay_date': np.array([events[3].dt], dtype='datetime64[ns]'), |
|
816
|
|
|
}) |
|
817
|
|
|
writer.write(splits, mergers, dividends) |
|
818
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
819
|
|
|
|
|
820
|
|
|
buy_txn = create_txn(events[0].sid, events[0].dt, 10.0, 100) |
|
821
|
|
|
sell_txn = create_txn(events[2].sid, events[2].dt, 10.0, -100) |
|
822
|
|
|
txns = [buy_txn, sell_txn] |
|
823
|
|
|
|
|
824
|
|
|
results = calculate_results( |
|
825
|
|
|
self.sim_params, |
|
826
|
|
|
self.env, |
|
827
|
|
|
self.tempdir, |
|
828
|
|
|
self.benchmark_events, |
|
829
|
|
|
{1: events}, |
|
830
|
|
|
adjustment_reader, |
|
831
|
|
|
txns=txns, |
|
832
|
|
|
) |
|
833
|
|
|
|
|
834
|
|
|
self.assertEqual(len(results), 6) |
|
835
|
|
|
cumulative_returns = \ |
|
836
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
837
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0.1, 0.1, 0.1]) |
|
838
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
839
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0.1, 0, 0]) |
|
840
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
841
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 1000, 1000, 0, 0]) |
|
842
|
|
|
cumulative_cash_flows = \ |
|
843
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
844
|
|
|
self.assertEqual(cumulative_cash_flows, |
|
845
|
|
|
[-1000, -1000, 0, 1000, 1000, 1000]) |
|
846
|
|
|
|
|
847
|
|
|
def test_buy_and_sell_before_ex(self): |
|
848
|
|
|
# post some trades in the market |
|
849
|
|
|
events = factory.create_trade_history( |
|
850
|
|
|
1, |
|
851
|
|
|
[10, 10, 10, 10, 10, 10], |
|
852
|
|
|
[100, 100, 100, 100, 100, 100], |
|
853
|
|
|
oneday, |
|
854
|
|
|
self.sim_params, |
|
855
|
|
|
env=self.env |
|
856
|
|
|
) |
|
857
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
858
|
|
|
|
|
859
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
860
|
|
|
MockDailyBarSpotReader()) |
|
861
|
|
|
splits = mergers = pd.DataFrame( |
|
862
|
|
|
{ |
|
863
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
864
|
|
|
'effective_date': np.array([], dtype=int), |
|
865
|
|
|
'ratio': np.array([], dtype=float), |
|
866
|
|
|
'sid': np.array([], dtype=int), |
|
867
|
|
|
}, |
|
868
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
869
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
870
|
|
|
) |
|
871
|
|
|
|
|
872
|
|
|
dividends = pd.DataFrame({ |
|
873
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
874
|
|
|
'amount': np.array([10.0], dtype=np.float64), |
|
875
|
|
|
'declared_date': np.array([events[3].dt], dtype='datetime64[ns]'), |
|
876
|
|
|
'ex_date': np.array([events[4].dt], dtype='datetime64[ns]'), |
|
877
|
|
|
'pay_date': np.array([events[5].dt], dtype='datetime64[ns]'), |
|
878
|
|
|
'record_date': np.array([events[4].dt], dtype='datetime64[ns]'), |
|
879
|
|
|
}) |
|
880
|
|
|
writer.write(splits, mergers, dividends) |
|
881
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
882
|
|
|
|
|
883
|
|
|
buy_txn = create_txn(events[1].sid, events[1].dt, 10.0, 100) |
|
884
|
|
|
sell_txn = create_txn(events[2].sid, events[2].dt, 10.0, -100) |
|
885
|
|
|
txns = [buy_txn, sell_txn] |
|
886
|
|
|
|
|
887
|
|
|
results = calculate_results( |
|
888
|
|
|
self.sim_params, |
|
889
|
|
|
self.env, |
|
890
|
|
|
self.tempdir, |
|
891
|
|
|
self.benchmark_events, |
|
892
|
|
|
{1: events}, |
|
893
|
|
|
txns=txns, |
|
894
|
|
|
adjustment_reader=adjustment_reader, |
|
895
|
|
|
) |
|
896
|
|
|
|
|
897
|
|
|
self.assertEqual(len(results), 6) |
|
898
|
|
|
cumulative_returns = \ |
|
899
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
900
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0, 0]) |
|
901
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
902
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0, 0, 0]) |
|
903
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
904
|
|
|
self.assertEqual(cash_flows, [0, -1000, 1000, 0, 0, 0]) |
|
905
|
|
|
cumulative_cash_flows = \ |
|
906
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
907
|
|
|
self.assertEqual(cumulative_cash_flows, [0, -1000, 0, 0, 0, 0]) |
|
908
|
|
|
|
|
909
|
|
|
def test_ending_before_pay_date(self): |
|
910
|
|
|
# post some trades in the market |
|
911
|
|
|
events = factory.create_trade_history( |
|
912
|
|
|
1, |
|
913
|
|
|
[10, 10, 10, 10, 10, 10], |
|
914
|
|
|
[100, 100, 100, 100, 100, 100], |
|
915
|
|
|
oneday, |
|
916
|
|
|
self.sim_params, |
|
917
|
|
|
env=self.env |
|
918
|
|
|
) |
|
919
|
|
|
|
|
920
|
|
|
pay_date = self.sim_params.first_open |
|
921
|
|
|
# find pay date that is much later. |
|
922
|
|
|
for i in range(30): |
|
923
|
|
|
pay_date = factory.get_next_trading_dt(pay_date, oneday, self.env) |
|
924
|
|
|
|
|
925
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
926
|
|
|
|
|
927
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
928
|
|
|
MockDailyBarSpotReader()) |
|
929
|
|
|
splits = mergers = pd.DataFrame( |
|
930
|
|
|
{ |
|
931
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
932
|
|
|
'effective_date': np.array([], dtype=int), |
|
933
|
|
|
'ratio': np.array([], dtype=float), |
|
934
|
|
|
'sid': np.array([], dtype=int), |
|
935
|
|
|
}, |
|
936
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
937
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
938
|
|
|
) |
|
939
|
|
|
dividends = pd.DataFrame({ |
|
940
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
941
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
942
|
|
|
'declared_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
943
|
|
|
'ex_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
944
|
|
|
'record_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
945
|
|
|
'pay_date': np.array([pay_date], dtype='datetime64[ns]'), |
|
946
|
|
|
}) |
|
947
|
|
|
writer.write(splits, mergers, dividends) |
|
948
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
949
|
|
|
|
|
950
|
|
|
txns = [create_txn(events[1].sid, events[1].dt, 10.0, 100)] |
|
951
|
|
|
|
|
952
|
|
|
results = calculate_results( |
|
953
|
|
|
self.sim_params, |
|
954
|
|
|
self.env, |
|
955
|
|
|
self.tempdir, |
|
956
|
|
|
self.benchmark_events, |
|
957
|
|
|
{1: events}, |
|
958
|
|
|
txns=txns, |
|
959
|
|
|
adjustment_reader=adjustment_reader, |
|
960
|
|
|
) |
|
961
|
|
|
|
|
962
|
|
|
self.assertEqual(len(results), 6) |
|
963
|
|
|
cumulative_returns = \ |
|
964
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
965
|
|
|
self.assertEqual(cumulative_returns, [0, 0, 0, 0.0, 0.0, 0.0]) |
|
966
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
967
|
|
|
self.assertEqual(daily_returns, [0, 0, 0, 0, 0, 0]) |
|
968
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
969
|
|
|
self.assertEqual(cash_flows, [0, -1000, 0, 0, 0, 0]) |
|
970
|
|
|
cumulative_cash_flows = \ |
|
971
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
972
|
|
|
self.assertEqual( |
|
973
|
|
|
cumulative_cash_flows, |
|
974
|
|
|
[0, -1000, -1000, -1000, -1000, -1000] |
|
975
|
|
|
) |
|
976
|
|
|
|
|
977
|
|
|
def test_short_position_pays_dividend(self): |
|
978
|
|
|
# post some trades in the market |
|
979
|
|
|
events = factory.create_trade_history( |
|
980
|
|
|
1, |
|
981
|
|
|
[10, 10, 10, 10, 10, 10], |
|
982
|
|
|
[100, 100, 100, 100, 100, 100], |
|
983
|
|
|
oneday, |
|
984
|
|
|
self.sim_params, |
|
985
|
|
|
env=self.env |
|
986
|
|
|
) |
|
987
|
|
|
|
|
988
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
989
|
|
|
|
|
990
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
991
|
|
|
MockDailyBarSpotReader()) |
|
992
|
|
|
splits = mergers = pd.DataFrame( |
|
993
|
|
|
{ |
|
994
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
995
|
|
|
'effective_date': np.array([], dtype=int), |
|
996
|
|
|
'ratio': np.array([], dtype=float), |
|
997
|
|
|
'sid': np.array([], dtype=int), |
|
998
|
|
|
}, |
|
999
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
1000
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
1001
|
|
|
) |
|
1002
|
|
|
dividends = pd.DataFrame({ |
|
1003
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
1004
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
1005
|
|
|
'declared_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
1006
|
|
|
'ex_date': np.array([events[2].dt], dtype='datetime64[ns]'), |
|
1007
|
|
|
'record_date': np.array([events[2].dt], dtype='datetime64[ns]'), |
|
1008
|
|
|
'pay_date': np.array([events[3].dt], dtype='datetime64[ns]'), |
|
1009
|
|
|
}) |
|
1010
|
|
|
writer.write(splits, mergers, dividends) |
|
1011
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
1012
|
|
|
|
|
1013
|
|
|
txns = [create_txn(events[1].sid, events[1].dt, 10.0, -100)] |
|
1014
|
|
|
|
|
1015
|
|
|
results = calculate_results( |
|
1016
|
|
|
self.sim_params, |
|
1017
|
|
|
self.env, |
|
1018
|
|
|
self.tempdir, |
|
1019
|
|
|
self.benchmark_events, |
|
1020
|
|
|
{1: events}, |
|
1021
|
|
|
adjustment_reader, |
|
1022
|
|
|
txns=txns, |
|
1023
|
|
|
) |
|
1024
|
|
|
|
|
1025
|
|
|
self.assertEqual(len(results), 6) |
|
1026
|
|
|
cumulative_returns = \ |
|
1027
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
1028
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, -0.1, -0.1, -0.1]) |
|
1029
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
1030
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.0, -0.1, 0.0, 0.0]) |
|
1031
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
1032
|
|
|
self.assertEqual(cash_flows, [0, 1000, 0, -1000, 0, 0]) |
|
1033
|
|
|
cumulative_cash_flows = \ |
|
1034
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
1035
|
|
|
self.assertEqual(cumulative_cash_flows, [0, 1000, 1000, 0, 0, 0]) |
|
1036
|
|
|
|
|
1037
|
|
|
def test_no_position_receives_no_dividend(self): |
|
1038
|
|
|
# post some trades in the market |
|
1039
|
|
|
events = factory.create_trade_history( |
|
1040
|
|
|
1, |
|
1041
|
|
|
[10, 10, 10, 10, 10, 10], |
|
1042
|
|
|
[100, 100, 100, 100, 100, 100], |
|
1043
|
|
|
oneday, |
|
1044
|
|
|
self.sim_params, |
|
1045
|
|
|
env=self.env |
|
1046
|
|
|
) |
|
1047
|
|
|
|
|
1048
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
1049
|
|
|
|
|
1050
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
1051
|
|
|
MockDailyBarSpotReader()) |
|
1052
|
|
|
splits = mergers = pd.DataFrame( |
|
1053
|
|
|
{ |
|
1054
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
1055
|
|
|
'effective_date': np.array([], dtype=int), |
|
1056
|
|
|
'ratio': np.array([], dtype=float), |
|
1057
|
|
|
'sid': np.array([], dtype=int), |
|
1058
|
|
|
}, |
|
1059
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
1060
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
1061
|
|
|
) |
|
1062
|
|
|
dividends = pd.DataFrame({ |
|
1063
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
1064
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
1065
|
|
|
'declared_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
1066
|
|
|
'ex_date': np.array([events[1].dt], dtype='datetime64[ns]'), |
|
1067
|
|
|
'pay_date': np.array([events[2].dt], dtype='datetime64[ns]'), |
|
1068
|
|
|
'record_date': np.array([events[2].dt], dtype='datetime64[ns]'), |
|
1069
|
|
|
}) |
|
1070
|
|
|
writer.write(splits, mergers, dividends) |
|
1071
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
1072
|
|
|
|
|
1073
|
|
|
results = calculate_results( |
|
1074
|
|
|
self.sim_params, |
|
1075
|
|
|
self.env, |
|
1076
|
|
|
self.tempdir, |
|
1077
|
|
|
self.benchmark_events, |
|
1078
|
|
|
{1: events}, |
|
1079
|
|
|
adjustment_reader, |
|
1080
|
|
|
) |
|
1081
|
|
|
|
|
1082
|
|
|
self.assertEqual(len(results), 6) |
|
1083
|
|
|
cumulative_returns = \ |
|
1084
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
1085
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) |
|
1086
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
1087
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) |
|
1088
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
1089
|
|
|
self.assertEqual(cash_flows, [0, 0, 0, 0, 0, 0]) |
|
1090
|
|
|
cumulative_cash_flows = \ |
|
1091
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
1092
|
|
|
self.assertEqual(cumulative_cash_flows, [0, 0, 0, 0, 0, 0]) |
|
1093
|
|
|
|
|
1094
|
|
|
def test_no_dividend_at_simulation_end(self): |
|
1095
|
|
|
# post some trades in the market |
|
1096
|
|
|
events = factory.create_trade_history( |
|
1097
|
|
|
1, |
|
1098
|
|
|
[10, 10, 10, 10, 10], |
|
1099
|
|
|
[100, 100, 100, 100, 100], |
|
1100
|
|
|
oneday, |
|
1101
|
|
|
self.sim_params, |
|
1102
|
|
|
env=self.env |
|
1103
|
|
|
) |
|
1104
|
|
|
|
|
1105
|
|
|
dbpath = self.tempdir.getpath('adjustments.sqlite') |
|
1106
|
|
|
|
|
1107
|
|
|
writer = SQLiteAdjustmentWriter(dbpath, self.env.trading_days, |
|
1108
|
|
|
MockDailyBarSpotReader()) |
|
1109
|
|
|
splits = mergers = pd.DataFrame( |
|
1110
|
|
|
{ |
|
1111
|
|
|
# Hackery to make the dtypes correct on an empty frame. |
|
1112
|
|
|
'effective_date': np.array([], dtype=int), |
|
1113
|
|
|
'ratio': np.array([], dtype=float), |
|
1114
|
|
|
'sid': np.array([], dtype=int), |
|
1115
|
|
|
}, |
|
1116
|
|
|
index=pd.DatetimeIndex([], tz='UTC'), |
|
1117
|
|
|
columns=['effective_date', 'ratio', 'sid'], |
|
1118
|
|
|
) |
|
1119
|
|
|
dividends = pd.DataFrame({ |
|
1120
|
|
|
'sid': np.array([1], dtype=np.uint32), |
|
1121
|
|
|
'amount': np.array([10.00], dtype=np.float64), |
|
1122
|
|
|
'declared_date': np.array([events[-3].dt], dtype='datetime64[ns]'), |
|
1123
|
|
|
'ex_date': np.array([events[-2].dt], dtype='datetime64[ns]'), |
|
1124
|
|
|
'record_date': np.array([events[0].dt], dtype='datetime64[ns]'), |
|
1125
|
|
|
'pay_date': np.array([self.env.next_trading_day(events[-1].dt)], |
|
1126
|
|
|
dtype='datetime64[ns]'), |
|
1127
|
|
|
}) |
|
1128
|
|
|
writer.write(splits, mergers, dividends) |
|
1129
|
|
|
adjustment_reader = SQLiteAdjustmentReader(dbpath) |
|
1130
|
|
|
|
|
1131
|
|
|
# Set the last day to be the last event |
|
1132
|
|
|
sim_params = create_simulation_parameters( |
|
1133
|
|
|
num_days=6, |
|
1134
|
|
|
capital_base=10e3, |
|
1135
|
|
|
start=self.sim_params.period_start, |
|
1136
|
|
|
end=self.sim_params.period_end |
|
1137
|
|
|
) |
|
1138
|
|
|
|
|
1139
|
|
|
sim_params.period_end = events[-1].dt |
|
1140
|
|
|
sim_params.update_internal_from_env(self.env) |
|
1141
|
|
|
|
|
1142
|
|
|
# Simulate a transaction being filled prior to the ex_date. |
|
1143
|
|
|
txns = [create_txn(events[0].sid, events[0].dt, 10.0, 100)] |
|
1144
|
|
|
results = calculate_results( |
|
1145
|
|
|
sim_params, |
|
1146
|
|
|
self.env, |
|
1147
|
|
|
self.tempdir, |
|
1148
|
|
|
self.benchmark_events, |
|
1149
|
|
|
{1: events}, |
|
1150
|
|
|
adjustment_reader=adjustment_reader, |
|
1151
|
|
|
txns=txns, |
|
1152
|
|
|
) |
|
1153
|
|
|
|
|
1154
|
|
|
self.assertEqual(len(results), 5) |
|
1155
|
|
|
cumulative_returns = \ |
|
1156
|
|
|
[event['cumulative_perf']['returns'] for event in results] |
|
1157
|
|
|
self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) |
|
1158
|
|
|
daily_returns = [event['daily_perf']['returns'] for event in results] |
|
1159
|
|
|
self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) |
|
1160
|
|
|
cash_flows = [event['daily_perf']['capital_used'] for event in results] |
|
1161
|
|
|
self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) |
|
1162
|
|
|
cumulative_cash_flows = \ |
|
1163
|
|
|
[event['cumulative_perf']['capital_used'] for event in results] |
|
1164
|
|
|
self.assertEqual(cumulative_cash_flows, |
|
1165
|
|
|
[-1000, -1000, -1000, -1000, -1000]) |
|
1166
|
|
|
|
|
1167
|
|
|
|
|
1168
|
|
|
class TestDividendPerformanceHolidayStyle(TestDividendPerformance): |
|
1169
|
|
|
|
|
1170
|
|
|
# The holiday tests begins the simulation on the day |
|
1171
|
|
|
# before Thanksgiving, so that the next trading day is |
|
1172
|
|
|
# two days ahead. Any tests that hard code events |
|
1173
|
|
|
# to be start + oneday will fail, since those events will |
|
1174
|
|
|
# be skipped by the simulation. |
|
1175
|
|
|
|
|
1176
|
|
|
@classmethod |
|
1177
|
|
|
def setUpClass(cls): |
|
1178
|
|
|
cls.env = TradingEnvironment() |
|
1179
|
|
|
cls.sim_params = create_simulation_parameters( |
|
1180
|
|
|
num_days=6, |
|
1181
|
|
|
capital_base=10e3, |
|
1182
|
|
|
start=pd.Timestamp("2003-11-30", tz='UTC'), |
|
1183
|
|
|
end=pd.Timestamp("2003-12-08", tz='UTC') |
|
1184
|
|
|
) |
|
1185
|
|
|
|
|
1186
|
|
|
setup_env_data(cls.env, cls.sim_params, [1, 2]) |
|
1187
|
|
|
|
|
1188
|
|
|
cls.benchmark_events = benchmark_events_in_range(cls.sim_params, |
|
1189
|
|
|
cls.env) |
|
1190
|
|
|
|
|
1191
|
|
|
|
|
1192
|
|
|
class TestPositionPerformance(unittest.TestCase): |
|
1193
|
|
|
|
|
1194
|
|
|
def setUp(self): |
|
1195
|
|
|
self.tempdir = TempDirectory() |
|
1196
|
|
|
|
|
1197
|
|
|
def create_environment_stuff(self, num_days=4, sids=[1, 2]): |
|
1198
|
|
|
self.env = TradingEnvironment() |
|
1199
|
|
|
self.sim_params = create_simulation_parameters(num_days=num_days) |
|
1200
|
|
|
|
|
1201
|
|
|
setup_env_data(self.env, self.sim_params, [1, 2]) |
|
1202
|
|
|
|
|
1203
|
|
|
self.finder = self.env.asset_finder |
|
1204
|
|
|
|
|
1205
|
|
|
self.benchmark_events = benchmark_events_in_range(self.sim_params, |
|
1206
|
|
|
self.env) |
|
1207
|
|
|
|
|
1208
|
|
|
def tearDown(self): |
|
1209
|
|
|
self.tempdir.cleanup() |
|
1210
|
|
|
del self.env |
|
1211
|
|
|
|
|
1212
|
|
|
def test_long_short_positions(self): |
|
1213
|
|
|
""" |
|
1214
|
|
|
start with $1000 |
|
1215
|
|
|
buy 100 stock1 shares at $10 |
|
1216
|
|
|
sell short 100 stock2 shares at $10 |
|
1217
|
|
|
stock1 then goes down to $9 |
|
1218
|
|
|
stock2 goes to $11 |
|
1219
|
|
|
""" |
|
1220
|
|
|
self.create_environment_stuff() |
|
1221
|
|
|
|
|
1222
|
|
|
trades_1 = factory.create_trade_history( |
|
1223
|
|
|
1, |
|
1224
|
|
|
[10, 10, 10, 9], |
|
1225
|
|
|
[100, 100, 100, 100], |
|
1226
|
|
|
oneday, |
|
1227
|
|
|
self.sim_params, |
|
1228
|
|
|
env=self.env |
|
1229
|
|
|
) |
|
1230
|
|
|
|
|
1231
|
|
|
trades_2 = factory.create_trade_history( |
|
1232
|
|
|
2, |
|
1233
|
|
|
[10, 10, 10, 11], |
|
1234
|
|
|
[100, 100, 100, 100], |
|
1235
|
|
|
oneday, |
|
1236
|
|
|
self.sim_params, |
|
1237
|
|
|
env=self.env |
|
1238
|
|
|
) |
|
1239
|
|
|
|
|
1240
|
|
|
txn1 = create_txn(trades_1[1].sid, trades_1[1].dt, 10.0, 100) |
|
1241
|
|
|
txn2 = create_txn(trades_2[1].sid, trades_1[1].dt, 10.0, -100) |
|
1242
|
|
|
|
|
1243
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
1244
|
|
|
self.env, |
|
1245
|
|
|
self.tempdir, |
|
1246
|
|
|
self.sim_params, |
|
1247
|
|
|
{1: trades_1, 2: trades_2} |
|
1248
|
|
|
) |
|
1249
|
|
|
|
|
1250
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1251
|
|
|
self.sim_params.data_frequency) |
|
1252
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder, |
|
1253
|
|
|
self.sim_params.data_frequency, |
|
1254
|
|
|
data_portal) |
|
1255
|
|
|
pp.position_tracker = pt |
|
1256
|
|
|
pt.execute_transaction(txn1) |
|
1257
|
|
|
pp.handle_execution(txn1) |
|
1258
|
|
|
pt.execute_transaction(txn2) |
|
1259
|
|
|
pp.handle_execution(txn2) |
|
1260
|
|
|
|
|
1261
|
|
|
dt = trades_1[-2].dt |
|
1262
|
|
|
pt.sync_last_sale_prices(dt) |
|
1263
|
|
|
|
|
1264
|
|
|
pp.calculate_performance() |
|
1265
|
|
|
|
|
1266
|
|
|
check_perf_period( |
|
1267
|
|
|
pp, |
|
1268
|
|
|
gross_leverage=2.0, |
|
1269
|
|
|
net_leverage=0.0, |
|
1270
|
|
|
long_exposure=1000.0, |
|
1271
|
|
|
longs_count=1, |
|
1272
|
|
|
short_exposure=-1000.0, |
|
1273
|
|
|
shorts_count=1) |
|
1274
|
|
|
# Validate that the account attributes were updated. |
|
1275
|
|
|
account = pp.as_account() |
|
1276
|
|
|
check_account(account, |
|
1277
|
|
|
settled_cash=1000.0, |
|
1278
|
|
|
equity_with_loan=1000.0, |
|
1279
|
|
|
total_positions_value=0.0, |
|
1280
|
|
|
regt_equity=1000.0, |
|
1281
|
|
|
available_funds=1000.0, |
|
1282
|
|
|
excess_liquidity=1000.0, |
|
1283
|
|
|
cushion=1.0, |
|
1284
|
|
|
leverage=2.0, |
|
1285
|
|
|
net_leverage=0.0, |
|
1286
|
|
|
net_liquidation=1000.0) |
|
1287
|
|
|
|
|
1288
|
|
|
dt = trades_1[-1].dt |
|
1289
|
|
|
pt.sync_last_sale_prices(dt) |
|
1290
|
|
|
|
|
1291
|
|
|
pp.calculate_performance() |
|
1292
|
|
|
|
|
1293
|
|
|
# Validate that the account attributes were updated. |
|
1294
|
|
|
account = pp.as_account() |
|
1295
|
|
|
|
|
1296
|
|
|
check_perf_period( |
|
1297
|
|
|
pp, |
|
1298
|
|
|
gross_leverage=2.5, |
|
1299
|
|
|
net_leverage=-0.25, |
|
1300
|
|
|
long_exposure=900.0, |
|
1301
|
|
|
longs_count=1, |
|
1302
|
|
|
short_exposure=-1100.0, |
|
1303
|
|
|
shorts_count=1) |
|
1304
|
|
|
|
|
1305
|
|
|
check_account(account, |
|
1306
|
|
|
settled_cash=1000.0, |
|
1307
|
|
|
equity_with_loan=800.0, |
|
1308
|
|
|
total_positions_value=-200.0, |
|
1309
|
|
|
regt_equity=1000.0, |
|
1310
|
|
|
available_funds=1000.0, |
|
1311
|
|
|
excess_liquidity=1000.0, |
|
1312
|
|
|
cushion=1.25, |
|
1313
|
|
|
leverage=2.5, |
|
1314
|
|
|
net_leverage=-0.25, |
|
1315
|
|
|
net_liquidation=800.0) |
|
1316
|
|
|
|
|
1317
|
|
|
def test_levered_long_position(self): |
|
1318
|
|
|
""" |
|
1319
|
|
|
start with $1,000, then buy 1000 shares at $10. |
|
1320
|
|
|
price goes to $11 |
|
1321
|
|
|
""" |
|
1322
|
|
|
# post some trades in the market |
|
1323
|
|
|
|
|
1324
|
|
|
self.create_environment_stuff() |
|
1325
|
|
|
|
|
1326
|
|
|
trades = factory.create_trade_history( |
|
1327
|
|
|
1, |
|
1328
|
|
|
[10, 10, 10, 11], |
|
1329
|
|
|
[100, 100, 100, 100], |
|
1330
|
|
|
oneday, |
|
1331
|
|
|
self.sim_params, |
|
1332
|
|
|
env=self.env |
|
1333
|
|
|
) |
|
1334
|
|
|
|
|
1335
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
1336
|
|
|
self.env, |
|
1337
|
|
|
self.tempdir, |
|
1338
|
|
|
self.sim_params, |
|
1339
|
|
|
{1: trades}) |
|
1340
|
|
|
|
|
1341
|
|
|
txn = create_txn(trades[1].sid, trades[1].dt, 10.0, 1000) |
|
1342
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1343
|
|
|
self.sim_params.data_frequency) |
|
1344
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder, |
|
1345
|
|
|
self.sim_params.data_frequency, |
|
1346
|
|
|
data_portal) |
|
1347
|
|
|
pp.position_tracker = pt |
|
1348
|
|
|
|
|
1349
|
|
|
pt.execute_transaction(txn) |
|
1350
|
|
|
pp.handle_execution(txn) |
|
1351
|
|
|
|
|
1352
|
|
|
pp.calculate_performance() |
|
1353
|
|
|
|
|
1354
|
|
|
check_perf_period( |
|
1355
|
|
|
pp, |
|
1356
|
|
|
gross_leverage=10.0, |
|
1357
|
|
|
net_leverage=10.0, |
|
1358
|
|
|
long_exposure=10000.0, |
|
1359
|
|
|
longs_count=1, |
|
1360
|
|
|
short_exposure=0.0, |
|
1361
|
|
|
shorts_count=0) |
|
1362
|
|
|
|
|
1363
|
|
|
# Validate that the account attributes were updated. |
|
1364
|
|
|
pt.sync_last_sale_prices(trades[-2].dt) |
|
1365
|
|
|
|
|
1366
|
|
|
# Validate that the account attributes were updated. |
|
1367
|
|
|
account = pp.as_account() |
|
1368
|
|
|
check_account(account, |
|
1369
|
|
|
settled_cash=-9000.0, |
|
1370
|
|
|
equity_with_loan=1000.0, |
|
1371
|
|
|
total_positions_value=10000.0, |
|
1372
|
|
|
regt_equity=-9000.0, |
|
1373
|
|
|
available_funds=-9000.0, |
|
1374
|
|
|
excess_liquidity=-9000.0, |
|
1375
|
|
|
cushion=-9.0, |
|
1376
|
|
|
leverage=10.0, |
|
1377
|
|
|
net_leverage=10.0, |
|
1378
|
|
|
net_liquidation=1000.0) |
|
1379
|
|
|
|
|
1380
|
|
|
# now simulate a price jump to $11 |
|
1381
|
|
|
pt.sync_last_sale_prices(trades[-1].dt) |
|
1382
|
|
|
|
|
1383
|
|
|
pp.calculate_performance() |
|
1384
|
|
|
|
|
1385
|
|
|
check_perf_period( |
|
1386
|
|
|
pp, |
|
1387
|
|
|
gross_leverage=5.5, |
|
1388
|
|
|
net_leverage=5.5, |
|
1389
|
|
|
long_exposure=11000.0, |
|
1390
|
|
|
longs_count=1, |
|
1391
|
|
|
short_exposure=0.0, |
|
1392
|
|
|
shorts_count=0) |
|
1393
|
|
|
|
|
1394
|
|
|
# Validate that the account attributes were updated. |
|
1395
|
|
|
account = pp.as_account() |
|
1396
|
|
|
|
|
1397
|
|
|
check_account(account, |
|
1398
|
|
|
settled_cash=-9000.0, |
|
1399
|
|
|
equity_with_loan=2000.0, |
|
1400
|
|
|
total_positions_value=11000.0, |
|
1401
|
|
|
regt_equity=-9000.0, |
|
1402
|
|
|
available_funds=-9000.0, |
|
1403
|
|
|
excess_liquidity=-9000.0, |
|
1404
|
|
|
cushion=-4.5, |
|
1405
|
|
|
leverage=5.5, |
|
1406
|
|
|
net_leverage=5.5, |
|
1407
|
|
|
net_liquidation=2000.0) |
|
1408
|
|
|
|
|
1409
|
|
|
def test_long_position(self): |
|
1410
|
|
|
""" |
|
1411
|
|
|
verify that the performance period calculates properly for a |
|
1412
|
|
|
single buy transaction |
|
1413
|
|
|
""" |
|
1414
|
|
|
self.create_environment_stuff() |
|
1415
|
|
|
|
|
1416
|
|
|
# post some trades in the market |
|
1417
|
|
|
trades = factory.create_trade_history( |
|
1418
|
|
|
1, |
|
1419
|
|
|
[10, 10, 10, 11], |
|
1420
|
|
|
[100, 100, 100, 100], |
|
1421
|
|
|
oneday, |
|
1422
|
|
|
self.sim_params, |
|
1423
|
|
|
env=self.env |
|
1424
|
|
|
) |
|
1425
|
|
|
|
|
1426
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
1427
|
|
|
self.env, |
|
1428
|
|
|
self.tempdir, |
|
1429
|
|
|
self.sim_params, |
|
1430
|
|
|
{1: trades}) |
|
1431
|
|
|
|
|
1432
|
|
|
txn = create_txn(trades[1].sid, trades[1].dt, 10.0, 100) |
|
1433
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1434
|
|
|
self.sim_params.data_frequency) |
|
1435
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder, |
|
1436
|
|
|
self.sim_params.data_frequency, |
|
1437
|
|
|
data_portal, |
|
1438
|
|
|
period_open=self.sim_params.period_start, |
|
1439
|
|
|
period_close=self.sim_params.period_end) |
|
1440
|
|
|
pp.position_tracker = pt |
|
1441
|
|
|
|
|
1442
|
|
|
pt.execute_transaction(txn) |
|
1443
|
|
|
pp.handle_execution(txn) |
|
1444
|
|
|
|
|
1445
|
|
|
# This verifies that the last sale price is being correctly |
|
1446
|
|
|
# set in the positions. If this is not the case then returns can |
|
1447
|
|
|
# incorrectly show as sharply dipping if a transaction arrives |
|
1448
|
|
|
# before a trade. This is caused by returns being based on holding |
|
1449
|
|
|
# stocks with a last sale price of 0. |
|
1450
|
|
|
self.assertEqual(pp.positions[1].last_sale_price, 10.0) |
|
1451
|
|
|
|
|
1452
|
|
|
pt.sync_last_sale_prices(trades[-1].dt) |
|
1453
|
|
|
|
|
1454
|
|
|
pp.calculate_performance() |
|
1455
|
|
|
|
|
1456
|
|
|
self.assertEqual( |
|
1457
|
|
|
pp.period_cash_flow, |
|
1458
|
|
|
-1 * txn.price * txn.amount, |
|
1459
|
|
|
"capital used should be equal to the opposite of the transaction \ |
|
1460
|
|
|
cost of sole txn in test" |
|
1461
|
|
|
) |
|
1462
|
|
|
|
|
1463
|
|
|
self.assertEqual( |
|
1464
|
|
|
len(pp.positions), |
|
1465
|
|
|
1, |
|
1466
|
|
|
"should be just one position") |
|
1467
|
|
|
|
|
1468
|
|
|
self.assertEqual( |
|
1469
|
|
|
pp.positions[1].sid, |
|
1470
|
|
|
txn.sid, |
|
1471
|
|
|
"position should be in security with id 1") |
|
1472
|
|
|
|
|
1473
|
|
|
self.assertEqual( |
|
1474
|
|
|
pp.positions[1].amount, |
|
1475
|
|
|
txn.amount, |
|
1476
|
|
|
"should have a position of {sharecount} shares".format( |
|
1477
|
|
|
sharecount=txn.amount |
|
1478
|
|
|
) |
|
1479
|
|
|
) |
|
1480
|
|
|
|
|
1481
|
|
|
self.assertEqual( |
|
1482
|
|
|
pp.positions[1].cost_basis, |
|
1483
|
|
|
txn.price, |
|
1484
|
|
|
"should have a cost basis of 10" |
|
1485
|
|
|
) |
|
1486
|
|
|
|
|
1487
|
|
|
self.assertEqual( |
|
1488
|
|
|
pp.positions[1].last_sale_price, |
|
1489
|
|
|
trades[-1]['price'], |
|
1490
|
|
|
"last sale should be same as last trade. \ |
|
1491
|
|
|
expected {exp} actual {act}".format( |
|
1492
|
|
|
exp=trades[-1]['price'], |
|
1493
|
|
|
act=pp.positions[1].last_sale_price) |
|
1494
|
|
|
) |
|
1495
|
|
|
|
|
1496
|
|
|
self.assertEqual( |
|
1497
|
|
|
pp.ending_value, |
|
1498
|
|
|
1100, |
|
1499
|
|
|
"ending value should be price of last trade times number of \ |
|
1500
|
|
|
shares in position" |
|
1501
|
|
|
) |
|
1502
|
|
|
|
|
1503
|
|
|
self.assertEqual(pp.pnl, 100, "gain of 1 on 100 shares should be 100") |
|
1504
|
|
|
|
|
1505
|
|
|
check_perf_period( |
|
1506
|
|
|
pp, |
|
1507
|
|
|
gross_leverage=1.0, |
|
1508
|
|
|
net_leverage=1.0, |
|
1509
|
|
|
long_exposure=1100.0, |
|
1510
|
|
|
longs_count=1, |
|
1511
|
|
|
short_exposure=0.0, |
|
1512
|
|
|
shorts_count=0) |
|
1513
|
|
|
|
|
1514
|
|
|
# Validate that the account attributes were updated. |
|
1515
|
|
|
account = pp.as_account() |
|
1516
|
|
|
check_account(account, |
|
1517
|
|
|
settled_cash=0.0, |
|
1518
|
|
|
equity_with_loan=1100.0, |
|
1519
|
|
|
total_positions_value=1100.0, |
|
1520
|
|
|
regt_equity=0.0, |
|
1521
|
|
|
available_funds=0.0, |
|
1522
|
|
|
excess_liquidity=0.0, |
|
1523
|
|
|
cushion=0.0, |
|
1524
|
|
|
leverage=1.0, |
|
1525
|
|
|
net_leverage=1.0, |
|
1526
|
|
|
net_liquidation=1100.0) |
|
1527
|
|
|
|
|
1528
|
|
|
def test_short_position(self): |
|
1529
|
|
|
"""verify that the performance period calculates properly for a \ |
|
1530
|
|
|
single short-sale transaction""" |
|
1531
|
|
|
self.create_environment_stuff(num_days=6) |
|
1532
|
|
|
|
|
1533
|
|
|
trades = factory.create_trade_history( |
|
1534
|
|
|
1, |
|
1535
|
|
|
[10, 10, 10, 11, 10, 9], |
|
1536
|
|
|
[100, 100, 100, 100, 100, 100], |
|
1537
|
|
|
oneday, |
|
1538
|
|
|
self.sim_params, |
|
1539
|
|
|
env=self.env |
|
1540
|
|
|
) |
|
1541
|
|
|
|
|
1542
|
|
|
trades_1 = trades[:-2] |
|
1543
|
|
|
|
|
1544
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
1545
|
|
|
self.env, |
|
1546
|
|
|
self.tempdir, |
|
1547
|
|
|
self.sim_params, |
|
1548
|
|
|
{1: trades}) |
|
1549
|
|
|
|
|
1550
|
|
|
txn = create_txn(trades[1].sid, trades[1].dt, 10.0, -100) |
|
1551
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1552
|
|
|
self.sim_params.data_frequency) |
|
1553
|
|
|
pp = perf.PerformancePeriod( |
|
1554
|
|
|
1000.0, self.env.asset_finder, |
|
1555
|
|
|
self.sim_params.data_frequency, |
|
1556
|
|
|
data_portal) |
|
1557
|
|
|
pp.position_tracker = pt |
|
1558
|
|
|
|
|
1559
|
|
|
pt.execute_transaction(txn) |
|
1560
|
|
|
pp.handle_execution(txn) |
|
1561
|
|
|
|
|
1562
|
|
|
pt.sync_last_sale_prices(trades_1[-1].dt) |
|
1563
|
|
|
|
|
1564
|
|
|
pp.calculate_performance() |
|
1565
|
|
|
|
|
1566
|
|
|
self.assertEqual( |
|
1567
|
|
|
pp.period_cash_flow, |
|
1568
|
|
|
-1 * txn.price * txn.amount, |
|
1569
|
|
|
"capital used should be equal to the opposite of the transaction\ |
|
1570
|
|
|
cost of sole txn in test" |
|
1571
|
|
|
) |
|
1572
|
|
|
|
|
1573
|
|
|
self.assertEqual( |
|
1574
|
|
|
len(pp.positions), |
|
1575
|
|
|
1, |
|
1576
|
|
|
"should be just one position") |
|
1577
|
|
|
|
|
1578
|
|
|
self.assertEqual( |
|
1579
|
|
|
pp.positions[1].sid, |
|
1580
|
|
|
txn.sid, |
|
1581
|
|
|
"position should be in security from the transaction" |
|
1582
|
|
|
) |
|
1583
|
|
|
|
|
1584
|
|
|
self.assertEqual( |
|
1585
|
|
|
pp.positions[1].amount, |
|
1586
|
|
|
-100, |
|
1587
|
|
|
"should have a position of -100 shares" |
|
1588
|
|
|
) |
|
1589
|
|
|
|
|
1590
|
|
|
self.assertEqual( |
|
1591
|
|
|
pp.positions[1].cost_basis, |
|
1592
|
|
|
txn.price, |
|
1593
|
|
|
"should have a cost basis of 10" |
|
1594
|
|
|
) |
|
1595
|
|
|
|
|
1596
|
|
|
self.assertEqual( |
|
1597
|
|
|
pp.positions[1].last_sale_price, |
|
1598
|
|
|
trades_1[-1]['price'], |
|
1599
|
|
|
"last sale should be price of last trade" |
|
1600
|
|
|
) |
|
1601
|
|
|
|
|
1602
|
|
|
self.assertEqual( |
|
1603
|
|
|
pp.ending_value, |
|
1604
|
|
|
-1100, |
|
1605
|
|
|
"ending value should be price of last trade times number of \ |
|
1606
|
|
|
shares in position" |
|
1607
|
|
|
) |
|
1608
|
|
|
|
|
1609
|
|
|
self.assertEqual(pp.pnl, -100, "gain of 1 on 100 shares should be 100") |
|
1610
|
|
|
|
|
1611
|
|
|
# simulate additional trades, and ensure that the position value |
|
1612
|
|
|
# reflects the new price |
|
1613
|
|
|
trades_2 = trades[-2:] |
|
1614
|
|
|
|
|
1615
|
|
|
# simulate a rollover to a new period |
|
1616
|
|
|
pp.rollover() |
|
1617
|
|
|
|
|
1618
|
|
|
pt.sync_last_sale_prices(trades[-1].dt) |
|
1619
|
|
|
|
|
1620
|
|
|
pp.calculate_performance() |
|
1621
|
|
|
|
|
1622
|
|
|
self.assertEqual( |
|
1623
|
|
|
pp.period_cash_flow, |
|
1624
|
|
|
0, |
|
1625
|
|
|
"capital used should be zero, there were no transactions in \ |
|
1626
|
|
|
performance period" |
|
1627
|
|
|
) |
|
1628
|
|
|
|
|
1629
|
|
|
self.assertEqual( |
|
1630
|
|
|
len(pp.positions), |
|
1631
|
|
|
1, |
|
1632
|
|
|
"should be just one position" |
|
1633
|
|
|
) |
|
1634
|
|
|
|
|
1635
|
|
|
self.assertEqual( |
|
1636
|
|
|
pp.positions[1].sid, |
|
1637
|
|
|
txn.sid, |
|
1638
|
|
|
"position should be in security from the transaction" |
|
1639
|
|
|
) |
|
1640
|
|
|
|
|
1641
|
|
|
self.assertEqual( |
|
1642
|
|
|
pp.positions[1].amount, |
|
1643
|
|
|
-100, |
|
1644
|
|
|
"should have a position of -100 shares" |
|
1645
|
|
|
) |
|
1646
|
|
|
|
|
1647
|
|
|
self.assertEqual( |
|
1648
|
|
|
pp.positions[1].cost_basis, |
|
1649
|
|
|
txn.price, |
|
1650
|
|
|
"should have a cost basis of 10" |
|
1651
|
|
|
) |
|
1652
|
|
|
|
|
1653
|
|
|
self.assertEqual( |
|
1654
|
|
|
pp.positions[1].last_sale_price, |
|
1655
|
|
|
trades_2[-1].price, |
|
1656
|
|
|
"last sale should be price of last trade" |
|
1657
|
|
|
) |
|
1658
|
|
|
|
|
1659
|
|
|
self.assertEqual( |
|
1660
|
|
|
pp.ending_value, |
|
1661
|
|
|
-900, |
|
1662
|
|
|
"ending value should be price of last trade times number of \ |
|
1663
|
|
|
shares in position") |
|
1664
|
|
|
|
|
1665
|
|
|
self.assertEqual( |
|
1666
|
|
|
pp.pnl, |
|
1667
|
|
|
200, |
|
1668
|
|
|
"drop of 2 on -100 shares should be 200" |
|
1669
|
|
|
) |
|
1670
|
|
|
|
|
1671
|
|
|
# now run a performance period encompassing the entire trade sample. |
|
1672
|
|
|
ptTotal = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1673
|
|
|
self.sim_params.data_frequency) |
|
1674
|
|
|
ppTotal = perf.PerformancePeriod(1000.0, self.env.asset_finder, |
|
1675
|
|
|
self.sim_params.data_frequency, |
|
1676
|
|
|
data_portal) |
|
1677
|
|
|
ppTotal.position_tracker = pt |
|
1678
|
|
|
|
|
1679
|
|
|
ptTotal.execute_transaction(txn) |
|
1680
|
|
|
ppTotal.handle_execution(txn) |
|
1681
|
|
|
|
|
1682
|
|
|
ptTotal.sync_last_sale_prices(trades[-1].dt) |
|
1683
|
|
|
|
|
1684
|
|
|
ppTotal.calculate_performance() |
|
1685
|
|
|
|
|
1686
|
|
|
self.assertEqual( |
|
1687
|
|
|
ppTotal.period_cash_flow, |
|
1688
|
|
|
-1 * txn.price * txn.amount, |
|
1689
|
|
|
"capital used should be equal to the opposite of the transaction \ |
|
1690
|
|
|
cost of sole txn in test" |
|
1691
|
|
|
) |
|
1692
|
|
|
|
|
1693
|
|
|
self.assertEqual( |
|
1694
|
|
|
len(ppTotal.positions), |
|
1695
|
|
|
1, |
|
1696
|
|
|
"should be just one position" |
|
1697
|
|
|
) |
|
1698
|
|
|
self.assertEqual( |
|
1699
|
|
|
ppTotal.positions[1].sid, |
|
1700
|
|
|
txn.sid, |
|
1701
|
|
|
"position should be in security from the transaction" |
|
1702
|
|
|
) |
|
1703
|
|
|
|
|
1704
|
|
|
self.assertEqual( |
|
1705
|
|
|
ppTotal.positions[1].amount, |
|
1706
|
|
|
-100, |
|
1707
|
|
|
"should have a position of -100 shares" |
|
1708
|
|
|
) |
|
1709
|
|
|
|
|
1710
|
|
|
self.assertEqual( |
|
1711
|
|
|
ppTotal.positions[1].cost_basis, |
|
1712
|
|
|
txn.price, |
|
1713
|
|
|
"should have a cost basis of 10" |
|
1714
|
|
|
) |
|
1715
|
|
|
|
|
1716
|
|
|
self.assertEqual( |
|
1717
|
|
|
ppTotal.positions[1].last_sale_price, |
|
1718
|
|
|
trades_2[-1].price, |
|
1719
|
|
|
"last sale should be price of last trade" |
|
1720
|
|
|
) |
|
1721
|
|
|
|
|
1722
|
|
|
self.assertEqual( |
|
1723
|
|
|
ppTotal.ending_value, |
|
1724
|
|
|
-900, |
|
1725
|
|
|
"ending value should be price of last trade times number of \ |
|
1726
|
|
|
shares in position") |
|
1727
|
|
|
|
|
1728
|
|
|
self.assertEqual( |
|
1729
|
|
|
ppTotal.pnl, |
|
1730
|
|
|
100, |
|
1731
|
|
|
"drop of 1 on -100 shares should be 100" |
|
1732
|
|
|
) |
|
1733
|
|
|
|
|
1734
|
|
|
check_perf_period( |
|
1735
|
|
|
pp, |
|
1736
|
|
|
gross_leverage=0.8181, |
|
1737
|
|
|
net_leverage=-0.8181, |
|
1738
|
|
|
long_exposure=0.0, |
|
1739
|
|
|
longs_count=0, |
|
1740
|
|
|
short_exposure=-900.0, |
|
1741
|
|
|
shorts_count=1) |
|
1742
|
|
|
|
|
1743
|
|
|
# Validate that the account attributes. |
|
1744
|
|
|
account = ppTotal.as_account() |
|
1745
|
|
|
check_account(account, |
|
1746
|
|
|
settled_cash=2000.0, |
|
1747
|
|
|
equity_with_loan=1100.0, |
|
1748
|
|
|
total_positions_value=-900.0, |
|
1749
|
|
|
regt_equity=2000.0, |
|
1750
|
|
|
available_funds=2000.0, |
|
1751
|
|
|
excess_liquidity=2000.0, |
|
1752
|
|
|
cushion=1.8181, |
|
1753
|
|
|
leverage=0.8181, |
|
1754
|
|
|
net_leverage=-0.8181, |
|
1755
|
|
|
net_liquidation=1100.0) |
|
1756
|
|
|
|
|
1757
|
|
|
def test_covering_short(self): |
|
1758
|
|
|
"""verify performance where short is bought and covered, and shares \ |
|
1759
|
|
|
trade after cover""" |
|
1760
|
|
|
self.create_environment_stuff(num_days=10) |
|
1761
|
|
|
|
|
1762
|
|
|
trades = factory.create_trade_history( |
|
1763
|
|
|
1, |
|
1764
|
|
|
[10, 10, 10, 11, 9, 8, 7, 8, 9, 10], |
|
1765
|
|
|
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100], |
|
1766
|
|
|
onesec, |
|
1767
|
|
|
self.sim_params, |
|
1768
|
|
|
env=self.env |
|
1769
|
|
|
) |
|
1770
|
|
|
|
|
1771
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
1772
|
|
|
self.env, |
|
1773
|
|
|
self.tempdir, |
|
1774
|
|
|
self.sim_params, |
|
1775
|
|
|
{1: trades}) |
|
1776
|
|
|
|
|
1777
|
|
|
short_txn = create_txn( |
|
1778
|
|
|
trades[1].sid, |
|
1779
|
|
|
trades[1].dt, |
|
1780
|
|
|
10.0, |
|
1781
|
|
|
-100, |
|
1782
|
|
|
) |
|
1783
|
|
|
cover_txn = create_txn(trades[6].sid, trades[6].dt, 7.0, 100) |
|
1784
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1785
|
|
|
self.sim_params.data_frequency) |
|
1786
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder, |
|
1787
|
|
|
self.sim_params.data_frequency, |
|
1788
|
|
|
data_portal) |
|
1789
|
|
|
pp.position_tracker = pt |
|
1790
|
|
|
|
|
1791
|
|
|
pt.execute_transaction(short_txn) |
|
1792
|
|
|
pp.handle_execution(short_txn) |
|
1793
|
|
|
pt.execute_transaction(cover_txn) |
|
1794
|
|
|
pp.handle_execution(cover_txn) |
|
1795
|
|
|
|
|
1796
|
|
|
pt.sync_last_sale_prices(trades[-1].dt) |
|
1797
|
|
|
|
|
1798
|
|
|
pp.calculate_performance() |
|
1799
|
|
|
|
|
1800
|
|
|
short_txn_cost = short_txn.price * short_txn.amount |
|
1801
|
|
|
cover_txn_cost = cover_txn.price * cover_txn.amount |
|
1802
|
|
|
|
|
1803
|
|
|
self.assertEqual( |
|
1804
|
|
|
pp.period_cash_flow, |
|
1805
|
|
|
-1 * short_txn_cost - cover_txn_cost, |
|
1806
|
|
|
"capital used should be equal to the net transaction costs" |
|
1807
|
|
|
) |
|
1808
|
|
|
|
|
1809
|
|
|
self.assertEqual( |
|
1810
|
|
|
len(pp.positions), |
|
1811
|
|
|
1, |
|
1812
|
|
|
"should be just one position" |
|
1813
|
|
|
) |
|
1814
|
|
|
|
|
1815
|
|
|
self.assertEqual( |
|
1816
|
|
|
pp.positions[1].sid, |
|
1817
|
|
|
short_txn.sid, |
|
1818
|
|
|
"position should be in security from the transaction" |
|
1819
|
|
|
) |
|
1820
|
|
|
|
|
1821
|
|
|
self.assertEqual( |
|
1822
|
|
|
pp.positions[1].amount, |
|
1823
|
|
|
0, |
|
1824
|
|
|
"should have a position of -100 shares" |
|
1825
|
|
|
) |
|
1826
|
|
|
|
|
1827
|
|
|
self.assertEqual( |
|
1828
|
|
|
pp.positions[1].cost_basis, |
|
1829
|
|
|
0, |
|
1830
|
|
|
"a covered position should have a cost basis of 0" |
|
1831
|
|
|
) |
|
1832
|
|
|
|
|
1833
|
|
|
self.assertEqual( |
|
1834
|
|
|
pp.positions[1].last_sale_price, |
|
1835
|
|
|
trades[-1].price, |
|
1836
|
|
|
"last sale should be price of last trade" |
|
1837
|
|
|
) |
|
1838
|
|
|
|
|
1839
|
|
|
self.assertEqual( |
|
1840
|
|
|
pp.ending_value, |
|
1841
|
|
|
0, |
|
1842
|
|
|
"ending value should be price of last trade times number of \ |
|
1843
|
|
|
shares in position" |
|
1844
|
|
|
) |
|
1845
|
|
|
|
|
1846
|
|
|
self.assertEqual( |
|
1847
|
|
|
pp.pnl, |
|
1848
|
|
|
300, |
|
1849
|
|
|
"gain of 1 on 100 shares should be 300" |
|
1850
|
|
|
) |
|
1851
|
|
|
|
|
1852
|
|
|
check_perf_period( |
|
1853
|
|
|
pp, |
|
1854
|
|
|
gross_leverage=0.0, |
|
1855
|
|
|
net_leverage=0.0, |
|
1856
|
|
|
long_exposure=0.0, |
|
1857
|
|
|
longs_count=0, |
|
1858
|
|
|
short_exposure=0.0, |
|
1859
|
|
|
shorts_count=0) |
|
1860
|
|
|
|
|
1861
|
|
|
account = pp.as_account() |
|
1862
|
|
|
check_account(account, |
|
1863
|
|
|
settled_cash=1300.0, |
|
1864
|
|
|
equity_with_loan=1300.0, |
|
1865
|
|
|
total_positions_value=0.0, |
|
1866
|
|
|
regt_equity=1300.0, |
|
1867
|
|
|
available_funds=1300.0, |
|
1868
|
|
|
excess_liquidity=1300.0, |
|
1869
|
|
|
cushion=1.0, |
|
1870
|
|
|
leverage=0.0, |
|
1871
|
|
|
net_leverage=0.0, |
|
1872
|
|
|
net_liquidation=1300.0) |
|
1873
|
|
|
|
|
1874
|
|
|
def test_cost_basis_calc(self): |
|
1875
|
|
|
self.create_environment_stuff(num_days=5) |
|
1876
|
|
|
|
|
1877
|
|
|
history_args = ( |
|
1878
|
|
|
1, |
|
1879
|
|
|
[10, 11, 11, 12, 10], |
|
1880
|
|
|
[100, 100, 100, 100, 100], |
|
1881
|
|
|
oneday, |
|
1882
|
|
|
self.sim_params, |
|
1883
|
|
|
self.env |
|
1884
|
|
|
) |
|
1885
|
|
|
trades = factory.create_trade_history(*history_args) |
|
1886
|
|
|
transactions = factory.create_txn_history(*history_args)[:4] |
|
1887
|
|
|
|
|
1888
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
1889
|
|
|
self.env, |
|
1890
|
|
|
self.tempdir, |
|
1891
|
|
|
self.sim_params, |
|
1892
|
|
|
{1: trades}) |
|
1893
|
|
|
|
|
1894
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1895
|
|
|
self.sim_params.data_frequency) |
|
1896
|
|
|
pp = perf.PerformancePeriod( |
|
1897
|
|
|
1000.0, |
|
1898
|
|
|
self.env.asset_finder, |
|
1899
|
|
|
self.sim_params.data_frequency, |
|
1900
|
|
|
data_portal, |
|
1901
|
|
|
period_open=self.sim_params.period_start, |
|
1902
|
|
|
period_close=self.sim_params.trading_days[-1] |
|
1903
|
|
|
) |
|
1904
|
|
|
pp.position_tracker = pt |
|
1905
|
|
|
|
|
1906
|
|
|
average_cost = 0 |
|
1907
|
|
|
for i, txn in enumerate(transactions): |
|
1908
|
|
|
pt.execute_transaction(txn) |
|
1909
|
|
|
pp.handle_execution(txn) |
|
1910
|
|
|
average_cost = (average_cost * i + txn.price) / (i + 1) |
|
1911
|
|
|
self.assertEqual(pt.positions[1].cost_basis, average_cost) |
|
1912
|
|
|
|
|
1913
|
|
|
dt = trades[-2].dt |
|
1914
|
|
|
self.assertEqual( |
|
1915
|
|
|
pt.positions[1].last_sale_price, |
|
1916
|
|
|
trades[-2].price, |
|
1917
|
|
|
"should have a last sale of 12, got {val}".format( |
|
1918
|
|
|
val=pt.positions[1].last_sale_price) |
|
1919
|
|
|
) |
|
1920
|
|
|
|
|
1921
|
|
|
self.assertEqual( |
|
1922
|
|
|
pt.positions[1].cost_basis, |
|
1923
|
|
|
11, |
|
1924
|
|
|
"should have a cost basis of 11" |
|
1925
|
|
|
) |
|
1926
|
|
|
|
|
1927
|
|
|
pt.sync_last_sale_prices(dt) |
|
1928
|
|
|
|
|
1929
|
|
|
pp.calculate_performance() |
|
1930
|
|
|
|
|
1931
|
|
|
self.assertEqual( |
|
1932
|
|
|
pp.pnl, |
|
1933
|
|
|
400 |
|
1934
|
|
|
) |
|
1935
|
|
|
|
|
1936
|
|
|
down_tick = trades[-1] |
|
1937
|
|
|
|
|
1938
|
|
|
sale_txn = create_txn( |
|
1939
|
|
|
down_tick.sid, |
|
1940
|
|
|
down_tick.dt, |
|
1941
|
|
|
10.0, |
|
1942
|
|
|
-100) |
|
1943
|
|
|
|
|
1944
|
|
|
pp.rollover() |
|
1945
|
|
|
|
|
1946
|
|
|
pt.execute_transaction(sale_txn) |
|
1947
|
|
|
pp.handle_execution(sale_txn) |
|
1948
|
|
|
|
|
1949
|
|
|
dt = down_tick.dt |
|
1950
|
|
|
pt.sync_last_sale_prices(dt) |
|
1951
|
|
|
|
|
1952
|
|
|
pp.calculate_performance() |
|
1953
|
|
|
self.assertEqual( |
|
1954
|
|
|
pp.positions[1].last_sale_price, |
|
1955
|
|
|
10, |
|
1956
|
|
|
"should have a last sale of 10, was {val}".format( |
|
1957
|
|
|
val=pp.positions[1].last_sale_price) |
|
1958
|
|
|
) |
|
1959
|
|
|
|
|
1960
|
|
|
self.assertEqual( |
|
1961
|
|
|
pp.positions[1].cost_basis, |
|
1962
|
|
|
11, |
|
1963
|
|
|
"should have a cost basis of 11" |
|
1964
|
|
|
) |
|
1965
|
|
|
|
|
1966
|
|
|
self.assertEqual(pp.pnl, -800, "this period goes from +400 to -400") |
|
1967
|
|
|
|
|
1968
|
|
|
pt3 = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
1969
|
|
|
self.sim_params.data_frequency) |
|
1970
|
|
|
pp3 = perf.PerformancePeriod(1000.0, self.env.asset_finder, |
|
1971
|
|
|
self.sim_params.data_frequency, |
|
1972
|
|
|
data_portal) |
|
1973
|
|
|
pp3.position_tracker = pt3 |
|
1974
|
|
|
|
|
1975
|
|
|
average_cost = 0 |
|
1976
|
|
|
for i, txn in enumerate(transactions): |
|
1977
|
|
|
pt3.execute_transaction(txn) |
|
1978
|
|
|
pp3.handle_execution(txn) |
|
1979
|
|
|
average_cost = (average_cost * i + txn.price) / (i + 1) |
|
1980
|
|
|
self.assertEqual(pp3.positions[1].cost_basis, average_cost) |
|
1981
|
|
|
|
|
1982
|
|
|
pt3.execute_transaction(sale_txn) |
|
1983
|
|
|
pp3.handle_execution(sale_txn) |
|
1984
|
|
|
|
|
1985
|
|
|
trades.append(down_tick) |
|
1986
|
|
|
pt3.sync_last_sale_prices(trades[-1].dt) |
|
1987
|
|
|
|
|
1988
|
|
|
pp3.calculate_performance() |
|
1989
|
|
|
self.assertEqual( |
|
1990
|
|
|
pp3.positions[1].last_sale_price, |
|
1991
|
|
|
10, |
|
1992
|
|
|
"should have a last sale of 10" |
|
1993
|
|
|
) |
|
1994
|
|
|
|
|
1995
|
|
|
self.assertEqual( |
|
1996
|
|
|
pp3.positions[1].cost_basis, |
|
1997
|
|
|
11, |
|
1998
|
|
|
"should have a cost basis of 11" |
|
1999
|
|
|
) |
|
2000
|
|
|
|
|
2001
|
|
|
self.assertEqual( |
|
2002
|
|
|
pp3.pnl, |
|
2003
|
|
|
-400, |
|
2004
|
|
|
"should be -400 for all trades and transactions in period" |
|
2005
|
|
|
) |
|
2006
|
|
|
|
|
2007
|
|
|
def test_cost_basis_calc_close_pos(self): |
|
2008
|
|
|
self.create_environment_stuff(num_days=8) |
|
2009
|
|
|
|
|
2010
|
|
|
history_args = ( |
|
2011
|
|
|
1, |
|
2012
|
|
|
[10, 9, 11, 8, 9, 12, 13, 14], |
|
2013
|
|
|
[200, -100, -100, 100, -300, 100, 500, 400], |
|
2014
|
|
|
onesec, |
|
2015
|
|
|
self.sim_params, |
|
2016
|
|
|
self.env |
|
2017
|
|
|
) |
|
2018
|
|
|
cost_bases = [10, 10, 0, 8, 9, 9, 13, 13.5] |
|
2019
|
|
|
|
|
2020
|
|
|
trades = factory.create_trade_history(*history_args) |
|
2021
|
|
|
transactions = factory.create_txn_history(*history_args) |
|
2022
|
|
|
|
|
2023
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
2024
|
|
|
self.env, |
|
2025
|
|
|
self.tempdir, |
|
2026
|
|
|
self.sim_params, |
|
2027
|
|
|
{1: trades}) |
|
2028
|
|
|
|
|
2029
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
2030
|
|
|
self.sim_params.data_frequency) |
|
2031
|
|
|
pp = perf.PerformancePeriod(1000.0, self.env.asset_finder, data_portal, |
|
2032
|
|
|
self.sim_params.data_frequency) |
|
2033
|
|
|
pp.position_tracker = pt |
|
2034
|
|
|
|
|
2035
|
|
|
for txn, cb in zip(transactions, cost_bases): |
|
2036
|
|
|
pt.execute_transaction(txn) |
|
2037
|
|
|
pp.handle_execution(txn) |
|
2038
|
|
|
self.assertEqual(pp.positions[1].cost_basis, cb) |
|
2039
|
|
|
|
|
2040
|
|
|
pp.calculate_performance() |
|
2041
|
|
|
|
|
2042
|
|
|
self.assertEqual(pp.positions[1].cost_basis, cost_bases[-1]) |
|
2043
|
|
|
|
|
2044
|
|
|
|
|
2045
|
|
|
class TestPosition(unittest.TestCase): |
|
2046
|
|
|
def setUp(self): |
|
2047
|
|
|
pass |
|
2048
|
|
|
|
|
2049
|
|
|
def test_serialization(self): |
|
2050
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
|
2051
|
|
|
pos = perf.Position(10, amount=np.float64(120.0), last_sale_date=dt, |
|
2052
|
|
|
last_sale_price=3.4) |
|
2053
|
|
|
|
|
2054
|
|
|
p_string = dumps_with_persistent_ids(pos) |
|
2055
|
|
|
|
|
2056
|
|
|
test = loads_with_persistent_ids(p_string, env=None) |
|
2057
|
|
|
nt.assert_dict_equal(test.__dict__, pos.__dict__) |
|
2058
|
|
|
|
|
2059
|
|
|
|
|
2060
|
|
|
class TestPositionTracker(unittest.TestCase): |
|
2061
|
|
|
|
|
2062
|
|
|
@classmethod |
|
2063
|
|
|
def setUpClass(cls): |
|
2064
|
|
|
cls.env = TradingEnvironment() |
|
2065
|
|
|
futures_metadata = {3: {'contract_multiplier': 1000}, |
|
2066
|
|
|
4: {'contract_multiplier': 1000}} |
|
2067
|
|
|
cls.env.write_data(equities_identifiers=[1, 2], |
|
2068
|
|
|
futures_data=futures_metadata) |
|
2069
|
|
|
|
|
2070
|
|
|
@classmethod |
|
2071
|
|
|
def tearDownClass(cls): |
|
2072
|
|
|
del cls.env |
|
2073
|
|
|
|
|
2074
|
|
|
def setUp(self): |
|
2075
|
|
|
self.tempdir = TempDirectory() |
|
2076
|
|
|
|
|
2077
|
|
|
def tearDown(self): |
|
2078
|
|
|
self.tempdir.cleanup() |
|
2079
|
|
|
|
|
2080
|
|
|
def test_empty_positions(self): |
|
2081
|
|
|
""" |
|
2082
|
|
|
make sure all the empty position stats return a numeric 0 |
|
2083
|
|
|
|
|
2084
|
|
|
Originally this bug was due to np.dot([], []) returning |
|
2085
|
|
|
np.bool_(False) |
|
2086
|
|
|
""" |
|
2087
|
|
|
<<<<<<< HEAD |
|
2088
|
|
|
sim_params = factory.create_simulation_parameters( |
|
2089
|
|
|
num_days=4, env=self.env |
|
2090
|
|
|
) |
|
2091
|
|
|
trades = factory.create_trade_history( |
|
2092
|
|
|
1, |
|
2093
|
|
|
[10, 10, 10, 11], |
|
2094
|
|
|
[100, 100, 100, 100], |
|
2095
|
|
|
oneday, |
|
2096
|
|
|
sim_params, |
|
2097
|
|
|
env=self.env |
|
2098
|
|
|
) |
|
2099
|
|
|
|
|
2100
|
|
|
data_portal = create_data_portal_from_trade_history( |
|
2101
|
|
|
self.env, |
|
2102
|
|
|
self.tempdir, |
|
2103
|
|
|
sim_params, |
|
2104
|
|
|
{1: trades}) |
|
2105
|
|
|
|
|
2106
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, data_portal, |
|
2107
|
|
|
sim_params.data_frequency) |
|
2108
|
|
|
======= |
|
2109
|
|
|
pt = perf.PositionTracker(self.env.asset_finder) |
|
2110
|
|
|
>>>>>>> master |
|
2111
|
|
|
pos_stats = pt.stats() |
|
2112
|
|
|
|
|
2113
|
|
|
stats = [ |
|
2114
|
|
|
'net_value', |
|
2115
|
|
|
'net_exposure', |
|
2116
|
|
|
'gross_value', |
|
2117
|
|
|
'gross_exposure', |
|
2118
|
|
|
'short_value', |
|
2119
|
|
|
'short_exposure', |
|
2120
|
|
|
'shorts_count', |
|
2121
|
|
|
'long_value', |
|
2122
|
|
|
'long_exposure', |
|
2123
|
|
|
'longs_count', |
|
2124
|
|
|
] |
|
2125
|
|
|
for name in stats: |
|
2126
|
|
|
val = getattr(pos_stats, name) |
|
2127
|
|
|
self.assertEquals(val, 0) |
|
2128
|
|
|
self.assertNotIsInstance(val, (bool, np.bool_)) |
|
2129
|
|
|
|
|
2130
|
|
|
def test_position_values_and_exposures(self): |
|
2131
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, None, None) |
|
2132
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
|
2133
|
|
|
pos1 = perf.Position(1, amount=np.float64(10.0), |
|
2134
|
|
|
last_sale_date=dt, last_sale_price=10) |
|
2135
|
|
|
pos2 = perf.Position(2, amount=np.float64(-20.0), |
|
2136
|
|
|
last_sale_date=dt, last_sale_price=10) |
|
2137
|
|
|
pos3 = perf.Position(3, amount=np.float64(30.0), |
|
2138
|
|
|
last_sale_date=dt, last_sale_price=10) |
|
2139
|
|
|
pos4 = perf.Position(4, amount=np.float64(-40.0), |
|
2140
|
|
|
last_sale_date=dt, last_sale_price=10) |
|
2141
|
|
|
pt.update_positions({1: pos1, 2: pos2, 3: pos3, 4: pos4}) |
|
2142
|
|
|
|
|
2143
|
|
|
# Test long-only methods |
|
2144
|
|
|
|
|
2145
|
|
|
pos_stats = pt.stats() |
|
2146
|
|
|
self.assertEqual(100, pos_stats.long_value) |
|
2147
|
|
|
self.assertEqual(100 + 300000, pos_stats.long_exposure) |
|
2148
|
|
|
self.assertEqual(2, pos_stats.longs_count) |
|
2149
|
|
|
|
|
2150
|
|
|
# Test short-only methods |
|
2151
|
|
|
self.assertEqual(-200, pos_stats.short_value) |
|
2152
|
|
|
self.assertEqual(-200 - 400000, pos_stats.short_exposure) |
|
2153
|
|
|
self.assertEqual(2, pos_stats.shorts_count) |
|
2154
|
|
|
|
|
2155
|
|
|
# Test gross and net values |
|
2156
|
|
|
self.assertEqual(100 + 200, pos_stats.gross_value) |
|
2157
|
|
|
self.assertEqual(100 - 200, pos_stats.net_value) |
|
2158
|
|
|
|
|
2159
|
|
|
# Test gross and net exposures |
|
2160
|
|
|
self.assertEqual(100 + 200 + 300000 + 400000, pos_stats.gross_exposure) |
|
2161
|
|
|
self.assertEqual(100 - 200 + 300000 - 400000, pos_stats.net_exposure) |
|
2162
|
|
|
|
|
2163
|
|
|
def test_serialization(self): |
|
2164
|
|
|
pt = perf.PositionTracker(self.env.asset_finder, None, None) |
|
2165
|
|
|
dt = pd.Timestamp("1984/03/06 3:00PM") |
|
2166
|
|
|
pos1 = perf.Position(1, amount=np.float64(120.0), |
|
2167
|
|
|
last_sale_date=dt, last_sale_price=3.4) |
|
2168
|
|
|
pos3 = perf.Position(3, amount=np.float64(100.0), |
|
2169
|
|
|
last_sale_date=dt, last_sale_price=3.4) |
|
2170
|
|
|
|
|
2171
|
|
|
pt.update_positions({1: pos1, 3: pos3}) |
|
2172
|
|
|
p_string = dumps_with_persistent_ids(pt) |
|
2173
|
|
|
test = loads_with_persistent_ids(p_string, env=self.env) |
|
2174
|
|
|
nt.assert_count_equal(test.positions.keys(), pt.positions.keys()) |
|
2175
|
|
|
for sid in pt.positions: |
|
2176
|
|
|
nt.assert_dict_equal(test.positions[sid].__dict__, |
|
2177
|
|
|
pt.positions[sid].__dict__) |
|
2178
|
|
|
|
|
2179
|
|
|
|
|
2180
|
|
|
class TestPerformancePeriod(unittest.TestCase): |
|
2181
|
|
|
|
|
2182
|
|
|
def test_serialization(self): |
|
2183
|
|
|
env = TradingEnvironment() |
|
2184
|
|
|
pp = perf.PerformancePeriod(100, env.asset_finder, 'minute', None) |
|
2185
|
|
|
|
|
2186
|
|
|
p_string = dumps_with_persistent_ids(pp) |
|
2187
|
|
|
test = loads_with_persistent_ids(p_string, env=env) |
|
2188
|
|
|
|
|
2189
|
|
|
correct = pp.__dict__.copy() |
|
2190
|
|
|
correct.pop('_data_portal') |
|
2191
|
|
|
|
|
2192
|
|
|
nt.assert_count_equal(test.__dict__.keys(), correct.keys()) |
|
2193
|
|
|
|
|
2194
|
|
|
equal_keys = list(correct.keys()) |
|
2195
|
|
|
equal_keys.remove('_account_store') |
|
2196
|
|
|
equal_keys.remove('_portfolio_store') |
|
2197
|
|
|
|
|
2198
|
|
|
for k in equal_keys: |
|
2199
|
|
|
nt.assert_equal(test.__dict__[k], correct[k]) |
|
2200
|
|
|
|