1
|
|
|
""" |
2
|
|
|
Mixins classes for use with Filters and Factors. |
3
|
|
|
""" |
4
|
|
|
from numpy import full_like |
5
|
|
|
from zipline.errors import WindowLengthNotPositive |
6
|
|
|
|
7
|
|
|
from .term import NotSpecified |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
class PositiveWindowLengthMixin(object): |
11
|
|
|
""" |
12
|
|
|
Validation mixin enforcing that a Term gets a positive WindowLength |
13
|
|
|
""" |
14
|
|
|
def _validate(self): |
15
|
|
|
if not self.windowed: |
16
|
|
|
raise WindowLengthNotPositive(window_length=self.window_length) |
17
|
|
|
return super(PositiveWindowLengthMixin, self)._validate() |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
class SingleInputMixin(object): |
21
|
|
|
""" |
22
|
|
|
Validation mixin enforcing that a Term gets a length-1 inputs list. |
23
|
|
|
""" |
24
|
|
|
def _validate(self): |
25
|
|
|
num_inputs = len(self.inputs) |
26
|
|
|
if num_inputs != 1: |
27
|
|
|
raise ValueError( |
28
|
|
|
"{typename} expects only one input, " |
29
|
|
|
"but received {num_inputs} instead.".format( |
30
|
|
|
typename=type(self).__name__, |
31
|
|
|
num_inputs=num_inputs |
32
|
|
|
) |
33
|
|
|
) |
34
|
|
|
return super(SingleInputMixin, self)._validate() |
35
|
|
|
|
36
|
|
|
|
37
|
|
|
class CustomTermMixin(object): |
38
|
|
|
""" |
39
|
|
|
Mixin for user-defined rolling-window Terms. |
40
|
|
|
|
41
|
|
|
Implements `_compute` in terms of a user-defined `compute` function, which |
42
|
|
|
is mapped over the input windows. |
43
|
|
|
|
44
|
|
|
Used by CustomFactor, CustomFilter, CustomClassifier, etc. |
45
|
|
|
""" |
46
|
|
|
def __new__(cls, |
47
|
|
|
inputs=NotSpecified, |
48
|
|
|
window_length=NotSpecified, |
49
|
|
|
dtype=NotSpecified, |
50
|
|
|
**kwargs): |
51
|
|
|
|
52
|
|
|
unexpected_keys = set(kwargs) - set(cls.params) |
53
|
|
|
if unexpected_keys: |
54
|
|
|
raise TypeError( |
55
|
|
|
"{termname} received unexpected keyword " |
56
|
|
|
"arguments {unexpected}".format( |
57
|
|
|
termname=cls.__name__, |
58
|
|
|
unexpected={k: kwargs[k] for k in unexpected_keys}, |
59
|
|
|
) |
60
|
|
|
) |
61
|
|
|
|
62
|
|
|
return super(CustomTermMixin, cls).__new__( |
63
|
|
|
cls, |
64
|
|
|
inputs=inputs, |
65
|
|
|
window_length=window_length, |
66
|
|
|
dtype=dtype, |
67
|
|
|
**kwargs |
68
|
|
|
) |
69
|
|
|
|
70
|
|
|
def compute(self, today, assets, out, *arrays): |
71
|
|
|
""" |
72
|
|
|
Override this method with a function that writes a value into `out`. |
73
|
|
|
""" |
74
|
|
|
raise NotImplementedError() |
75
|
|
|
|
76
|
|
|
def _compute(self, windows, dates, assets, mask): |
77
|
|
|
""" |
78
|
|
|
Call the user's `compute` function on each window with a pre-built |
79
|
|
|
output array. |
80
|
|
|
""" |
81
|
|
|
# TODO: Make mask available to user's `compute`. |
82
|
|
|
compute = self.compute |
83
|
|
|
missing_value = self.missing_value |
84
|
|
|
params = self.params |
85
|
|
|
out = full_like(mask, missing_value, dtype=self.dtype) |
86
|
|
|
with self.ctx: |
87
|
|
|
# TODO: Consider pre-filtering columns that are all-nan at each |
88
|
|
|
# time-step? |
89
|
|
|
for idx, date in enumerate(dates): |
90
|
|
|
compute( |
91
|
|
|
date, |
92
|
|
|
assets, |
93
|
|
|
out[idx], |
94
|
|
|
*(next(w) for w in windows), |
95
|
|
|
**params |
96
|
|
|
) |
97
|
|
|
out[~mask] = missing_value |
98
|
|
|
return out |
99
|
|
|
|
100
|
|
|
def short_repr(self): |
101
|
|
|
return type(self).__name__ + '(%d)' % self.window_length |
102
|
|
|
|