|
1
|
|
|
""" |
|
2
|
|
|
Base class for Filters, Factors and Classifiers |
|
3
|
|
|
""" |
|
4
|
|
|
from abc import ABCMeta, abstractproperty |
|
5
|
|
|
from weakref import WeakValueDictionary |
|
6
|
|
|
|
|
7
|
|
|
from numpy import dtype as dtype_class |
|
8
|
|
|
from six import with_metaclass |
|
9
|
|
|
|
|
10
|
|
|
from zipline.errors import ( |
|
11
|
|
|
DTypeNotSpecified, |
|
12
|
|
|
InputTermNotAtomic, |
|
13
|
|
|
InvalidDType, |
|
14
|
|
|
TermInputsNotSpecified, |
|
15
|
|
|
WindowLengthNotSpecified, |
|
16
|
|
|
) |
|
17
|
|
|
from zipline.utils.memoize import lazyval |
|
18
|
|
|
from zipline.utils.numpy_utils import bool_dtype, default_fillvalue_for_dtype |
|
19
|
|
|
from zipline.utils.sentinel import sentinel |
|
20
|
|
|
|
|
21
|
|
|
|
|
22
|
|
|
NotSpecified = sentinel( |
|
23
|
|
|
'NotSpecified', |
|
24
|
|
|
'Singleton sentinel value used for Term defaults.', |
|
25
|
|
|
) |
|
26
|
|
|
|
|
27
|
|
|
|
|
28
|
|
|
class Term(with_metaclass(ABCMeta, object)): |
|
29
|
|
|
""" |
|
30
|
|
|
Base class for terms in a Pipeline API compute graph. |
|
31
|
|
|
""" |
|
32
|
|
|
# These are NotSpecified because a subclass is required to provide them. |
|
33
|
|
|
dtype = NotSpecified |
|
34
|
|
|
domain = NotSpecified |
|
35
|
|
|
|
|
36
|
|
|
# Subclasses aren't required to provide `params`. The default behavior is |
|
37
|
|
|
# no params. |
|
38
|
|
|
params = () |
|
39
|
|
|
|
|
40
|
|
|
_term_cache = WeakValueDictionary() |
|
41
|
|
|
|
|
42
|
|
|
def __new__(cls, |
|
43
|
|
|
domain=domain, |
|
44
|
|
|
dtype=dtype, |
|
45
|
|
|
# params is explicitly not allowed to be passed to an instance. |
|
46
|
|
|
*args, |
|
47
|
|
|
**kwargs): |
|
48
|
|
|
""" |
|
49
|
|
|
Memoized constructor for Terms. |
|
50
|
|
|
|
|
51
|
|
|
Caching previously-constructed Terms is useful because it allows us to |
|
52
|
|
|
only compute equivalent sub-expressions once when traversing a Pipeline |
|
53
|
|
|
dependency graph. |
|
54
|
|
|
|
|
55
|
|
|
Caching previously-constructed Terms is **sane** because terms and |
|
56
|
|
|
their inputs are both conceptually immutable. |
|
57
|
|
|
""" |
|
58
|
|
|
# Class-level attributes can be used to provide defaults for Term |
|
59
|
|
|
# subclasses. |
|
60
|
|
|
|
|
61
|
|
|
if domain is NotSpecified: |
|
62
|
|
|
domain = cls.domain |
|
63
|
|
|
|
|
64
|
|
|
dtype = cls._validate_dtype(dtype) |
|
65
|
|
|
params = cls._pop_params(kwargs) |
|
66
|
|
|
|
|
67
|
|
|
identity = cls.static_identity( |
|
68
|
|
|
domain=domain, |
|
69
|
|
|
dtype=dtype, |
|
70
|
|
|
params=params, |
|
71
|
|
|
*args, **kwargs |
|
72
|
|
|
) |
|
73
|
|
|
|
|
74
|
|
|
try: |
|
75
|
|
|
return cls._term_cache[identity] |
|
76
|
|
|
except KeyError: |
|
77
|
|
|
new_instance = cls._term_cache[identity] = \ |
|
78
|
|
|
super(Term, cls).__new__(cls)._init( |
|
79
|
|
|
domain=domain, |
|
80
|
|
|
dtype=dtype, |
|
81
|
|
|
params=params, |
|
82
|
|
|
*args, **kwargs |
|
83
|
|
|
) |
|
84
|
|
|
return new_instance |
|
85
|
|
|
|
|
86
|
|
|
@classmethod |
|
87
|
|
|
def _pop_params(cls, kwargs): |
|
88
|
|
|
""" |
|
89
|
|
|
Pop entries from the `kwargs` passed to cls.__new__ based on the values |
|
90
|
|
|
in `cls.params`. |
|
91
|
|
|
|
|
92
|
|
|
Parameters |
|
93
|
|
|
---------- |
|
94
|
|
|
kwargs : dict |
|
95
|
|
|
The kwargs passed to cls.__new__. |
|
96
|
|
|
|
|
97
|
|
|
Returns |
|
98
|
|
|
------- |
|
99
|
|
|
params : list[(str, object)] |
|
100
|
|
|
A list of string, value pairs containing the entries in cls.params. |
|
101
|
|
|
|
|
102
|
|
|
Raises |
|
103
|
|
|
------ |
|
104
|
|
|
TypeError |
|
105
|
|
|
Raised if any parameter values are not passed or not hashable. |
|
106
|
|
|
""" |
|
107
|
|
|
param_values = [] |
|
108
|
|
|
for key in cls.params: |
|
109
|
|
|
try: |
|
110
|
|
|
value = kwargs.pop(key) |
|
111
|
|
|
# Check here that the value is hashable so that we fail here |
|
112
|
|
|
# instead of trying to hash the param values tuple later. |
|
113
|
|
|
hash(key) |
|
114
|
|
|
param_values.append(value) |
|
115
|
|
|
except KeyError: |
|
116
|
|
|
raise TypeError( |
|
117
|
|
|
"{typename} expected a keyword parameter {name!r}.".format( |
|
118
|
|
|
typename=cls.__name__, |
|
119
|
|
|
name=key |
|
120
|
|
|
) |
|
121
|
|
|
) |
|
122
|
|
|
except TypeError: |
|
123
|
|
|
# Value wasn't hashable. |
|
124
|
|
|
raise TypeError( |
|
125
|
|
|
"{typename} expected a hashable value for parameter " |
|
126
|
|
|
"{name!r}, but got {value!r} instead.".format( |
|
127
|
|
|
typename=cls.__name__, |
|
128
|
|
|
name=key, |
|
129
|
|
|
value=value, |
|
130
|
|
|
) |
|
131
|
|
|
) |
|
132
|
|
|
return tuple(zip(cls.params, param_values)) |
|
133
|
|
|
|
|
134
|
|
|
@classmethod |
|
135
|
|
|
def _validate_dtype(cls, passed_dtype): |
|
136
|
|
|
""" |
|
137
|
|
|
Validate a `dtype` passed to Term.__new__. |
|
138
|
|
|
|
|
139
|
|
|
If passed_dtype is NotSpecified, then we try to fall back to a |
|
140
|
|
|
class-level attribute. If a value is found at that point, we pass it |
|
141
|
|
|
to np.dtype so that users can pass `float` or `bool` and have them |
|
142
|
|
|
coerce to the appropriate numpy types. |
|
143
|
|
|
|
|
144
|
|
|
Returns |
|
145
|
|
|
------- |
|
146
|
|
|
validated : np.dtype |
|
147
|
|
|
The dtype to use for the new term. |
|
148
|
|
|
|
|
149
|
|
|
Raises |
|
150
|
|
|
------ |
|
151
|
|
|
DTypeNotSpecified |
|
152
|
|
|
When no dtype was passed to the instance, and the class doesn't |
|
153
|
|
|
provide a default. |
|
154
|
|
|
InvalidDType |
|
155
|
|
|
When either the class or the instance provides a value not |
|
156
|
|
|
coercible to a numpy dtype. |
|
157
|
|
|
""" |
|
158
|
|
|
dtype = passed_dtype |
|
159
|
|
|
if dtype is NotSpecified: |
|
160
|
|
|
dtype = cls.dtype |
|
161
|
|
|
if dtype is NotSpecified: |
|
162
|
|
|
raise DTypeNotSpecified(termname=cls.__name__) |
|
163
|
|
|
try: |
|
164
|
|
|
dtype = dtype_class(dtype) |
|
165
|
|
|
except TypeError: |
|
166
|
|
|
raise InvalidDType(dtype=dtype, termname=cls.__name__) |
|
167
|
|
|
return dtype |
|
168
|
|
|
|
|
169
|
|
|
def __init__(self, *args, **kwargs): |
|
170
|
|
|
""" |
|
171
|
|
|
Noop constructor to play nicely with our caching __new__. Subclasses |
|
172
|
|
|
should implement _init instead of this method. |
|
173
|
|
|
|
|
174
|
|
|
When a class' __new__ returns an instance of that class, Python will |
|
175
|
|
|
automatically call __init__ on the object, even if a new object wasn't |
|
176
|
|
|
actually constructed. Because we memoize instances, we often return an |
|
177
|
|
|
object that was already initialized from __new__, in which case we |
|
178
|
|
|
don't want to call __init__ again. |
|
179
|
|
|
|
|
180
|
|
|
Subclasses that need to initialize new instances should override _init, |
|
181
|
|
|
which is guaranteed to be called only once. |
|
182
|
|
|
""" |
|
183
|
|
|
pass |
|
184
|
|
|
|
|
185
|
|
|
@classmethod |
|
186
|
|
|
def static_identity(cls, domain, dtype, params): |
|
187
|
|
|
""" |
|
188
|
|
|
Return the identity of the Term that would be constructed from the |
|
189
|
|
|
given arguments. |
|
190
|
|
|
|
|
191
|
|
|
Identities that compare equal will cause us to return a cached instance |
|
192
|
|
|
rather than constructing a new one. We do this primarily because it |
|
193
|
|
|
makes dependency resolution easier. |
|
194
|
|
|
|
|
195
|
|
|
This is a classmethod so that it can be called from Term.__new__ to |
|
196
|
|
|
determine whether to produce a new instance. |
|
197
|
|
|
""" |
|
198
|
|
|
return (cls, domain, dtype, params) |
|
199
|
|
|
|
|
200
|
|
|
def _init(self, domain, dtype, params): |
|
201
|
|
|
""" |
|
202
|
|
|
Parameters |
|
203
|
|
|
---------- |
|
204
|
|
|
domain : object |
|
205
|
|
|
Unused placeholder. |
|
206
|
|
|
dtype : np.dtype |
|
207
|
|
|
Dtype of this term's output. |
|
208
|
|
|
params : tuple[(str, hashable)] |
|
209
|
|
|
Tuple of key/value pairs of additional parameters. |
|
210
|
|
|
""" |
|
211
|
|
|
self.domain = domain |
|
212
|
|
|
self.dtype = dtype |
|
213
|
|
|
|
|
214
|
|
|
for name, value in params: |
|
215
|
|
|
if hasattr(self, name): |
|
216
|
|
|
raise TypeError( |
|
217
|
|
|
"Parameter {name!r} conflicts with already-present" |
|
218
|
|
|
"attribute with value {value!r}.".format( |
|
219
|
|
|
name=name, |
|
220
|
|
|
value=getattr(self, name), |
|
221
|
|
|
) |
|
222
|
|
|
) |
|
223
|
|
|
# TODO: Consider setting these values as attributes and replacing |
|
224
|
|
|
# the boilerplate in NumericalExpression, Rank, and |
|
225
|
|
|
# PercentileFilter. |
|
226
|
|
|
|
|
227
|
|
|
self.params = dict(params) |
|
228
|
|
|
|
|
229
|
|
|
# Make sure that subclasses call super() in their _validate() methods |
|
230
|
|
|
# by setting this flag. The base class implementation of _validate |
|
231
|
|
|
# should set this flag to True. |
|
232
|
|
|
self._subclass_called_super_validate = False |
|
233
|
|
|
self._validate() |
|
234
|
|
|
del self._subclass_called_super_validate |
|
235
|
|
|
|
|
236
|
|
|
return self |
|
237
|
|
|
|
|
238
|
|
|
def _validate(self): |
|
239
|
|
|
""" |
|
240
|
|
|
Assert that this term is well-formed. This should be called exactly |
|
241
|
|
|
once, at the end of Term._init(). |
|
242
|
|
|
""" |
|
243
|
|
|
# mark that we got here to enforce that subclasses overriding _validate |
|
244
|
|
|
# call super(). |
|
245
|
|
|
self._subclass_called_super_validate = True |
|
246
|
|
|
|
|
247
|
|
|
@abstractproperty |
|
248
|
|
|
def inputs(self): |
|
249
|
|
|
""" |
|
250
|
|
|
A tuple of other Terms that this Term requires for computation. |
|
251
|
|
|
""" |
|
252
|
|
|
raise NotImplementedError() |
|
253
|
|
|
|
|
254
|
|
|
@abstractproperty |
|
255
|
|
|
def mask(self): |
|
256
|
|
|
""" |
|
257
|
|
|
A 2D Filter representing asset/date pairs to include while |
|
258
|
|
|
computing this Term. (True means include; False means exclude.) |
|
259
|
|
|
""" |
|
260
|
|
|
raise NotImplementedError() |
|
261
|
|
|
|
|
262
|
|
|
@lazyval |
|
263
|
|
|
def dependencies(self): |
|
264
|
|
|
return self.inputs + (self.mask,) |
|
265
|
|
|
|
|
266
|
|
|
@lazyval |
|
267
|
|
|
def atomic(self): |
|
268
|
|
|
return not any(dep for dep in self.dependencies |
|
269
|
|
|
if dep is not AssetExists()) |
|
270
|
|
|
|
|
271
|
|
|
@lazyval |
|
272
|
|
|
def missing_value(self): |
|
273
|
|
|
return default_fillvalue_for_dtype(self.dtype) |
|
274
|
|
|
|
|
275
|
|
|
|
|
276
|
|
|
class AssetExists(Term): |
|
277
|
|
|
""" |
|
278
|
|
|
Pseudo-filter describing whether or not an asset existed on a given day. |
|
279
|
|
|
This is the default mask for all terms that haven't been passed a mask |
|
280
|
|
|
explicitly. |
|
281
|
|
|
|
|
282
|
|
|
This is morally a Filter, in the sense that it produces a boolean value for |
|
283
|
|
|
every asset on every date. We don't subclass Filter, however, because |
|
284
|
|
|
`AssetExists` is computed directly by the PipelineEngine. |
|
285
|
|
|
|
|
286
|
|
|
See Also |
|
287
|
|
|
-------- |
|
288
|
|
|
zipline.assets.AssetFinder.lifetimes |
|
289
|
|
|
""" |
|
290
|
|
|
dtype = bool_dtype |
|
291
|
|
|
dataset = None |
|
292
|
|
|
extra_input_rows = 0 |
|
293
|
|
|
inputs = () |
|
294
|
|
|
dependencies = () |
|
295
|
|
|
mask = None |
|
296
|
|
|
|
|
297
|
|
|
def __repr__(self): |
|
298
|
|
|
return "AssetExists()" |
|
299
|
|
|
|
|
300
|
|
|
|
|
301
|
|
|
class CompositeTerm(Term): |
|
302
|
|
|
inputs = NotSpecified |
|
303
|
|
|
window_length = NotSpecified |
|
304
|
|
|
mask = NotSpecified |
|
305
|
|
|
|
|
306
|
|
|
def __new__(cls, |
|
307
|
|
|
inputs=inputs, |
|
308
|
|
|
window_length=window_length, |
|
309
|
|
|
mask=mask, |
|
310
|
|
|
*args, **kwargs): |
|
311
|
|
|
|
|
312
|
|
|
if inputs is NotSpecified: |
|
313
|
|
|
inputs = cls.inputs |
|
314
|
|
|
|
|
315
|
|
|
# Having inputs = NotSpecified is an error, but we handle it later |
|
316
|
|
|
# in self._validate rather than here. |
|
317
|
|
|
if inputs is not NotSpecified: |
|
318
|
|
|
# Allow users to specify lists as class-level defaults, but |
|
319
|
|
|
# normalize to a tuple so that inputs is hashable. |
|
320
|
|
|
inputs = tuple(inputs) |
|
321
|
|
|
|
|
322
|
|
|
if mask is NotSpecified: |
|
323
|
|
|
mask = cls.mask |
|
324
|
|
|
if mask is NotSpecified: |
|
325
|
|
|
mask = AssetExists() |
|
326
|
|
|
|
|
327
|
|
|
if window_length is NotSpecified: |
|
328
|
|
|
window_length = cls.window_length |
|
329
|
|
|
|
|
330
|
|
|
return super(CompositeTerm, cls).__new__(cls, inputs=inputs, mask=mask, |
|
331
|
|
|
window_length=window_length, |
|
332
|
|
|
*args, **kwargs) |
|
333
|
|
|
|
|
334
|
|
|
def _init(self, inputs, window_length, mask, *args, **kwargs): |
|
335
|
|
|
self.inputs = inputs |
|
336
|
|
|
self.window_length = window_length |
|
337
|
|
|
self.mask = mask |
|
338
|
|
|
return super(CompositeTerm, self)._init(*args, **kwargs) |
|
339
|
|
|
|
|
340
|
|
|
@classmethod |
|
341
|
|
|
def static_identity(cls, inputs, window_length, mask, *args, **kwargs): |
|
342
|
|
|
return ( |
|
343
|
|
|
super(CompositeTerm, cls).static_identity(*args, **kwargs), |
|
344
|
|
|
inputs, |
|
345
|
|
|
window_length, |
|
346
|
|
|
mask, |
|
347
|
|
|
) |
|
348
|
|
|
|
|
349
|
|
|
def _validate(self): |
|
350
|
|
|
""" |
|
351
|
|
|
Assert that this term is well-formed. This should be called exactly |
|
352
|
|
|
once, at the end of Term._init(). |
|
353
|
|
|
""" |
|
354
|
|
|
if self.inputs is NotSpecified: |
|
355
|
|
|
raise TermInputsNotSpecified(termname=type(self).__name__) |
|
356
|
|
|
if self.window_length is NotSpecified: |
|
357
|
|
|
raise WindowLengthNotSpecified(termname=type(self).__name__) |
|
358
|
|
|
if self.mask is NotSpecified: |
|
359
|
|
|
# This isn't user error, this is a bug in our code. |
|
360
|
|
|
raise AssertionError("{term} has no mask".format(term=self)) |
|
361
|
|
|
|
|
362
|
|
|
if self.window_length: |
|
363
|
|
|
for child in self.inputs: |
|
364
|
|
|
if not child.atomic: |
|
365
|
|
|
raise InputTermNotAtomic(parent=self, child=child) |
|
366
|
|
|
|
|
367
|
|
|
return super(CompositeTerm, self)._validate() |
|
368
|
|
|
|
|
369
|
|
|
def _compute(self, inputs, dates, assets, mask): |
|
370
|
|
|
""" |
|
371
|
|
|
Subclasses should implement this to perform actual computation. |
|
372
|
|
|
This is `_compute` rather than just `compute` because `compute` is |
|
373
|
|
|
reserved for user-supplied functions in CustomFactor. |
|
374
|
|
|
""" |
|
375
|
|
|
raise NotImplementedError() |
|
376
|
|
|
|
|
377
|
|
|
@lazyval |
|
378
|
|
|
def windowed(self): |
|
379
|
|
|
""" |
|
380
|
|
|
Whether or not this term represents a trailing window computation. |
|
381
|
|
|
|
|
382
|
|
|
If term.windowed is truthy, its compute_from_windows method will be |
|
383
|
|
|
called with instances of AdjustedArray as inputs. |
|
384
|
|
|
|
|
385
|
|
|
If term.windowed is falsey, its compute_from_baseline will be called |
|
386
|
|
|
with instances of np.ndarray as inputs. |
|
387
|
|
|
""" |
|
388
|
|
|
return ( |
|
389
|
|
|
self.window_length is not NotSpecified |
|
390
|
|
|
and self.window_length > 0 |
|
391
|
|
|
) |
|
392
|
|
|
|
|
393
|
|
|
@lazyval |
|
394
|
|
|
def extra_input_rows(self): |
|
395
|
|
|
""" |
|
396
|
|
|
The number of extra rows needed for each of our inputs to compute this |
|
397
|
|
|
term. |
|
398
|
|
|
""" |
|
399
|
|
|
return max(0, self.window_length - 1) |
|
400
|
|
|
|
|
401
|
|
|
def __repr__(self): |
|
402
|
|
|
return ( |
|
403
|
|
|
"{type}({inputs}, window_length={window_length})" |
|
404
|
|
|
).format( |
|
405
|
|
|
type=type(self).__name__, |
|
406
|
|
|
inputs=self.inputs, |
|
407
|
|
|
window_length=self.window_length, |
|
408
|
|
|
) |
|
409
|
|
|
|