calculate_alpha()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 9

Duplication

Lines 0
Ratio 0 %
Metric Value
cc 1
dl 0
loc 9
rs 9.6667
1
#
2
# Copyright 2014 Quantopian, Inc.
3
#
4
# Licensed under the Apache License, Version 2.0 (the "License");
5
# you may not use this file except in compliance with the License.
6
# You may obtain a copy of the License at
7
#
8
#     http://www.apache.org/licenses/LICENSE-2.0
9
#
10
# Unless required by applicable law or agreed to in writing, software
11
# distributed under the License is distributed on an "AS IS" BASIS,
12
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
# See the License for the specific language governing permissions and
14
# limitations under the License.
15
16
import functools
17
import logbook
18
import math
19
import numpy as np
20
21
import zipline.utils.math_utils as zp_math
22
23
import pandas as pd
24
from pandas.tseries.tools import normalize_date
25
26
from six import iteritems
27
28
from . risk import (
29
    alpha,
30
    check_entry,
31
    choose_treasury,
32
    downside_risk,
33
    sharpe_ratio,
34
    sortino_ratio,
35
)
36
37
from zipline.utils.serialization_utils import (
38
    VERSION_LABEL
39
)
40
41
log = logbook.Logger('Risk Cumulative')
42
43
44
choose_treasury = functools.partial(choose_treasury, lambda *args: '10year',
45
                                    compound=False)
46
47
48
def information_ratio(algo_volatility, algorithm_return, benchmark_return):
49
    """
50
    http://en.wikipedia.org/wiki/Information_ratio
51
52
    Args:
53
        algorithm_returns (np.array-like):
54
            All returns during algorithm lifetime.
55
        benchmark_returns (np.array-like):
56
            All benchmark returns during algo lifetime.
57
58
    Returns:
59
        float. Information ratio.
60
    """
61
    if zp_math.tolerant_equals(algo_volatility, 0):
62
        return np.nan
63
64
    # The square of the annualization factor is in the volatility,
65
    # because the volatility is also annualized,
66
    # i.e. the sqrt(annual factor) is in the volatility's numerator.
67
    # So to have the the correct annualization factor for the
68
    # Sharpe value's numerator, which should be the sqrt(annual factor).
69
    # The square of the sqrt of the annual factor, i.e. the annual factor
70
    # itself, is needed in the numerator to factor out the division by
71
    # its square root.
72
    return (algorithm_return - benchmark_return) / algo_volatility
73
74
75
class RiskMetricsCumulative(object):
76
    """
77
    :Usage:
78
        Instantiate RiskMetricsCumulative once.
79
        Call update() method on each dt to update the metrics.
80
    """
81
82
    METRIC_NAMES = (
83
        'alpha',
84
        'beta',
85
        'sharpe',
86
        'algorithm_volatility',
87
        'benchmark_volatility',
88
        'downside_risk',
89
        'sortino',
90
        'information',
91
    )
92
93
    def __init__(self, sim_params, env,
94
                 create_first_day_stats=False):
95
        self.treasury_curves = env.treasury_curves
96
        self.start_date = sim_params.period_start.replace(
97
            hour=0, minute=0, second=0, microsecond=0
98
        )
99
        self.end_date = sim_params.period_end.replace(
100
            hour=0, minute=0, second=0, microsecond=0
101
        )
102
103
        self.trading_days = env.days_in_range(self.start_date, self.end_date)
104
105
        # Hold on to the trading day before the start,
106
        # used for index of the zero return value when forcing returns
107
        # on the first day.
108
        self.day_before_start = self.start_date - env.trading_days.freq
109
110
        last_day = normalize_date(sim_params.period_end)
111
        if last_day not in self.trading_days:
112
            last_day = pd.tseries.index.DatetimeIndex(
113
                [last_day]
114
            )
115
            self.trading_days = self.trading_days.append(last_day)
116
117
        self.sim_params = sim_params
118
        self.env = env
119
120
        self.create_first_day_stats = create_first_day_stats
121
122
        cont_index = self.trading_days
123
124
        self.cont_index = cont_index
125
        self.cont_len = len(self.cont_index)
126
127
        empty_cont = np.full(self.cont_len, np.nan)
128
129
        self.algorithm_returns_cont = empty_cont.copy()
130
        self.benchmark_returns_cont = empty_cont.copy()
131
        self.algorithm_cumulative_leverages_cont = empty_cont.copy()
132
        self.mean_returns_cont = empty_cont.copy()
133
        self.annualized_mean_returns_cont = empty_cont.copy()
134
        self.mean_benchmark_returns_cont = empty_cont.copy()
135
        self.annualized_mean_benchmark_returns_cont = empty_cont.copy()
136
137
        # The returns at a given time are read and reset from the respective
138
        # returns container.
139
        self.algorithm_returns = None
140
        self.benchmark_returns = None
141
        self.mean_returns = None
142
        self.annualized_mean_returns = None
143
        self.mean_benchmark_returns = None
144
        self.annualized_mean_benchmark_returns = None
145
146
        self.algorithm_cumulative_returns = empty_cont.copy()
147
        self.benchmark_cumulative_returns = empty_cont.copy()
148
        self.algorithm_cumulative_leverages = empty_cont.copy()
149
        self.excess_returns = empty_cont.copy()
150
151
        self.latest_dt_loc = 0
152
        self.latest_dt = cont_index[0]
153
154
        self.benchmark_volatility = empty_cont.copy()
155
        self.algorithm_volatility = empty_cont.copy()
156
        self.beta = empty_cont.copy()
157
        self.alpha = empty_cont.copy()
158
        self.sharpe = empty_cont.copy()
159
        self.downside_risk = empty_cont.copy()
160
        self.sortino = empty_cont.copy()
161
        self.information = empty_cont.copy()
162
163
        self.drawdowns = empty_cont.copy()
164
        self.max_drawdowns = empty_cont.copy()
165
        self.max_drawdown = 0
166
        self.max_leverages = empty_cont.copy()
167
        self.max_leverage = 0
168
        self.current_max = -np.inf
169
        self.daily_treasury = pd.Series(index=self.trading_days)
170
        self.treasury_period_return = np.nan
171
172
        self.num_trading_days = 0
173
174
    def update(self, dt, algorithm_returns, benchmark_returns, leverage):
175
        # Keep track of latest dt for use in to_dict and other methods
176
        # that report current state.
177
        self.latest_dt = dt
178
        dt_loc = self.cont_index.get_loc(dt)
179
        self.latest_dt_loc = dt_loc
180
181
        self.algorithm_returns_cont[dt_loc] = algorithm_returns
182
        self.algorithm_returns = self.algorithm_returns_cont[:dt_loc + 1]
183
184
        self.num_trading_days = len(self.algorithm_returns)
185
186
        if self.create_first_day_stats:
187
            if len(self.algorithm_returns) == 1:
188
                self.algorithm_returns = np.append(0.0, self.algorithm_returns)
189
190
        self.algorithm_cumulative_returns[dt_loc] = \
191
            self.calculate_cumulative_returns(self.algorithm_returns)
192
193
        algo_cumulative_returns_to_date = \
194
            self.algorithm_cumulative_returns[:dt_loc + 1]
195
196
        self.mean_returns_cont[dt_loc] = \
197
            algo_cumulative_returns_to_date[dt_loc] / self.num_trading_days
198
199
        self.mean_returns = self.mean_returns_cont[:dt_loc + 1]
200
201
        self.annualized_mean_returns_cont[dt_loc] = \
202
            self.mean_returns_cont[dt_loc] * 252
203
204
        self.annualized_mean_returns = \
205
            self.annualized_mean_returns_cont[:dt_loc + 1]
206
207
        if self.create_first_day_stats:
208
            if len(self.mean_returns) == 1:
209
                self.mean_returns = np.append(0.0, self.mean_returns)
210
                self.annualized_mean_returns = np.append(
211
                    0.0, self.annualized_mean_returns)
212
213
        self.benchmark_returns_cont[dt_loc] = benchmark_returns
214
        self.benchmark_returns = self.benchmark_returns_cont[:dt_loc + 1]
215
216
        if self.create_first_day_stats:
217
            if len(self.benchmark_returns) == 1:
218
                self.benchmark_returns = np.append(0.0, self.benchmark_returns)
219
220
        self.benchmark_cumulative_returns[dt_loc] = \
221
            self.calculate_cumulative_returns(self.benchmark_returns)
222
223
        benchmark_cumulative_returns_to_date = \
224
            self.benchmark_cumulative_returns[:dt_loc + 1]
225
226
        self.mean_benchmark_returns_cont[dt_loc] = \
227
            benchmark_cumulative_returns_to_date[dt_loc] / \
228
            self.num_trading_days
229
230
        self.mean_benchmark_returns = self.mean_benchmark_returns_cont[:dt_loc]
231
232
        self.annualized_mean_benchmark_returns_cont[dt_loc] = \
233
            self.mean_benchmark_returns_cont[dt_loc] * 252
234
235
        self.annualized_mean_benchmark_returns = \
236
            self.annualized_mean_benchmark_returns_cont[:dt_loc + 1]
237
238
        self.algorithm_cumulative_leverages_cont[dt_loc] = leverage
239
        self.algorithm_cumulative_leverages = \
240
            self.algorithm_cumulative_leverages_cont[:dt_loc + 1]
241
242
        if self.create_first_day_stats:
243
            if len(self.algorithm_cumulative_leverages) == 1:
244
                self.algorithm_cumulative_leverages = np.append(
245
                    0.0,
246
                    self.algorithm_cumulative_leverages)
247
248
        if not len(self.algorithm_returns) and len(self.benchmark_returns):
249
            message = "Mismatch between benchmark_returns ({bm_count}) and \
250
algorithm_returns ({algo_count}) in range {start} : {end} on {dt}"
251
            message = message.format(
252
                bm_count=len(self.benchmark_returns),
253
                algo_count=len(self.algorithm_returns),
254
                start=self.start_date,
255
                end=self.end_date,
256
                dt=dt
257
            )
258
            raise Exception(message)
259
260
        self.update_current_max()
261
        self.benchmark_volatility[dt_loc] = \
262
            self.calculate_volatility(self.benchmark_returns)
263
        self.algorithm_volatility[dt_loc] = \
264
            self.calculate_volatility(self.algorithm_returns)
265
266
        # caching the treasury rates for the minutely case is a
267
        # big speedup, because it avoids searching the treasury
268
        # curves on every minute.
269
        # In both minutely and daily, the daily curve is always used.
270
        treasury_end = dt.replace(hour=0, minute=0)
271
        if np.isnan(self.daily_treasury[treasury_end]):
272
            treasury_period_return = choose_treasury(
273
                self.treasury_curves,
274
                self.start_date,
275
                treasury_end,
276
                self.env,
277
            )
278
            self.daily_treasury[treasury_end] = treasury_period_return
279
        self.treasury_period_return = self.daily_treasury[treasury_end]
280
        self.excess_returns[dt_loc] = (
281
            self.algorithm_cumulative_returns[dt_loc] -
282
            self.treasury_period_return)
283
        self.beta[dt_loc] = self.calculate_beta()
284
        self.alpha[dt_loc] = self.calculate_alpha()
285
        self.sharpe[dt_loc] = self.calculate_sharpe()
286
        self.downside_risk[dt_loc] = \
287
            self.calculate_downside_risk()
288
        self.sortino[dt_loc] = self.calculate_sortino()
289
        self.information[dt_loc] = self.calculate_information()
290
        self.max_drawdown = self.calculate_max_drawdown()
291
        self.max_drawdowns[dt_loc] = self.max_drawdown
292
        self.max_leverage = self.calculate_max_leverage()
293
        self.max_leverages[dt_loc] = self.max_leverage
294
295
    def to_dict(self):
296
        """
297
        Creates a dictionary representing the state of the risk report.
298
        Returns a dict object of the form:
299
        """
300
        dt = self.latest_dt
301
        dt_loc = self.latest_dt_loc
302
        period_label = dt.strftime("%Y-%m")
303
        rval = {
304
            'trading_days': self.num_trading_days,
305
            'benchmark_volatility':
306
            self.benchmark_volatility[dt_loc],
307
            'algo_volatility':
308
            self.algorithm_volatility[dt_loc],
309
            'treasury_period_return': self.treasury_period_return,
310
            # Though the two following keys say period return,
311
            # they would be more accurately called the cumulative return.
312
            # However, the keys need to stay the same, for now, for backwards
313
            # compatibility with existing consumers.
314
            'algorithm_period_return':
315
            self.algorithm_cumulative_returns[dt_loc],
316
            'benchmark_period_return':
317
            self.benchmark_cumulative_returns[dt_loc],
318
            'beta': self.beta[dt_loc],
319
            'alpha': self.alpha[dt_loc],
320
            'sharpe': self.sharpe[dt_loc],
321
            'sortino': self.sortino[dt_loc],
322
            'information': self.information[dt_loc],
323
            'excess_return': self.excess_returns[dt_loc],
324
            'max_drawdown': self.max_drawdown,
325
            'max_leverage': self.max_leverage,
326
            'period_label': period_label
327
        }
328
329
        return {k: (None if check_entry(k, v) else v)
330
                for k, v in iteritems(rval)}
331
332
    def __repr__(self):
333
        statements = []
334
        for metric in self.METRIC_NAMES:
335
            value = getattr(self, metric)[-1]
336
            if isinstance(value, list):
337
                if len(value) == 0:
338
                    value = np.nan
339
                else:
340
                    value = value[-1]
341
            statements.append("{m}:{v}".format(m=metric, v=value))
342
343
        return '\n'.join(statements)
344
345
    def calculate_cumulative_returns(self, returns):
346
        return (1. + returns).prod() - 1
347
348
    def update_current_max(self):
349
        if len(self.algorithm_cumulative_returns) == 0:
350
            return
351
        current_cumulative_return = \
352
            self.algorithm_cumulative_returns[self.latest_dt_loc]
353
        if self.current_max < current_cumulative_return:
354
            self.current_max = current_cumulative_return
355
356
    def calculate_max_drawdown(self):
357
        if len(self.algorithm_cumulative_returns) == 0:
358
            return self.max_drawdown
359
360
        # The drawdown is defined as: (high - low) / high
361
        # The above factors out to: 1.0 - (low / high)
362
        #
363
        # Instead of explicitly always using the low, use the current total
364
        # return value, and test that against the max drawdown, which will
365
        # exceed the previous max_drawdown iff the current return is lower than
366
        # the previous low in the current drawdown window.
367
        cur_drawdown = 1.0 - (
368
            (1.0 + self.algorithm_cumulative_returns[self.latest_dt_loc])
369
            /
370
            (1.0 + self.current_max))
371
372
        self.drawdowns[self.latest_dt_loc] = cur_drawdown
373
374
        if self.max_drawdown < cur_drawdown:
375
            return cur_drawdown
376
        else:
377
            return self.max_drawdown
378
379
    def calculate_max_leverage(self):
380
        # The leverage is defined as: the gross_exposure/net_liquidation
381
        # gross_exposure = long_exposure + abs(short_exposure)
382
        # net_liquidation = ending_cash + long_exposure + short_exposure
383
        cur_leverage = self.algorithm_cumulative_leverages_cont[
384
            self.latest_dt_loc]
385
386
        return max(cur_leverage, self.max_leverage)
387
388
    def calculate_sharpe(self):
389
        """
390
        http://en.wikipedia.org/wiki/Sharpe_ratio
391
        """
392
        return sharpe_ratio(
393
            self.algorithm_volatility[self.latest_dt_loc],
394
            self.annualized_mean_returns_cont[self.latest_dt_loc],
395
            self.daily_treasury[self.latest_dt.date()])
396
397
    def calculate_sortino(self):
398
        """
399
        http://en.wikipedia.org/wiki/Sortino_ratio
400
        """
401
        return sortino_ratio(
402
            self.annualized_mean_returns_cont[self.latest_dt_loc],
403
            self.daily_treasury[self.latest_dt.date()],
404
            self.downside_risk[self.latest_dt_loc])
405
406
    def calculate_information(self):
407
        """
408
        http://en.wikipedia.org/wiki/Information_ratio
409
        """
410
        return information_ratio(
411
            self.algorithm_volatility[self.latest_dt_loc],
412
            self.annualized_mean_returns_cont[self.latest_dt_loc],
413
            self.annualized_mean_benchmark_returns_cont[self.latest_dt_loc])
414
415
    def calculate_alpha(self):
416
        """
417
        http://en.wikipedia.org/wiki/Alpha_(investment)
418
        """
419
        return alpha(
420
            self.annualized_mean_returns_cont[self.latest_dt_loc],
421
            self.treasury_period_return,
422
            self.annualized_mean_benchmark_returns_cont[self.latest_dt_loc],
423
            self.beta[self.latest_dt_loc])
424
425
    def calculate_volatility(self, daily_returns):
426
        if len(daily_returns) <= 1:
427
            return 0.0
428
        return np.std(daily_returns, ddof=1) * math.sqrt(252)
429
430
    def calculate_downside_risk(self):
431
        return downside_risk(self.algorithm_returns,
432
                             self.mean_returns,
433
                             252)
434
435
    def calculate_beta(self):
436
        """
437
438
        .. math::
439
440
            \\beta_a = \\frac{\mathrm{Cov}(r_a,r_p)}{\mathrm{Var}(r_p)}
441
442
        http://en.wikipedia.org/wiki/Beta_(finance)
443
        """
444
        # it doesn't make much sense to calculate beta for less than two
445
        # values, so return none.
446
        if len(self.algorithm_returns) < 2:
447
            return 0.0
448
449
        returns_matrix = np.vstack([self.algorithm_returns,
450
                                    self.benchmark_returns])
451
        C = np.cov(returns_matrix, ddof=1)
452
        algorithm_covariance = C[0][1]
453
        benchmark_variance = C[1][1]
454
        beta = algorithm_covariance / benchmark_variance
455
456
        return beta
457
458
    def __getstate__(self):
459
        state_dict = {k: v for k, v in iteritems(self.__dict__)
460
                      if not k.startswith('_')}
461
462
        STATE_VERSION = 3
463
        state_dict[VERSION_LABEL] = STATE_VERSION
464
465
        return state_dict
466
467
    def __setstate__(self, state):
468
469
        OLDEST_SUPPORTED_STATE = 3
470
        version = state.pop(VERSION_LABEL)
471
472
        if version < OLDEST_SUPPORTED_STATE:
473
            raise BaseException("RiskMetricsCumulative \
474
                    saved state is too old.")
475
476
        self.__dict__.update(state)
477